| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elioc1 | Structured version Visualization version GIF version | ||
| Description: Membership in an open-below, closed-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
| Ref | Expression |
|---|---|
| elioc1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ioc 13271 | . 2 ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 2 | 1 | elixx1 13275 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5095 (class class class)co 7353 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 (,]cioc 13267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-xr 11172 df-ioc 13271 |
| This theorem is referenced by: ubioc1 13320 elioc2 13330 leordtvallem1 23113 pnfnei 23123 mnfnei 23124 xrge0tsms 24739 lhop1 25935 xrlimcnp 26894 iocinioc2 32735 xrge0tsmsd 33028 xrge0iifcnv 33899 lmxrge0 33918 readvrec2 42334 iocinico 43185 rfcnpre4 45012 iocgtlb 45484 iocleub 45485 eliocd 45489 lenelioc 45518 eenglngeehlnmlem1 48723 |
| Copyright terms: Public domain | W3C validator |