![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iocmnfcld | Structured version Visualization version GIF version |
Description: Left-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
Ref | Expression |
---|---|
iocmnfcld | ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 11347 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -∞ ∈ ℝ*) |
3 | rexr 11336 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
4 | pnfxr 11344 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → +∞ ∈ ℝ*) |
6 | mnflt 13186 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
7 | ltpnf 13183 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
8 | df-ioc 13412 | . . . . . . 7 ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
9 | df-ioo 13411 | . . . . . . 7 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
10 | xrltnle 11357 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐴)) | |
11 | xrlelttr 13218 | . . . . . . 7 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 ≤ 𝐴 ∧ 𝐴 < +∞) → 𝑤 < +∞)) | |
12 | xrlttr 13202 | . . . . . . 7 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((-∞ < 𝐴 ∧ 𝐴 < 𝑤) → -∞ < 𝑤)) | |
13 | 8, 9, 10, 9, 11, 12 | ixxun 13423 | . . . . . 6 ⊢ (((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴 ∧ 𝐴 < +∞)) → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞)) |
14 | 2, 3, 5, 6, 7, 13 | syl32anc 1378 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞)) |
15 | ioomax 13482 | . . . . 5 ⊢ (-∞(,)+∞) = ℝ | |
16 | 14, 15 | eqtrdi 2796 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ) |
17 | iocssre 13487 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ) → (-∞(,]𝐴) ⊆ ℝ) | |
18 | 1, 17 | mpan 689 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ⊆ ℝ) |
19 | 8, 9, 10 | ixxdisj 13422 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) |
20 | 1, 3, 5, 19 | mp3an2i 1466 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) |
21 | uneqdifeq 4516 | . . . . 5 ⊢ (((-∞(,]𝐴) ⊆ ℝ ∧ ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞))) | |
22 | 18, 20, 21 | syl2anc 583 | . . . 4 ⊢ (𝐴 ∈ ℝ → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞))) |
23 | 16, 22 | mpbid 232 | . . 3 ⊢ (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞)) |
24 | iooretop 24807 | . . 3 ⊢ (𝐴(,)+∞) ∈ (topGen‘ran (,)) | |
25 | 23, 24 | eqeltrdi 2852 | . 2 ⊢ (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,))) |
26 | retop 24803 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
27 | uniretop 24804 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
28 | 27 | iscld2 23057 | . . 3 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,]𝐴) ⊆ ℝ) → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,)))) |
29 | 26, 18, 28 | sylancr 586 | . 2 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,)))) |
30 | 25, 29 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 +∞cpnf 11321 -∞cmnf 11322 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 (,)cioo 13407 (,]cioc 13408 topGenctg 17497 Topctop 22920 Clsdccld 23045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-ioo 13411 df-ioc 13412 df-topgen 17503 df-top 22921 df-bases 22974 df-cld 23048 |
This theorem is referenced by: logdmopn 26709 orvclteel 34437 dvasin 37664 dvacos 37665 dvreasin 37666 dvreacos 37667 rfcnpre4 44934 |
Copyright terms: Public domain | W3C validator |