MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocpnfordt Structured version   Visualization version   GIF version

Theorem iocpnfordt 22566
Description: An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iocpnfordt (𝐴(,]+∞) ∈ (ordTop‘ ≤ )

Proof of Theorem iocpnfordt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 eqid 2736 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
3 eqid 2736 . . . . . . . . 9 ran (,) = ran (,)
41, 2, 3leordtval 22564 . . . . . . . 8 (ordTop‘ ≤ ) = (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
5 letop 22557 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Top
64, 5eqeltrri 2835 . . . . . . 7 (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top
7 tgclb 22320 . . . . . . 7 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ↔ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top)
86, 7mpbir 230 . . . . . 6 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases
9 bastg 22316 . . . . . 6 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases → ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))))
108, 9ax-mp 5 . . . . 5 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
1110, 4sseqtrri 3981 . . . 4 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (ordTop‘ ≤ )
12 ssun1 4132 . . . . 5 (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ⊆ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))
13 ssun1 4132 . . . . . 6 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)))
14 eqid 2736 . . . . . . . 8 (𝐴(,]+∞) = (𝐴(,]+∞)
15 oveq1 7364 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥(,]+∞) = (𝐴(,]+∞))
1615rspceeqv 3595 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ (𝐴(,]+∞) = (𝐴(,]+∞)) → ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
1714, 16mpan2 689 . . . . . . 7 (𝐴 ∈ ℝ* → ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
18 eqid 2736 . . . . . . . 8 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
19 ovex 7390 . . . . . . . 8 (𝑥(,]+∞) ∈ V
2018, 19elrnmpti 5915 . . . . . . 7 ((𝐴(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
2117, 20sylibr 233 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)))
2213, 21sselid 3942 . . . . 5 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))))
2312, 22sselid 3942 . . . 4 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
2411, 23sselid 3942 . . 3 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
2524adantr 481 . 2 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
26 df-ioc 13269 . . . . . 6 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
2726ixxf 13274 . . . . 5 (,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
2827fdmi 6680 . . . 4 dom (,] = (ℝ* × ℝ*)
2928ndmov 7538 . . 3 (¬ (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) = ∅)
30 0opn 22253 . . . 4 ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (ordTop‘ ≤ ))
315, 30ax-mp 5 . . 3 ∅ ∈ (ordTop‘ ≤ )
3229, 31eqeltrdi 2846 . 2 (¬ (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
3325, 32pm2.61i 182 1 (𝐴(,]+∞) ∈ (ordTop‘ ≤ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1541  wcel 2106  wrex 3073  cun 3908  wss 3910  c0 4282  𝒫 cpw 4560  cmpt 5188   × cxp 5631  ran crn 5634  cfv 6496  (class class class)co 7357  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  cle 11190  (,)cioo 13264  (,]cioc 13265  [,)cico 13266  topGenctg 17319  ordTopcordt 17381  Topctop 22242  TopBasesctb 22295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-topgen 17325  df-ordt 17383  df-ps 18455  df-tsr 18456  df-top 22243  df-topon 22260  df-bases 22296
This theorem is referenced by:  xrlimcnp  26318  pnfneige0  32532  lmxrge0  32533  xlimpnfvlem1  44067
  Copyright terms: Public domain W3C validator