MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrtgioo Structured version   Visualization version   GIF version

Theorem xrtgioo 24742
Description: The topology on the extended reals coincides with the standard topology on the reals, when restricted to . (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
xrtgioo.1 𝐽 = ((ordTop‘ ≤ ) ↾t ℝ)
Assertion
Ref Expression
xrtgioo (topGen‘ran (,)) = 𝐽

Proof of Theorem xrtgioo
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 letop 23141 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Top
2 ioof 13354 . . . . . . . . . . 11 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
3 ffn 6659 . . . . . . . . . . 11 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
42, 3ax-mp 5 . . . . . . . . . 10 (,) Fn (ℝ* × ℝ*)
5 iooordt 23152 . . . . . . . . . . 11 (𝑥(,)𝑦) ∈ (ordTop‘ ≤ )
65rgen2w 3053 . . . . . . . . . 10 𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (ordTop‘ ≤ )
7 ffnov 7481 . . . . . . . . . 10 ((,):(ℝ* × ℝ*)⟶(ordTop‘ ≤ ) ↔ ((,) Fn (ℝ* × ℝ*) ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥(,)𝑦) ∈ (ordTop‘ ≤ )))
84, 6, 7mpbir2an 711 . . . . . . . . 9 (,):(ℝ* × ℝ*)⟶(ordTop‘ ≤ )
9 frn 6666 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶(ordTop‘ ≤ ) → ran (,) ⊆ (ordTop‘ ≤ ))
108, 9ax-mp 5 . . . . . . . 8 ran (,) ⊆ (ordTop‘ ≤ )
11 tgss 22903 . . . . . . . 8 (((ordTop‘ ≤ ) ∈ Top ∧ ran (,) ⊆ (ordTop‘ ≤ )) → (topGen‘ran (,)) ⊆ (topGen‘(ordTop‘ ≤ )))
121, 10, 11mp2an 692 . . . . . . 7 (topGen‘ran (,)) ⊆ (topGen‘(ordTop‘ ≤ ))
13 tgtop 22908 . . . . . . . 8 ((ordTop‘ ≤ ) ∈ Top → (topGen‘(ordTop‘ ≤ )) = (ordTop‘ ≤ ))
141, 13ax-mp 5 . . . . . . 7 (topGen‘(ordTop‘ ≤ )) = (ordTop‘ ≤ )
1512, 14sseqtri 3979 . . . . . 6 (topGen‘ran (,)) ⊆ (ordTop‘ ≤ )
1615sseli 3926 . . . . 5 (𝑥 ∈ (topGen‘ran (,)) → 𝑥 ∈ (ordTop‘ ≤ ))
17 retopon 24698 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
18 toponss 22862 . . . . . 6 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝑥 ∈ (topGen‘ran (,))) → 𝑥 ⊆ ℝ)
1917, 18mpan 690 . . . . 5 (𝑥 ∈ (topGen‘ran (,)) → 𝑥 ⊆ ℝ)
20 reordt 23153 . . . . . 6 ℝ ∈ (ordTop‘ ≤ )
21 restopn2 23112 . . . . . 6 (((ordTop‘ ≤ ) ∈ Top ∧ ℝ ∈ (ordTop‘ ≤ )) → (𝑥 ∈ ((ordTop‘ ≤ ) ↾t ℝ) ↔ (𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑥 ⊆ ℝ)))
221, 20, 21mp2an 692 . . . . 5 (𝑥 ∈ ((ordTop‘ ≤ ) ↾t ℝ) ↔ (𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑥 ⊆ ℝ))
2316, 19, 22sylanbrc 583 . . . 4 (𝑥 ∈ (topGen‘ran (,)) → 𝑥 ∈ ((ordTop‘ ≤ ) ↾t ℝ))
2423ssriv 3934 . . 3 (topGen‘ran (,)) ⊆ ((ordTop‘ ≤ ) ↾t ℝ)
25 eqid 2733 . . . . . . 7 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
26 eqid 2733 . . . . . . 7 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
27 eqid 2733 . . . . . . 7 ran (,) = ran (,)
2825, 26, 27leordtval 23148 . . . . . 6 (ordTop‘ ≤ ) = (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
2928oveq1i 7365 . . . . 5 ((ordTop‘ ≤ ) ↾t ℝ) = ((topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ↾t ℝ)
3028, 1eqeltrri 2830 . . . . . . 7 (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top
31 tgclb 22905 . . . . . . 7 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ↔ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top)
3230, 31mpbir 231 . . . . . 6 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases
33 reex 11108 . . . . . 6 ℝ ∈ V
34 tgrest 23094 . . . . . 6 ((((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ∧ ℝ ∈ V) → (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) = ((topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ↾t ℝ))
3532, 33, 34mp2an 692 . . . . 5 (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) = ((topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ↾t ℝ)
3629, 35eqtr4i 2759 . . . 4 ((ordTop‘ ≤ ) ↾t ℝ) = (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ))
37 retopbas 24695 . . . . 5 ran (,) ∈ TopBases
38 elrest 17338 . . . . . . . 8 ((((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ∧ ℝ ∈ V) → (𝑢 ∈ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ↔ ∃𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))𝑢 = (𝑣 ∩ ℝ)))
3932, 33, 38mp2an 692 . . . . . . 7 (𝑢 ∈ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ↔ ∃𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))𝑢 = (𝑣 ∩ ℝ))
40 elun 4102 . . . . . . . . . 10 (𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↔ (𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∨ 𝑣 ∈ ran (,)))
41 elun 4102 . . . . . . . . . . . 12 (𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ↔ (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∨ 𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))))
42 eqid 2733 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
4342elrnmpt 5904 . . . . . . . . . . . . . . 15 (𝑣 ∈ V → (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (𝑥(,]+∞)))
4443elv 3442 . . . . . . . . . . . . . 14 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (𝑥(,]+∞))
45 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑥 ∈ ℝ*)
46 pnfxr 11177 . . . . . . . . . . . . . . . . . . . . . . . 24 +∞ ∈ ℝ*
4746a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → +∞ ∈ ℝ*)
48 rexr 11169 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
4948adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
50 df-ioc 13257 . . . . . . . . . . . . . . . . . . . . . . . . 25 (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎 < 𝑐𝑐𝑏)})
5150elixx3g 13265 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝑥(,]+∞) ↔ ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥 < 𝑦𝑦 ≤ +∞)))
5251baib 535 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑥 < 𝑦𝑦 ≤ +∞)))
5345, 47, 49, 52syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑥 < 𝑦𝑦 ≤ +∞)))
54 pnfge 13035 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
5549, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑦 ≤ +∞)
5655biantrud 531 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑦 ≤ +∞)))
57 ltpnf 13025 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → 𝑦 < +∞)
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → 𝑦 < +∞)
5958biantrud 531 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑦 < +∞)))
6053, 56, 593bitr2d 307 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑥 < 𝑦𝑦 < +∞)))
6160pm5.32da 579 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ((𝑦 ∈ ℝ ∧ 𝑦 ∈ (𝑥(,]+∞)) ↔ (𝑦 ∈ ℝ ∧ (𝑥 < 𝑦𝑦 < +∞))))
62 elin 3914 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ (𝑦 ∈ (𝑥(,]+∞) ∧ 𝑦 ∈ ℝ))
6362biancomi 462 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ (𝑥(,]+∞)))
64 3anass 1094 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞) ↔ (𝑦 ∈ ℝ ∧ (𝑥 < 𝑦𝑦 < +∞)))
6561, 63, 643bitr4g 314 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞)))
66 elioo2 13293 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (𝑥(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞)))
6746, 66mpan2 691 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ (𝑥(,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦𝑦 < +∞)))
6865, 67bitr4d 282 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → (𝑦 ∈ ((𝑥(,]+∞) ∩ ℝ) ↔ 𝑦 ∈ (𝑥(,)+∞)))
6968eqrdv 2731 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → ((𝑥(,]+∞) ∩ ℝ) = (𝑥(,)+∞))
70 ioorebas 13358 . . . . . . . . . . . . . . . . 17 (𝑥(,)+∞) ∈ ran (,)
7169, 70eqeltrdi 2841 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → ((𝑥(,]+∞) ∩ ℝ) ∈ ran (,))
72 ineq1 4162 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑥(,]+∞) → (𝑣 ∩ ℝ) = ((𝑥(,]+∞) ∩ ℝ))
7372eleq1d 2818 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑥(,]+∞) → ((𝑣 ∩ ℝ) ∈ ran (,) ↔ ((𝑥(,]+∞) ∩ ℝ) ∈ ran (,)))
7471, 73syl5ibrcom 247 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑣 = (𝑥(,]+∞) → (𝑣 ∩ ℝ) ∈ ran (,)))
7574rexlimiv 3127 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℝ* 𝑣 = (𝑥(,]+∞) → (𝑣 ∩ ℝ) ∈ ran (,))
7644, 75sylbi 217 . . . . . . . . . . . . 13 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) → (𝑣 ∩ ℝ) ∈ ran (,))
77 eqid 2733 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
7877elrnmpt 5904 . . . . . . . . . . . . . . 15 (𝑣 ∈ V → (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (-∞[,)𝑥)))
7978elv 3442 . . . . . . . . . . . . . 14 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) ↔ ∃𝑥 ∈ ℝ* 𝑣 = (-∞[,)𝑥))
80 mnfxr 11180 . . . . . . . . . . . . . . . . . . . . . . . 24 -∞ ∈ ℝ*
8180a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → -∞ ∈ ℝ*)
82 df-ico 13258 . . . . . . . . . . . . . . . . . . . . . . . . 25 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐 < 𝑏)})
8382elixx3g 13265 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (-∞[,)𝑥) ↔ ((-∞ ∈ ℝ*𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (-∞ ≤ 𝑦𝑦 < 𝑥)))
8483baib 535 . . . . . . . . . . . . . . . . . . . . . . 23 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ∈ (-∞[,)𝑥) ↔ (-∞ ≤ 𝑦𝑦 < 𝑥)))
8581, 45, 49, 84syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (-∞[,)𝑥) ↔ (-∞ ≤ 𝑦𝑦 < 𝑥)))
86 mnfle 13040 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ* → -∞ ≤ 𝑦)
8749, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → -∞ ≤ 𝑦)
8887biantrurd 532 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 < 𝑥 ↔ (-∞ ≤ 𝑦𝑦 < 𝑥)))
89 mnflt 13028 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℝ → -∞ < 𝑦)
9089adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → -∞ < 𝑦)
9190biantrurd 532 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 < 𝑥 ↔ (-∞ < 𝑦𝑦 < 𝑥)))
9285, 88, 913bitr2d 307 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ) → (𝑦 ∈ (-∞[,)𝑥) ↔ (-∞ < 𝑦𝑦 < 𝑥)))
9392pm5.32da 579 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℝ* → ((𝑦 ∈ ℝ ∧ 𝑦 ∈ (-∞[,)𝑥)) ↔ (𝑦 ∈ ℝ ∧ (-∞ < 𝑦𝑦 < 𝑥))))
94 elin 3914 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ (𝑦 ∈ (-∞[,)𝑥) ∧ 𝑦 ∈ ℝ))
9594biancomi 462 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ 𝑦 ∈ (-∞[,)𝑥)))
96 3anass 1094 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥) ↔ (𝑦 ∈ ℝ ∧ (-∞ < 𝑦𝑦 < 𝑥)))
9793, 95, 963bitr4g 314 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ (𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥)))
98 elioo2 13293 . . . . . . . . . . . . . . . . . . . 20 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦 ∈ (-∞(,)𝑥) ↔ (𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥)))
9980, 98mpan 690 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → (𝑦 ∈ (-∞(,)𝑥) ↔ (𝑦 ∈ ℝ ∧ -∞ < 𝑦𝑦 < 𝑥)))
10097, 99bitr4d 282 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → (𝑦 ∈ ((-∞[,)𝑥) ∩ ℝ) ↔ 𝑦 ∈ (-∞(,)𝑥)))
101100eqrdv 2731 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ* → ((-∞[,)𝑥) ∩ ℝ) = (-∞(,)𝑥))
102 ioorebas 13358 . . . . . . . . . . . . . . . . 17 (-∞(,)𝑥) ∈ ran (,)
103101, 102eqeltrdi 2841 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → ((-∞[,)𝑥) ∩ ℝ) ∈ ran (,))
104 ineq1 4162 . . . . . . . . . . . . . . . . 17 (𝑣 = (-∞[,)𝑥) → (𝑣 ∩ ℝ) = ((-∞[,)𝑥) ∩ ℝ))
105104eleq1d 2818 . . . . . . . . . . . . . . . 16 (𝑣 = (-∞[,)𝑥) → ((𝑣 ∩ ℝ) ∈ ran (,) ↔ ((-∞[,)𝑥) ∩ ℝ) ∈ ran (,)))
106103, 105syl5ibrcom 247 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑣 = (-∞[,)𝑥) → (𝑣 ∩ ℝ) ∈ ran (,)))
107106rexlimiv 3127 . . . . . . . . . . . . . 14 (∃𝑥 ∈ ℝ* 𝑣 = (-∞[,)𝑥) → (𝑣 ∩ ℝ) ∈ ran (,))
10879, 107sylbi 217 . . . . . . . . . . . . 13 (𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) → (𝑣 ∩ ℝ) ∈ ran (,))
10976, 108jaoi 857 . . . . . . . . . . . 12 ((𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∨ 𝑣 ∈ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) → (𝑣 ∩ ℝ) ∈ ran (,))
11041, 109sylbi 217 . . . . . . . . . . 11 (𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) → (𝑣 ∩ ℝ) ∈ ran (,))
111 elssuni 4891 . . . . . . . . . . . . . 14 (𝑣 ∈ ran (,) → 𝑣 ran (,))
112 unirnioo 13356 . . . . . . . . . . . . . 14 ℝ = ran (,)
113111, 112sseqtrrdi 3972 . . . . . . . . . . . . 13 (𝑣 ∈ ran (,) → 𝑣 ⊆ ℝ)
114 dfss2 3916 . . . . . . . . . . . . 13 (𝑣 ⊆ ℝ ↔ (𝑣 ∩ ℝ) = 𝑣)
115113, 114sylib 218 . . . . . . . . . . . 12 (𝑣 ∈ ran (,) → (𝑣 ∩ ℝ) = 𝑣)
116 id 22 . . . . . . . . . . . 12 (𝑣 ∈ ran (,) → 𝑣 ∈ ran (,))
117115, 116eqeltrd 2833 . . . . . . . . . . 11 (𝑣 ∈ ran (,) → (𝑣 ∩ ℝ) ∈ ran (,))
118110, 117jaoi 857 . . . . . . . . . 10 ((𝑣 ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∨ 𝑣 ∈ ran (,)) → (𝑣 ∩ ℝ) ∈ ran (,))
11940, 118sylbi 217 . . . . . . . . 9 (𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) → (𝑣 ∩ ℝ) ∈ ran (,))
120 eleq1 2821 . . . . . . . . 9 (𝑢 = (𝑣 ∩ ℝ) → (𝑢 ∈ ran (,) ↔ (𝑣 ∩ ℝ) ∈ ran (,)))
121119, 120syl5ibrcom 247 . . . . . . . 8 (𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) → (𝑢 = (𝑣 ∩ ℝ) → 𝑢 ∈ ran (,)))
122121rexlimiv 3127 . . . . . . 7 (∃𝑣 ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))𝑢 = (𝑣 ∩ ℝ) → 𝑢 ∈ ran (,))
12339, 122sylbi 217 . . . . . 6 (𝑢 ∈ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) → 𝑢 ∈ ran (,))
124123ssriv 3934 . . . . 5 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ⊆ ran (,)
125 tgss 22903 . . . . 5 ((ran (,) ∈ TopBases ∧ (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ) ⊆ ran (,)) → (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) ⊆ (topGen‘ran (,)))
12637, 124, 125mp2an 692 . . . 4 (topGen‘(((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ↾t ℝ)) ⊆ (topGen‘ran (,))
12736, 126eqsstri 3977 . . 3 ((ordTop‘ ≤ ) ↾t ℝ) ⊆ (topGen‘ran (,))
12824, 127eqssi 3947 . 2 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
129 xrtgioo.1 . 2 𝐽 = ((ordTop‘ ≤ ) ↾t ℝ)
130128, 129eqtr4i 2759 1 (topGen‘ran (,)) = 𝐽
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  cun 3896  cin 3897  wss 3898  𝒫 cpw 4551   cuni 4860   class class class wbr 5095  cmpt 5176   × cxp 5619  ran crn 5622   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  cr 11016  +∞cpnf 11154  -∞cmnf 11155  *cxr 11156   < clt 11157  cle 11158  (,)cioo 13252  (,]cioc 13253  [,)cico 13254  t crest 17331  topGenctg 17348  ordTopcordt 17411  Topctop 22828  TopOnctopon 22845  TopBasesctb 22880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9306  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-q 12853  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-rest 17333  df-topgen 17354  df-ordt 17413  df-ps 18480  df-tsr 18481  df-top 22829  df-topon 22846  df-bases 22881
This theorem is referenced by:  xrrest  24743  xrsmopn  24748  xrge0tsms  24770  metdcn2  24775  xrge0tsmsd  33083  xrtgcntopre  45638  xrtgioo2  45732
  Copyright terms: Public domain W3C validator