MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrtgioo Structured version   Visualization version   GIF version

Theorem xrtgioo 23411
Description: The topology on the extended reals coincides with the standard topology on the reals, when restricted to . (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
xrtgioo.1 𝐽 = ((ordTop‘ ≤ ) ↾t ℝ)
Assertion
Ref Expression
xrtgioo (topGen‘ran (,)) = 𝐽

Proof of Theorem xrtgioo
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 letop 21811 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Top
2 ioof 12825 . . . . . . . . . . 11 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6487 . . . . . . . . . . 11 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . . . . . . . 10 (,) Fn (ℝ* × ℝ*)
5 iooordt 21822 . . . . . . . . . . 11 (𝑥(,)𝑦) ∈ (ordTop‘ ≤ )
65rgen2w 3119 . . . . . . . . . 10 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (ordTop‘ ≤ )
7 ffnov 7257 . . . . . . . . . 10 ((,):(ℝ* × ℝ*)⟶(ordTop‘ ≤ ) ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (ordTop‘ ≤ )))
84, 6, 7mpbir2an 710 . . . . . . . . 9 (,):(ℝ* × ℝ*)⟶(ordTop‘ ≤ )
9 frn 6493 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶(ordTop‘ ≤ ) → ran (,) ⊆ (ordTop‘ ≤ ))
108, 9ax-mp 5 . . . . . . . 8 ran (,) ⊆ (ordTop‘ ≤ )
11 tgss 21573 . . . . . . . 8 (((ordTop‘ ≤ ) ∈ Top ∧ ran (,) ⊆ (ordTop‘ ≤ )) → (topGen‘ran (,)) ⊆ (topGen‘(ordTop‘ ≤ )))
121, 10, 11mp2an 691 . . . . . . 7 (topGen‘ran (,)) ⊆ (topGen‘(ordTop‘ ≤ ))
13 tgtop 21578 . . . . . . . 8 ((ordTop‘ ≤ ) ∈ Top → (topGen‘(ordTop‘ ≤ )) = (ordTop‘ ≤ ))
141, 13ax-mp 5 . . . . . . 7 (topGen‘(ordTop‘ ≤ )) = (ordTop‘ ≤ )
1512, 14sseqtri 3951 . . . . . 6 (topGen‘ran (,)) ⊆ (ordTop‘ ≤ )
1615sseli 3911 . . . . 5 (𝑥 ∈ (topGen‘ran (,)) → 𝑥 ∈ (ordTop‘ ≤ ))
17 retopon 23369 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
18 toponss 21532 . . . . . 6 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝑥 ∈ (topGen‘ran (,))) → 𝑥 ⊆ ℝ)
1917, 18mpan 689 . . . . 5 (𝑥 ∈ (topGen‘ran (,)) → 𝑥 ⊆ ℝ)
20 reordt 21823 . . . . . 6 ℝ ∈ (ordTop‘ ≤ )
21 restopn2 21782 . . . . . 6 (((ordTop‘ ≤ ) ∈ Top ∧ ℝ ∈ (ordTop‘ ≤ )) → (𝑥 ∈ ((ordTop‘ ≤ ) ↾t ℝ) ↔ (𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑥 ⊆ ℝ)))
221, 20, 21mp2an 691 . . . . 5 (𝑥 ∈ ((ordTop‘ ≤ ) ↾t ℝ) ↔ (𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑥 ⊆ ℝ))
2316, 19, 22sylanbrc 586 . . . 4 (𝑥 ∈ (topGen‘ran (,)) → 𝑥 ∈ ((ordTop‘ ≤ ) ↾t ℝ))
2423ssriv 3919 . . 3 (topGen‘ran (,)) ⊆ ((ordTop‘ ≤ ) ↾t ℝ)
25 eqid 2798 . . . . . . 7 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
26 eqid 2798 . . . . . . 7 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
27 eqid 2798 . . . . . . 7 ran (,) = ran (,)
2825, 26, 27leordtval 21818 . . . . . 6 (ordTop‘ ≤ ) = (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
2928oveq1i 7145 . . . . 5 ((ordTop‘ ≤ ) ↾t ℝ) = ((topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ↾t ℝ)
3028, 1eqeltrri 2887 . . . . . . 7 (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top
31 tgclb 21575 . . . . . . 7 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ↔ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top)
3230, 31mpbir 234 . . . . . 6 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases
33 reex 10617 . . . . . 6 ℝ ∈ V
34 tgrest 21764 . . . . . 6 ((((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ∧ ℝ ∈ V) → (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) = ((topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ↾t ℝ))
3532, 33, 34mp2an 691 . . . . 5 (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) = ((topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ↾t ℝ)
3629, 35eqtr4i 2824 . . . 4 ((ordTop‘ ≤ ) ↾t ℝ) = (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ))
37 retopbas 23366 . . . . 5 ran (,) ∈ TopBases
38 elrest 16693 . . . . . . . 8 ((((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ∧ ℝ ∈ V) → (𝑢 ∈ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ↔ ∃𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))𝑢 = (𝑣 ∩ ℝ)))
3932, 33, 38mp2an 691 . . . . . . 7 (𝑢 ∈ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ↔ ∃𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))𝑢 = (𝑣 ∩ ℝ))
40 elun 4076 . . . . . . . . . 10 (𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↔ (𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∨ 𝑣 ∈ ran (,)))
41 elun 4076 . . . . . . . . . . . 12 (𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ↔ (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∨ 𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))))
42 eqid 2798 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
4342elrnmpt 5792 . . . . . . . . . . . . . . 15 (𝑣 ∈ V → (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (𝑥(,]+∞)))
4443elv 3446 . . . . . . . . . . . . . 14 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (𝑥(,]+∞))
45 simpl 486 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*)
46 pnfxr 10684 . . . . . . . . . . . . . . . . . . . . . . . 24 +∞ ∈ ℝ*
4746a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → +∞ ∈ ℝ*)
48 rexr 10676 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
4948adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
50 df-ioc 12731 . . . . . . . . . . . . . . . . . . . . . . . . 25 (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎 < 𝑐𝑐𝑏)})
5150elixx3g 12739 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝑥(,]+∞) ↔ ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥 < 𝑦𝑦 ≤ +∞)))
5251baib 539 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑥 < 𝑦𝑦 ≤ +∞)))
5345, 47, 49, 52syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑥 < 𝑦𝑦 ≤ +∞)))
54 pnfge 12513 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
5549, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑦 ≤ +∞)
5655biantrud 535 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑦 ≤ +∞)))
57 ltpnf 12503 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → 𝑦 < +∞)
5857adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑦 < +∞)
5958biantrud 535 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑦 < +∞)))
6053, 56, 593bitr2d 310 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑥 < 𝑦𝑦 < +∞)))
6160pm5.32da 582 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ((𝑦 ∈ ℝ ∧ 𝑦 ∈ (𝑥(,]+∞)) ↔ (𝑦 ∈ ℝ ∧ (𝑥 < 𝑦𝑦 < +∞))))
62 elin 3897 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ (𝑦 ∈ (𝑥(,]+∞) ∧ 𝑦 ∈ ℝ))
6362biancomi 466 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ (𝑥(,]+∞)))
64 3anass 1092 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞) ↔ (𝑦 ∈ ℝ ∧ (𝑥 < 𝑦𝑦 < +∞)))
6561, 63, 643bitr4g 317 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞)))
66 elioo2 12767 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (𝑥(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞)))
6746, 66mpan2 690 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ (𝑥(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞)))
6865, 67bitr4d 285 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ 𝑦 ∈ (𝑥(,)+∞)))
6968eqrdv 2796 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → ((𝑥(,]+∞) ∩ ℝ) = (𝑥(,)+∞))
70 ioorebas 12829 . . . . . . . . . . . . . . . . 17 (𝑥(,)+∞) ∈ ran (,)
7169, 70eqeltrdi 2898 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → ((𝑥(,]+∞) ∩ ℝ) ∈ ran (,))
72 ineq1 4131 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑥(,]+∞) → (𝑣 ∩ ℝ) = ((𝑥(,]+∞) ∩ ℝ))
7372eleq1d 2874 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑥(,]+∞) → ((𝑣 ∩ ℝ) ∈ ran (,) ↔ ((𝑥(,]+∞) ∩ ℝ) ∈ ran (,)))
7471, 73syl5ibrcom 250 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑣 = (𝑥(,]+∞) → (𝑣 ∩ ℝ) ∈ ran (,)))
7574rexlimiv 3239 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℝ* 𝑣 = (𝑥(,]+∞) → (𝑣 ∩ ℝ) ∈ ran (,))
7644, 75sylbi 220 . . . . . . . . . . . . 13 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) → (𝑣 ∩ ℝ) ∈ ran (,))
77 eqid 2798 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
7877elrnmpt 5792 . . . . . . . . . . . . . . 15 (𝑣 ∈ V → (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (-∞[,)𝑥)))
7978elv 3446 . . . . . . . . . . . . . 14 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (-∞[,)𝑥))
80 mnfxr 10687 . . . . . . . . . . . . . . . . . . . . . . . 24 -∞ ∈ ℝ*
8180a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → -∞ ∈ ℝ*)
82 df-ico 12732 . . . . . . . . . . . . . . . . . . . . . . . . 25 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐 < 𝑏)})
8382elixx3g 12739 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (-∞[,)𝑥) ↔ ((-∞ ∈ ℝ*𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ ≤ 𝑦𝑦 < 𝑥)))
8483baib 539 . . . . . . . . . . . . . . . . . . . . . . 23 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (-∞ ≤ 𝑦𝑦 < 𝑥)))
8581, 45, 49, 84syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (-∞[,)𝑥) ↔ (-∞ ≤ 𝑦𝑦 < 𝑥)))
86 mnfle 12517 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ* → -∞ ≤ 𝑦)
8749, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → -∞ ≤ 𝑦)
8887biantrurd 536 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 < 𝑥 ↔ (-∞ ≤ 𝑦𝑦 < 𝑥)))
89 mnflt 12506 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → -∞ < 𝑦)
9089adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → -∞ < 𝑦)
9190biantrurd 536 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 < 𝑥 ↔ (-∞ < 𝑦𝑦 < 𝑥)))
9285, 88, 913bitr2d 310 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (-∞[,)𝑥) ↔ (-∞ < 𝑦𝑦 < 𝑥)))
9392pm5.32da 582 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ((𝑦 ∈ ℝ ∧ 𝑦 ∈ (-∞[,)𝑥)) ↔ (𝑦 ∈ ℝ ∧ (-∞ < 𝑦𝑦 < 𝑥))))
94 elin 3897 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ (𝑦 ∈ (-∞[,)𝑥) ∧ 𝑦 ∈ ℝ))
9594biancomi 466 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ (-∞[,)𝑥)))
96 3anass 1092 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥) ↔ (𝑦 ∈ ℝ ∧ (-∞ < 𝑦𝑦 < 𝑥)))
9793, 95, 963bitr4g 317 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥)))
98 elioo2 12767 . . . . . . . . . . . . . . . . . . . 20 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦 ∈ (-∞(,)𝑥) ↔ (𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥)))
9980, 98mpan 689 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ (-∞(,)𝑥) ↔ (𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥)))
10097, 99bitr4d 285 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ 𝑦 ∈ (-∞(,)𝑥)))
101100eqrdv 2796 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → ((-∞[,)𝑥) ∩ ℝ) = (-∞(,)𝑥))
102 ioorebas 12829 . . . . . . . . . . . . . . . . 17 (-∞(,)𝑥) ∈ ran (,)
103101, 102eqeltrdi 2898 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → ((-∞[,)𝑥) ∩ ℝ) ∈ ran (,))
104 ineq1 4131 . . . . . . . . . . . . . . . . 17 (𝑣 = (-∞[,)𝑥) → (𝑣 ∩ ℝ) = ((-∞[,)𝑥) ∩ ℝ))
105104eleq1d 2874 . . . . . . . . . . . . . . . 16 (𝑣 = (-∞[,)𝑥) → ((𝑣 ∩ ℝ) ∈ ran (,) ↔ ((-∞[,)𝑥) ∩ ℝ) ∈ ran (,)))
106103, 105syl5ibrcom 250 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑣 = (-∞[,)𝑥) → (𝑣 ∩ ℝ) ∈ ran (,)))
107106rexlimiv 3239 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℝ* 𝑣 = (-∞[,)𝑥) → (𝑣 ∩ ℝ) ∈ ran (,))
10879, 107sylbi 220 . . . . . . . . . . . . 13 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) → (𝑣 ∩ ℝ) ∈ ran (,))
10976, 108jaoi 854 . . . . . . . . . . . 12 ((𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∨ 𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) → (𝑣 ∩ ℝ) ∈ ran (,))
11041, 109sylbi 220 . . . . . . . . . . 11 (𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) → (𝑣 ∩ ℝ) ∈ ran (,))
111 elssuni 4830 . . . . . . . . . . . . . 14 (𝑣 ∈ ran (,) → 𝑣 ran (,))
112 unirnioo 12827 . . . . . . . . . . . . . 14 ℝ = ran (,)
113111, 112sseqtrrdi 3966 . . . . . . . . . . . . 13 (𝑣 ∈ ran (,) → 𝑣 ⊆ ℝ)
114 df-ss 3898 . . . . . . . . . . . . 13 (𝑣 ⊆ ℝ ↔ (𝑣 ∩ ℝ) = 𝑣)
115113, 114sylib 221 . . . . . . . . . . . 12 (𝑣 ∈ ran (,) → (𝑣 ∩ ℝ) = 𝑣)
116 id 22 . . . . . . . . . . . 12 (𝑣 ∈ ran (,) → 𝑣 ∈ ran (,))
117115, 116eqeltrd 2890 . . . . . . . . . . 11 (𝑣 ∈ ran (,) → (𝑣 ∩ ℝ) ∈ ran (,))
118110, 117jaoi 854 . . . . . . . . . 10 ((𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∨ 𝑣 ∈ ran (,)) → (𝑣 ∩ ℝ) ∈ ran (,))
11940, 118sylbi 220 . . . . . . . . 9 (𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) → (𝑣 ∩ ℝ) ∈ ran (,))
120 eleq1 2877 . . . . . . . . 9 (𝑢 = (𝑣 ∩ ℝ) → (𝑢 ∈ ran (,) ↔ (𝑣 ∩ ℝ) ∈ ran (,)))
121119, 120syl5ibrcom 250 . . . . . . . 8 (𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) → (𝑢 = (𝑣 ∩ ℝ) → 𝑢 ∈ ran (,)))
122121rexlimiv 3239 . . . . . . 7 (∃𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))𝑢 = (𝑣 ∩ ℝ) → 𝑢 ∈ ran (,))
12339, 122sylbi 220 . . . . . 6 (𝑢 ∈ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) → 𝑢 ∈ ran (,))
124123ssriv 3919 . . . . 5 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ⊆ ran (,)
125 tgss 21573 . . . . 5 ((ran (,) ∈ TopBases ∧ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ⊆ ran (,)) → (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) ⊆ (topGen‘ran (,)))
12637, 124, 125mp2an 691 . . . 4 (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) ⊆ (topGen‘ran (,))
12736, 126eqsstri 3949 . . 3 ((ordTop‘ ≤ ) ↾t ℝ) ⊆ (topGen‘ran (,))
12824, 127eqssi 3931 . 2 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
129 xrtgioo.1 . 2 𝐽 = ((ordTop‘ ≤ ) ↾t ℝ)
130128, 129eqtr4i 2824 1 (topGen‘ran (,)) = 𝐽
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  cun 3879  cin 3880  wss 3881  𝒫 cpw 4497   cuni 4800   class class class wbr 5030  cmpt 5110   × cxp 5517  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cr 10525  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  (,)cioo 12726  (,]cioc 12727  [,)cico 12728  t crest 16686  topGenctg 16703  ordTopcordt 16764  Topctop 21498  TopOnctopon 21515  TopBasesctb 21550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-rest 16688  df-topgen 16709  df-ordt 16766  df-ps 17802  df-tsr 17803  df-top 21499  df-topon 21516  df-bases 21551
This theorem is referenced by:  xrrest  23412  xrsmopn  23417  xrge0tsms  23439  metdcn2  23444  xrge0tsmsd  30742  xrtgcntopre  42118  xrtgioo2  42209
  Copyright terms: Public domain W3C validator