MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrtgioo Structured version   Visualization version   GIF version

Theorem xrtgioo 23703
Description: The topology on the extended reals coincides with the standard topology on the reals, when restricted to . (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
xrtgioo.1 𝐽 = ((ordTop‘ ≤ ) ↾t ℝ)
Assertion
Ref Expression
xrtgioo (topGen‘ran (,)) = 𝐽

Proof of Theorem xrtgioo
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 letop 22103 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Top
2 ioof 13035 . . . . . . . . . . 11 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6545 . . . . . . . . . . 11 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . . . . . . . 10 (,) Fn (ℝ* × ℝ*)
5 iooordt 22114 . . . . . . . . . . 11 (𝑥(,)𝑦) ∈ (ordTop‘ ≤ )
65rgen2w 3074 . . . . . . . . . 10 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (ordTop‘ ≤ )
7 ffnov 7337 . . . . . . . . . 10 ((,):(ℝ* × ℝ*)⟶(ordTop‘ ≤ ) ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (ordTop‘ ≤ )))
84, 6, 7mpbir2an 711 . . . . . . . . 9 (,):(ℝ* × ℝ*)⟶(ordTop‘ ≤ )
9 frn 6552 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶(ordTop‘ ≤ ) → ran (,) ⊆ (ordTop‘ ≤ ))
108, 9ax-mp 5 . . . . . . . 8 ran (,) ⊆ (ordTop‘ ≤ )
11 tgss 21865 . . . . . . . 8 (((ordTop‘ ≤ ) ∈ Top ∧ ran (,) ⊆ (ordTop‘ ≤ )) → (topGen‘ran (,)) ⊆ (topGen‘(ordTop‘ ≤ )))
121, 10, 11mp2an 692 . . . . . . 7 (topGen‘ran (,)) ⊆ (topGen‘(ordTop‘ ≤ ))
13 tgtop 21870 . . . . . . . 8 ((ordTop‘ ≤ ) ∈ Top → (topGen‘(ordTop‘ ≤ )) = (ordTop‘ ≤ ))
141, 13ax-mp 5 . . . . . . 7 (topGen‘(ordTop‘ ≤ )) = (ordTop‘ ≤ )
1512, 14sseqtri 3937 . . . . . 6 (topGen‘ran (,)) ⊆ (ordTop‘ ≤ )
1615sseli 3896 . . . . 5 (𝑥 ∈ (topGen‘ran (,)) → 𝑥 ∈ (ordTop‘ ≤ ))
17 retopon 23661 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
18 toponss 21824 . . . . . 6 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝑥 ∈ (topGen‘ran (,))) → 𝑥 ⊆ ℝ)
1917, 18mpan 690 . . . . 5 (𝑥 ∈ (topGen‘ran (,)) → 𝑥 ⊆ ℝ)
20 reordt 22115 . . . . . 6 ℝ ∈ (ordTop‘ ≤ )
21 restopn2 22074 . . . . . 6 (((ordTop‘ ≤ ) ∈ Top ∧ ℝ ∈ (ordTop‘ ≤ )) → (𝑥 ∈ ((ordTop‘ ≤ ) ↾t ℝ) ↔ (𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑥 ⊆ ℝ)))
221, 20, 21mp2an 692 . . . . 5 (𝑥 ∈ ((ordTop‘ ≤ ) ↾t ℝ) ↔ (𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑥 ⊆ ℝ))
2316, 19, 22sylanbrc 586 . . . 4 (𝑥 ∈ (topGen‘ran (,)) → 𝑥 ∈ ((ordTop‘ ≤ ) ↾t ℝ))
2423ssriv 3905 . . 3 (topGen‘ran (,)) ⊆ ((ordTop‘ ≤ ) ↾t ℝ)
25 eqid 2737 . . . . . . 7 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
26 eqid 2737 . . . . . . 7 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
27 eqid 2737 . . . . . . 7 ran (,) = ran (,)
2825, 26, 27leordtval 22110 . . . . . 6 (ordTop‘ ≤ ) = (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
2928oveq1i 7223 . . . . 5 ((ordTop‘ ≤ ) ↾t ℝ) = ((topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ↾t ℝ)
3028, 1eqeltrri 2835 . . . . . . 7 (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top
31 tgclb 21867 . . . . . . 7 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ↔ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top)
3230, 31mpbir 234 . . . . . 6 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases
33 reex 10820 . . . . . 6 ℝ ∈ V
34 tgrest 22056 . . . . . 6 ((((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ∧ ℝ ∈ V) → (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) = ((topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ↾t ℝ))
3532, 33, 34mp2an 692 . . . . 5 (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) = ((topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ↾t ℝ)
3629, 35eqtr4i 2768 . . . 4 ((ordTop‘ ≤ ) ↾t ℝ) = (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ))
37 retopbas 23658 . . . . 5 ran (,) ∈ TopBases
38 elrest 16932 . . . . . . . 8 ((((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ∧ ℝ ∈ V) → (𝑢 ∈ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ↔ ∃𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))𝑢 = (𝑣 ∩ ℝ)))
3932, 33, 38mp2an 692 . . . . . . 7 (𝑢 ∈ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ↔ ∃𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))𝑢 = (𝑣 ∩ ℝ))
40 elun 4063 . . . . . . . . . 10 (𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↔ (𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∨ 𝑣 ∈ ran (,)))
41 elun 4063 . . . . . . . . . . . 12 (𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ↔ (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∨ 𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))))
42 eqid 2737 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
4342elrnmpt 5825 . . . . . . . . . . . . . . 15 (𝑣 ∈ V → (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (𝑥(,]+∞)))
4443elv 3414 . . . . . . . . . . . . . 14 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (𝑥(,]+∞))
45 simpl 486 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*)
46 pnfxr 10887 . . . . . . . . . . . . . . . . . . . . . . . 24 +∞ ∈ ℝ*
4746a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → +∞ ∈ ℝ*)
48 rexr 10879 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
4948adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
50 df-ioc 12940 . . . . . . . . . . . . . . . . . . . . . . . . 25 (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎 < 𝑐𝑐𝑏)})
5150elixx3g 12948 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝑥(,]+∞) ↔ ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥 < 𝑦𝑦 ≤ +∞)))
5251baib 539 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑥 < 𝑦𝑦 ≤ +∞)))
5345, 47, 49, 52syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑥 < 𝑦𝑦 ≤ +∞)))
54 pnfge 12722 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
5549, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑦 ≤ +∞)
5655biantrud 535 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑦 ≤ +∞)))
57 ltpnf 12712 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → 𝑦 < +∞)
5857adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑦 < +∞)
5958biantrud 535 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑦 < +∞)))
6053, 56, 593bitr2d 310 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑥 < 𝑦𝑦 < +∞)))
6160pm5.32da 582 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ((𝑦 ∈ ℝ ∧ 𝑦 ∈ (𝑥(,]+∞)) ↔ (𝑦 ∈ ℝ ∧ (𝑥 < 𝑦𝑦 < +∞))))
62 elin 3882 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ (𝑦 ∈ (𝑥(,]+∞) ∧ 𝑦 ∈ ℝ))
6362biancomi 466 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ (𝑥(,]+∞)))
64 3anass 1097 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞) ↔ (𝑦 ∈ ℝ ∧ (𝑥 < 𝑦𝑦 < +∞)))
6561, 63, 643bitr4g 317 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞)))
66 elioo2 12976 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (𝑥(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞)))
6746, 66mpan2 691 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ (𝑥(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞)))
6865, 67bitr4d 285 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ 𝑦 ∈ (𝑥(,)+∞)))
6968eqrdv 2735 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → ((𝑥(,]+∞) ∩ ℝ) = (𝑥(,)+∞))
70 ioorebas 13039 . . . . . . . . . . . . . . . . 17 (𝑥(,)+∞) ∈ ran (,)
7169, 70eqeltrdi 2846 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → ((𝑥(,]+∞) ∩ ℝ) ∈ ran (,))
72 ineq1 4120 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑥(,]+∞) → (𝑣 ∩ ℝ) = ((𝑥(,]+∞) ∩ ℝ))
7372eleq1d 2822 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑥(,]+∞) → ((𝑣 ∩ ℝ) ∈ ran (,) ↔ ((𝑥(,]+∞) ∩ ℝ) ∈ ran (,)))
7471, 73syl5ibrcom 250 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑣 = (𝑥(,]+∞) → (𝑣 ∩ ℝ) ∈ ran (,)))
7574rexlimiv 3199 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℝ* 𝑣 = (𝑥(,]+∞) → (𝑣 ∩ ℝ) ∈ ran (,))
7644, 75sylbi 220 . . . . . . . . . . . . 13 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) → (𝑣 ∩ ℝ) ∈ ran (,))
77 eqid 2737 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
7877elrnmpt 5825 . . . . . . . . . . . . . . 15 (𝑣 ∈ V → (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (-∞[,)𝑥)))
7978elv 3414 . . . . . . . . . . . . . 14 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (-∞[,)𝑥))
80 mnfxr 10890 . . . . . . . . . . . . . . . . . . . . . . . 24 -∞ ∈ ℝ*
8180a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → -∞ ∈ ℝ*)
82 df-ico 12941 . . . . . . . . . . . . . . . . . . . . . . . . 25 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐 < 𝑏)})
8382elixx3g 12948 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (-∞[,)𝑥) ↔ ((-∞ ∈ ℝ*𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ ≤ 𝑦𝑦 < 𝑥)))
8483baib 539 . . . . . . . . . . . . . . . . . . . . . . 23 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (-∞ ≤ 𝑦𝑦 < 𝑥)))
8581, 45, 49, 84syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (-∞[,)𝑥) ↔ (-∞ ≤ 𝑦𝑦 < 𝑥)))
86 mnfle 12726 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ* → -∞ ≤ 𝑦)
8749, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → -∞ ≤ 𝑦)
8887biantrurd 536 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 < 𝑥 ↔ (-∞ ≤ 𝑦𝑦 < 𝑥)))
89 mnflt 12715 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → -∞ < 𝑦)
9089adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → -∞ < 𝑦)
9190biantrurd 536 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 < 𝑥 ↔ (-∞ < 𝑦𝑦 < 𝑥)))
9285, 88, 913bitr2d 310 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (-∞[,)𝑥) ↔ (-∞ < 𝑦𝑦 < 𝑥)))
9392pm5.32da 582 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ((𝑦 ∈ ℝ ∧ 𝑦 ∈ (-∞[,)𝑥)) ↔ (𝑦 ∈ ℝ ∧ (-∞ < 𝑦𝑦 < 𝑥))))
94 elin 3882 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ (𝑦 ∈ (-∞[,)𝑥) ∧ 𝑦 ∈ ℝ))
9594biancomi 466 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ (-∞[,)𝑥)))
96 3anass 1097 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥) ↔ (𝑦 ∈ ℝ ∧ (-∞ < 𝑦𝑦 < 𝑥)))
9793, 95, 963bitr4g 317 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥)))
98 elioo2 12976 . . . . . . . . . . . . . . . . . . . 20 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦 ∈ (-∞(,)𝑥) ↔ (𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥)))
9980, 98mpan 690 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ (-∞(,)𝑥) ↔ (𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥)))
10097, 99bitr4d 285 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ 𝑦 ∈ (-∞(,)𝑥)))
101100eqrdv 2735 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → ((-∞[,)𝑥) ∩ ℝ) = (-∞(,)𝑥))
102 ioorebas 13039 . . . . . . . . . . . . . . . . 17 (-∞(,)𝑥) ∈ ran (,)
103101, 102eqeltrdi 2846 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → ((-∞[,)𝑥) ∩ ℝ) ∈ ran (,))
104 ineq1 4120 . . . . . . . . . . . . . . . . 17 (𝑣 = (-∞[,)𝑥) → (𝑣 ∩ ℝ) = ((-∞[,)𝑥) ∩ ℝ))
105104eleq1d 2822 . . . . . . . . . . . . . . . 16 (𝑣 = (-∞[,)𝑥) → ((𝑣 ∩ ℝ) ∈ ran (,) ↔ ((-∞[,)𝑥) ∩ ℝ) ∈ ran (,)))
106103, 105syl5ibrcom 250 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑣 = (-∞[,)𝑥) → (𝑣 ∩ ℝ) ∈ ran (,)))
107106rexlimiv 3199 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℝ* 𝑣 = (-∞[,)𝑥) → (𝑣 ∩ ℝ) ∈ ran (,))
10879, 107sylbi 220 . . . . . . . . . . . . 13 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) → (𝑣 ∩ ℝ) ∈ ran (,))
10976, 108jaoi 857 . . . . . . . . . . . 12 ((𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∨ 𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) → (𝑣 ∩ ℝ) ∈ ran (,))
11041, 109sylbi 220 . . . . . . . . . . 11 (𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) → (𝑣 ∩ ℝ) ∈ ran (,))
111 elssuni 4851 . . . . . . . . . . . . . 14 (𝑣 ∈ ran (,) → 𝑣 ran (,))
112 unirnioo 13037 . . . . . . . . . . . . . 14 ℝ = ran (,)
113111, 112sseqtrrdi 3952 . . . . . . . . . . . . 13 (𝑣 ∈ ran (,) → 𝑣 ⊆ ℝ)
114 df-ss 3883 . . . . . . . . . . . . 13 (𝑣 ⊆ ℝ ↔ (𝑣 ∩ ℝ) = 𝑣)
115113, 114sylib 221 . . . . . . . . . . . 12 (𝑣 ∈ ran (,) → (𝑣 ∩ ℝ) = 𝑣)
116 id 22 . . . . . . . . . . . 12 (𝑣 ∈ ran (,) → 𝑣 ∈ ran (,))
117115, 116eqeltrd 2838 . . . . . . . . . . 11 (𝑣 ∈ ran (,) → (𝑣 ∩ ℝ) ∈ ran (,))
118110, 117jaoi 857 . . . . . . . . . 10 ((𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∨ 𝑣 ∈ ran (,)) → (𝑣 ∩ ℝ) ∈ ran (,))
11940, 118sylbi 220 . . . . . . . . 9 (𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) → (𝑣 ∩ ℝ) ∈ ran (,))
120 eleq1 2825 . . . . . . . . 9 (𝑢 = (𝑣 ∩ ℝ) → (𝑢 ∈ ran (,) ↔ (𝑣 ∩ ℝ) ∈ ran (,)))
121119, 120syl5ibrcom 250 . . . . . . . 8 (𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) → (𝑢 = (𝑣 ∩ ℝ) → 𝑢 ∈ ran (,)))
122121rexlimiv 3199 . . . . . . 7 (∃𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))𝑢 = (𝑣 ∩ ℝ) → 𝑢 ∈ ran (,))
12339, 122sylbi 220 . . . . . 6 (𝑢 ∈ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) → 𝑢 ∈ ran (,))
124123ssriv 3905 . . . . 5 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ⊆ ran (,)
125 tgss 21865 . . . . 5 ((ran (,) ∈ TopBases ∧ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ⊆ ran (,)) → (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) ⊆ (topGen‘ran (,)))
12637, 124, 125mp2an 692 . . . 4 (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) ⊆ (topGen‘ran (,))
12736, 126eqsstri 3935 . . 3 ((ordTop‘ ≤ ) ↾t ℝ) ⊆ (topGen‘ran (,))
12824, 127eqssi 3917 . 2 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
129 xrtgioo.1 . 2 𝐽 = ((ordTop‘ ≤ ) ↾t ℝ)
130128, 129eqtr4i 2768 1 (topGen‘ran (,)) = 𝐽
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062  Vcvv 3408  cun 3864  cin 3865  wss 3866  𝒫 cpw 4513   cuni 4819   class class class wbr 5053  cmpt 5135   × cxp 5549  ran crn 5552   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  cr 10728  +∞cpnf 10864  -∞cmnf 10865  *cxr 10866   < clt 10867  cle 10868  (,)cioo 12935  (,]cioc 12936  [,)cico 12937  t crest 16925  topGenctg 16942  ordTopcordt 17004  Topctop 21790  TopOnctopon 21807  TopBasesctb 21842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-rest 16927  df-topgen 16948  df-ordt 17006  df-ps 18072  df-tsr 18073  df-top 21791  df-topon 21808  df-bases 21843
This theorem is referenced by:  xrrest  23704  xrsmopn  23709  xrge0tsms  23731  metdcn2  23736  xrge0tsmsd  31036  xrtgcntopre  42694  xrtgioo2  42785
  Copyright terms: Public domain W3C validator