MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrtgioo Structured version   Visualization version   GIF version

Theorem xrtgioo 24842
Description: The topology on the extended reals coincides with the standard topology on the reals, when restricted to . (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
xrtgioo.1 𝐽 = ((ordTop‘ ≤ ) ↾t ℝ)
Assertion
Ref Expression
xrtgioo (topGen‘ran (,)) = 𝐽

Proof of Theorem xrtgioo
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 letop 23230 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Top
2 ioof 13484 . . . . . . . . . . 11 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6737 . . . . . . . . . . 11 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . . . . . . . 10 (,) Fn (ℝ* × ℝ*)
5 iooordt 23241 . . . . . . . . . . 11 (𝑥(,)𝑦) ∈ (ordTop‘ ≤ )
65rgen2w 3064 . . . . . . . . . 10 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (ordTop‘ ≤ )
7 ffnov 7559 . . . . . . . . . 10 ((,):(ℝ* × ℝ*)⟶(ordTop‘ ≤ ) ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (ordTop‘ ≤ )))
84, 6, 7mpbir2an 711 . . . . . . . . 9 (,):(ℝ* × ℝ*)⟶(ordTop‘ ≤ )
9 frn 6744 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶(ordTop‘ ≤ ) → ran (,) ⊆ (ordTop‘ ≤ ))
108, 9ax-mp 5 . . . . . . . 8 ran (,) ⊆ (ordTop‘ ≤ )
11 tgss 22991 . . . . . . . 8 (((ordTop‘ ≤ ) ∈ Top ∧ ran (,) ⊆ (ordTop‘ ≤ )) → (topGen‘ran (,)) ⊆ (topGen‘(ordTop‘ ≤ )))
121, 10, 11mp2an 692 . . . . . . 7 (topGen‘ran (,)) ⊆ (topGen‘(ordTop‘ ≤ ))
13 tgtop 22996 . . . . . . . 8 ((ordTop‘ ≤ ) ∈ Top → (topGen‘(ordTop‘ ≤ )) = (ordTop‘ ≤ ))
141, 13ax-mp 5 . . . . . . 7 (topGen‘(ordTop‘ ≤ )) = (ordTop‘ ≤ )
1512, 14sseqtri 4032 . . . . . 6 (topGen‘ran (,)) ⊆ (ordTop‘ ≤ )
1615sseli 3991 . . . . 5 (𝑥 ∈ (topGen‘ran (,)) → 𝑥 ∈ (ordTop‘ ≤ ))
17 retopon 24800 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
18 toponss 22949 . . . . . 6 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝑥 ∈ (topGen‘ran (,))) → 𝑥 ⊆ ℝ)
1917, 18mpan 690 . . . . 5 (𝑥 ∈ (topGen‘ran (,)) → 𝑥 ⊆ ℝ)
20 reordt 23242 . . . . . 6 ℝ ∈ (ordTop‘ ≤ )
21 restopn2 23201 . . . . . 6 (((ordTop‘ ≤ ) ∈ Top ∧ ℝ ∈ (ordTop‘ ≤ )) → (𝑥 ∈ ((ordTop‘ ≤ ) ↾t ℝ) ↔ (𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑥 ⊆ ℝ)))
221, 20, 21mp2an 692 . . . . 5 (𝑥 ∈ ((ordTop‘ ≤ ) ↾t ℝ) ↔ (𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑥 ⊆ ℝ))
2316, 19, 22sylanbrc 583 . . . 4 (𝑥 ∈ (topGen‘ran (,)) → 𝑥 ∈ ((ordTop‘ ≤ ) ↾t ℝ))
2423ssriv 3999 . . 3 (topGen‘ran (,)) ⊆ ((ordTop‘ ≤ ) ↾t ℝ)
25 eqid 2735 . . . . . . 7 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
26 eqid 2735 . . . . . . 7 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
27 eqid 2735 . . . . . . 7 ran (,) = ran (,)
2825, 26, 27leordtval 23237 . . . . . 6 (ordTop‘ ≤ ) = (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
2928oveq1i 7441 . . . . 5 ((ordTop‘ ≤ ) ↾t ℝ) = ((topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ↾t ℝ)
3028, 1eqeltrri 2836 . . . . . . 7 (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top
31 tgclb 22993 . . . . . . 7 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ↔ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top)
3230, 31mpbir 231 . . . . . 6 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases
33 reex 11244 . . . . . 6 ℝ ∈ V
34 tgrest 23183 . . . . . 6 ((((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ∧ ℝ ∈ V) → (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) = ((topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ↾t ℝ))
3532, 33, 34mp2an 692 . . . . 5 (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) = ((topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ↾t ℝ)
3629, 35eqtr4i 2766 . . . 4 ((ordTop‘ ≤ ) ↾t ℝ) = (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ))
37 retopbas 24797 . . . . 5 ran (,) ∈ TopBases
38 elrest 17474 . . . . . . . 8 ((((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ∧ ℝ ∈ V) → (𝑢 ∈ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ↔ ∃𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))𝑢 = (𝑣 ∩ ℝ)))
3932, 33, 38mp2an 692 . . . . . . 7 (𝑢 ∈ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ↔ ∃𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))𝑢 = (𝑣 ∩ ℝ))
40 elun 4163 . . . . . . . . . 10 (𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↔ (𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∨ 𝑣 ∈ ran (,)))
41 elun 4163 . . . . . . . . . . . 12 (𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ↔ (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∨ 𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))))
42 eqid 2735 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
4342elrnmpt 5972 . . . . . . . . . . . . . . 15 (𝑣 ∈ V → (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (𝑥(,]+∞)))
4443elv 3483 . . . . . . . . . . . . . 14 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (𝑥(,]+∞))
45 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*)
46 pnfxr 11313 . . . . . . . . . . . . . . . . . . . . . . . 24 +∞ ∈ ℝ*
4746a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → +∞ ∈ ℝ*)
48 rexr 11305 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
4948adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
50 df-ioc 13389 . . . . . . . . . . . . . . . . . . . . . . . . 25 (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎 < 𝑐𝑐𝑏)})
5150elixx3g 13397 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝑥(,]+∞) ↔ ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥 < 𝑦𝑦 ≤ +∞)))
5251baib 535 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑥 < 𝑦𝑦 ≤ +∞)))
5345, 47, 49, 52syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑥 < 𝑦𝑦 ≤ +∞)))
54 pnfge 13170 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
5549, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑦 ≤ +∞)
5655biantrud 531 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑦 ≤ +∞)))
57 ltpnf 13160 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → 𝑦 < +∞)
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑦 < +∞)
5958biantrud 531 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑦 < +∞)))
6053, 56, 593bitr2d 307 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑥 < 𝑦𝑦 < +∞)))
6160pm5.32da 579 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ((𝑦 ∈ ℝ ∧ 𝑦 ∈ (𝑥(,]+∞)) ↔ (𝑦 ∈ ℝ ∧ (𝑥 < 𝑦𝑦 < +∞))))
62 elin 3979 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ (𝑦 ∈ (𝑥(,]+∞) ∧ 𝑦 ∈ ℝ))
6362biancomi 462 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ (𝑥(,]+∞)))
64 3anass 1094 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞) ↔ (𝑦 ∈ ℝ ∧ (𝑥 < 𝑦𝑦 < +∞)))
6561, 63, 643bitr4g 314 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞)))
66 elioo2 13425 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (𝑥(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞)))
6746, 66mpan2 691 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ (𝑥(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞)))
6865, 67bitr4d 282 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ 𝑦 ∈ (𝑥(,)+∞)))
6968eqrdv 2733 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → ((𝑥(,]+∞) ∩ ℝ) = (𝑥(,)+∞))
70 ioorebas 13488 . . . . . . . . . . . . . . . . 17 (𝑥(,)+∞) ∈ ran (,)
7169, 70eqeltrdi 2847 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → ((𝑥(,]+∞) ∩ ℝ) ∈ ran (,))
72 ineq1 4221 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑥(,]+∞) → (𝑣 ∩ ℝ) = ((𝑥(,]+∞) ∩ ℝ))
7372eleq1d 2824 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑥(,]+∞) → ((𝑣 ∩ ℝ) ∈ ran (,) ↔ ((𝑥(,]+∞) ∩ ℝ) ∈ ran (,)))
7471, 73syl5ibrcom 247 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑣 = (𝑥(,]+∞) → (𝑣 ∩ ℝ) ∈ ran (,)))
7574rexlimiv 3146 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℝ* 𝑣 = (𝑥(,]+∞) → (𝑣 ∩ ℝ) ∈ ran (,))
7644, 75sylbi 217 . . . . . . . . . . . . 13 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) → (𝑣 ∩ ℝ) ∈ ran (,))
77 eqid 2735 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
7877elrnmpt 5972 . . . . . . . . . . . . . . 15 (𝑣 ∈ V → (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (-∞[,)𝑥)))
7978elv 3483 . . . . . . . . . . . . . 14 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (-∞[,)𝑥))
80 mnfxr 11316 . . . . . . . . . . . . . . . . . . . . . . . 24 -∞ ∈ ℝ*
8180a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → -∞ ∈ ℝ*)
82 df-ico 13390 . . . . . . . . . . . . . . . . . . . . . . . . 25 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐 < 𝑏)})
8382elixx3g 13397 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (-∞[,)𝑥) ↔ ((-∞ ∈ ℝ*𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ ≤ 𝑦𝑦 < 𝑥)))
8483baib 535 . . . . . . . . . . . . . . . . . . . . . . 23 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (-∞ ≤ 𝑦𝑦 < 𝑥)))
8581, 45, 49, 84syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (-∞[,)𝑥) ↔ (-∞ ≤ 𝑦𝑦 < 𝑥)))
86 mnfle 13174 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ* → -∞ ≤ 𝑦)
8749, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → -∞ ≤ 𝑦)
8887biantrurd 532 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 < 𝑥 ↔ (-∞ ≤ 𝑦𝑦 < 𝑥)))
89 mnflt 13163 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → -∞ < 𝑦)
9089adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → -∞ < 𝑦)
9190biantrurd 532 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 < 𝑥 ↔ (-∞ < 𝑦𝑦 < 𝑥)))
9285, 88, 913bitr2d 307 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (-∞[,)𝑥) ↔ (-∞ < 𝑦𝑦 < 𝑥)))
9392pm5.32da 579 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ((𝑦 ∈ ℝ ∧ 𝑦 ∈ (-∞[,)𝑥)) ↔ (𝑦 ∈ ℝ ∧ (-∞ < 𝑦𝑦 < 𝑥))))
94 elin 3979 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ (𝑦 ∈ (-∞[,)𝑥) ∧ 𝑦 ∈ ℝ))
9594biancomi 462 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ (-∞[,)𝑥)))
96 3anass 1094 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥) ↔ (𝑦 ∈ ℝ ∧ (-∞ < 𝑦𝑦 < 𝑥)))
9793, 95, 963bitr4g 314 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥)))
98 elioo2 13425 . . . . . . . . . . . . . . . . . . . 20 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦 ∈ (-∞(,)𝑥) ↔ (𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥)))
9980, 98mpan 690 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ (-∞(,)𝑥) ↔ (𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥)))
10097, 99bitr4d 282 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ 𝑦 ∈ (-∞(,)𝑥)))
101100eqrdv 2733 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → ((-∞[,)𝑥) ∩ ℝ) = (-∞(,)𝑥))
102 ioorebas 13488 . . . . . . . . . . . . . . . . 17 (-∞(,)𝑥) ∈ ran (,)
103101, 102eqeltrdi 2847 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → ((-∞[,)𝑥) ∩ ℝ) ∈ ran (,))
104 ineq1 4221 . . . . . . . . . . . . . . . . 17 (𝑣 = (-∞[,)𝑥) → (𝑣 ∩ ℝ) = ((-∞[,)𝑥) ∩ ℝ))
105104eleq1d 2824 . . . . . . . . . . . . . . . 16 (𝑣 = (-∞[,)𝑥) → ((𝑣 ∩ ℝ) ∈ ran (,) ↔ ((-∞[,)𝑥) ∩ ℝ) ∈ ran (,)))
106103, 105syl5ibrcom 247 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑣 = (-∞[,)𝑥) → (𝑣 ∩ ℝ) ∈ ran (,)))
107106rexlimiv 3146 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℝ* 𝑣 = (-∞[,)𝑥) → (𝑣 ∩ ℝ) ∈ ran (,))
10879, 107sylbi 217 . . . . . . . . . . . . 13 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) → (𝑣 ∩ ℝ) ∈ ran (,))
10976, 108jaoi 857 . . . . . . . . . . . 12 ((𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∨ 𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) → (𝑣 ∩ ℝ) ∈ ran (,))
11041, 109sylbi 217 . . . . . . . . . . 11 (𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) → (𝑣 ∩ ℝ) ∈ ran (,))
111 elssuni 4942 . . . . . . . . . . . . . 14 (𝑣 ∈ ran (,) → 𝑣 ran (,))
112 unirnioo 13486 . . . . . . . . . . . . . 14 ℝ = ran (,)
113111, 112sseqtrrdi 4047 . . . . . . . . . . . . 13 (𝑣 ∈ ran (,) → 𝑣 ⊆ ℝ)
114 dfss2 3981 . . . . . . . . . . . . 13 (𝑣 ⊆ ℝ ↔ (𝑣 ∩ ℝ) = 𝑣)
115113, 114sylib 218 . . . . . . . . . . . 12 (𝑣 ∈ ran (,) → (𝑣 ∩ ℝ) = 𝑣)
116 id 22 . . . . . . . . . . . 12 (𝑣 ∈ ran (,) → 𝑣 ∈ ran (,))
117115, 116eqeltrd 2839 . . . . . . . . . . 11 (𝑣 ∈ ran (,) → (𝑣 ∩ ℝ) ∈ ran (,))
118110, 117jaoi 857 . . . . . . . . . 10 ((𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∨ 𝑣 ∈ ran (,)) → (𝑣 ∩ ℝ) ∈ ran (,))
11940, 118sylbi 217 . . . . . . . . 9 (𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) → (𝑣 ∩ ℝ) ∈ ran (,))
120 eleq1 2827 . . . . . . . . 9 (𝑢 = (𝑣 ∩ ℝ) → (𝑢 ∈ ran (,) ↔ (𝑣 ∩ ℝ) ∈ ran (,)))
121119, 120syl5ibrcom 247 . . . . . . . 8 (𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) → (𝑢 = (𝑣 ∩ ℝ) → 𝑢 ∈ ran (,)))
122121rexlimiv 3146 . . . . . . 7 (∃𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))𝑢 = (𝑣 ∩ ℝ) → 𝑢 ∈ ran (,))
12339, 122sylbi 217 . . . . . 6 (𝑢 ∈ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) → 𝑢 ∈ ran (,))
124123ssriv 3999 . . . . 5 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ⊆ ran (,)
125 tgss 22991 . . . . 5 ((ran (,) ∈ TopBases ∧ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ⊆ ran (,)) → (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) ⊆ (topGen‘ran (,)))
12637, 124, 125mp2an 692 . . . 4 (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) ⊆ (topGen‘ran (,))
12736, 126eqsstri 4030 . . 3 ((ordTop‘ ≤ ) ↾t ℝ) ⊆ (topGen‘ran (,))
12824, 127eqssi 4012 . 2 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
129 xrtgioo.1 . 2 𝐽 = ((ordTop‘ ≤ ) ↾t ℝ)
130128, 129eqtr4i 2766 1 (topGen‘ran (,)) = 𝐽
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cun 3961  cin 3962  wss 3963  𝒫 cpw 4605   cuni 4912   class class class wbr 5148  cmpt 5231   × cxp 5687  ran crn 5690   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  cr 11152  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294  (,)cioo 13384  (,]cioc 13385  [,)cico 13386  t crest 17467  topGenctg 17484  ordTopcordt 17546  Topctop 22915  TopOnctopon 22932  TopBasesctb 22968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-rest 17469  df-topgen 17490  df-ordt 17548  df-ps 18624  df-tsr 18625  df-top 22916  df-topon 22933  df-bases 22969
This theorem is referenced by:  xrrest  24843  xrsmopn  24848  xrge0tsms  24870  metdcn2  24875  xrge0tsmsd  33048  xrtgcntopre  45429  xrtgioo2  45525
  Copyright terms: Public domain W3C validator