MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocpnfordt Structured version   Visualization version   GIF version

Theorem iocpnfordt 23100
Description: An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iocpnfordt (𝐴(,]+∞) ∈ (ordTop‘ ≤ )

Proof of Theorem iocpnfordt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 eqid 2729 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
3 eqid 2729 . . . . . . . . 9 ran (,) = ran (,)
41, 2, 3leordtval 23098 . . . . . . . 8 (ordTop‘ ≤ ) = (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
5 letop 23091 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Top
64, 5eqeltrri 2825 . . . . . . 7 (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top
7 tgclb 22855 . . . . . . 7 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ↔ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top)
86, 7mpbir 231 . . . . . 6 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases
9 bastg 22851 . . . . . 6 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases → ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))))
108, 9ax-mp 5 . . . . 5 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
1110, 4sseqtrri 3985 . . . 4 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (ordTop‘ ≤ )
12 ssun1 4129 . . . . 5 (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ⊆ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))
13 ssun1 4129 . . . . . 6 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)))
14 eqid 2729 . . . . . . . 8 (𝐴(,]+∞) = (𝐴(,]+∞)
15 oveq1 7356 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥(,]+∞) = (𝐴(,]+∞))
1615rspceeqv 3600 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ (𝐴(,]+∞) = (𝐴(,]+∞)) → ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
1714, 16mpan2 691 . . . . . . 7 (𝐴 ∈ ℝ* → ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
18 eqid 2729 . . . . . . . 8 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
19 ovex 7382 . . . . . . . 8 (𝑥(,]+∞) ∈ V
2018, 19elrnmpti 5904 . . . . . . 7 ((𝐴(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
2117, 20sylibr 234 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)))
2213, 21sselid 3933 . . . . 5 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))))
2312, 22sselid 3933 . . . 4 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
2411, 23sselid 3933 . . 3 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
2524adantr 480 . 2 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
26 df-ioc 13253 . . . . . 6 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
2726ixxf 13258 . . . . 5 (,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
2827fdmi 6663 . . . 4 dom (,] = (ℝ* × ℝ*)
2928ndmov 7533 . . 3 (¬ (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) = ∅)
30 0opn 22789 . . . 4 ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (ordTop‘ ≤ ))
315, 30ax-mp 5 . . 3 ∅ ∈ (ordTop‘ ≤ )
3229, 31eqeltrdi 2836 . 2 (¬ (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
3325, 32pm2.61i 182 1 (𝐴(,]+∞) ∈ (ordTop‘ ≤ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wrex 3053  cun 3901  wss 3903  c0 4284  𝒫 cpw 4551  cmpt 5173   × cxp 5617  ran crn 5620  cfv 6482  (class class class)co 7349  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  (,)cioo 13248  (,]cioc 13249  [,)cico 13250  topGenctg 17341  ordTopcordt 17403  Topctop 22778  TopBasesctb 22830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-topgen 17347  df-ordt 17405  df-ps 18472  df-tsr 18473  df-top 22779  df-topon 22796  df-bases 22831
This theorem is referenced by:  xrlimcnp  26876  pnfneige0  33918  lmxrge0  33919  xlimpnfvlem1  45817
  Copyright terms: Public domain W3C validator