MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocpnfordt Structured version   Visualization version   GIF version

Theorem iocpnfordt 23238
Description: An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
iocpnfordt (𝐴(,]+∞) ∈ (ordTop‘ ≤ )

Proof of Theorem iocpnfordt
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
2 eqid 2734 . . . . . . . . 9 ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)) = ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))
3 eqid 2734 . . . . . . . . 9 ran (,) = ran (,)
41, 2, 3leordtval 23236 . . . . . . . 8 (ordTop‘ ≤ ) = (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
5 letop 23229 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Top
64, 5eqeltrri 2835 . . . . . . 7 (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top
7 tgclb 22992 . . . . . . 7 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases ↔ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))) ∈ Top)
86, 7mpbir 231 . . . . . 6 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases
9 bastg 22988 . . . . . 6 (((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ∈ TopBases → ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))))
108, 9ax-mp 5 . . . . 5 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (topGen‘((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
1110, 4sseqtrri 4032 . . . 4 ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)) ⊆ (ordTop‘ ≤ )
12 ssun1 4187 . . . . 5 (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ⊆ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,))
13 ssun1 4187 . . . . . 6 ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ⊆ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥)))
14 eqid 2734 . . . . . . . 8 (𝐴(,]+∞) = (𝐴(,]+∞)
15 oveq1 7437 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥(,]+∞) = (𝐴(,]+∞))
1615rspceeqv 3644 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ (𝐴(,]+∞) = (𝐴(,]+∞)) → ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
1714, 16mpan2 691 . . . . . . 7 (𝐴 ∈ ℝ* → ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
18 eqid 2734 . . . . . . . 8 (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞))
19 ovex 7463 . . . . . . . 8 (𝑥(,]+∞) ∈ V
2018, 19elrnmpti 5975 . . . . . . 7 ((𝐴(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ↔ ∃𝑥 ∈ ℝ* (𝐴(,]+∞) = (𝑥(,]+∞))
2117, 20sylibr 234 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)))
2213, 21sselid 3992 . . . . 5 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ (ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))))
2312, 22sselid 3992 . . . 4 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ ((ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) ∪ ran (𝑥 ∈ ℝ* ↦ (-∞[,)𝑥))) ∪ ran (,)))
2411, 23sselid 3992 . . 3 (𝐴 ∈ ℝ* → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
2524adantr 480 . 2 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
26 df-ioc 13388 . . . . . 6 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
2726ixxf 13393 . . . . 5 (,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
2827fdmi 6747 . . . 4 dom (,] = (ℝ* × ℝ*)
2928ndmov 7616 . . 3 (¬ (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) = ∅)
30 0opn 22925 . . . 4 ((ordTop‘ ≤ ) ∈ Top → ∅ ∈ (ordTop‘ ≤ ))
315, 30ax-mp 5 . . 3 ∅ ∈ (ordTop‘ ≤ )
3229, 31eqeltrdi 2846 . 2 (¬ (𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,]+∞) ∈ (ordTop‘ ≤ ))
3325, 32pm2.61i 182 1 (𝐴(,]+∞) ∈ (ordTop‘ ≤ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1536  wcel 2105  wrex 3067  cun 3960  wss 3962  c0 4338  𝒫 cpw 4604  cmpt 5230   × cxp 5686  ran crn 5689  cfv 6562  (class class class)co 7430  +∞cpnf 11289  -∞cmnf 11290  *cxr 11291   < clt 11292  cle 11293  (,)cioo 13383  (,]cioc 13384  [,)cico 13385  topGenctg 17483  ordTopcordt 17545  Topctop 22914  TopBasesctb 22967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-topgen 17489  df-ordt 17547  df-ps 18623  df-tsr 18624  df-top 22915  df-topon 22932  df-bases 22968
This theorem is referenced by:  xrlimcnp  27025  pnfneige0  33911  lmxrge0  33912  xlimpnfvlem1  45791
  Copyright terms: Public domain W3C validator