| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iocmnfcld | Structured version Visualization version GIF version | ||
| Description: Left-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| Ref | Expression |
|---|---|
| iocmnfcld | ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11166 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -∞ ∈ ℝ*) |
| 3 | rexr 11155 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 4 | pnfxr 11163 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → +∞ ∈ ℝ*) |
| 6 | mnflt 13019 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 7 | ltpnf 13016 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
| 8 | df-ioc 13247 | . . . . . . 7 ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 9 | df-ioo 13246 | . . . . . . 7 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 10 | xrltnle 11176 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐴)) | |
| 11 | xrlelttr 13052 | . . . . . . 7 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 ≤ 𝐴 ∧ 𝐴 < +∞) → 𝑤 < +∞)) | |
| 12 | xrlttr 13036 | . . . . . . 7 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((-∞ < 𝐴 ∧ 𝐴 < 𝑤) → -∞ < 𝑤)) | |
| 13 | 8, 9, 10, 9, 11, 12 | ixxun 13258 | . . . . . 6 ⊢ (((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴 ∧ 𝐴 < +∞)) → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞)) |
| 14 | 2, 3, 5, 6, 7, 13 | syl32anc 1380 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞)) |
| 15 | ioomax 13319 | . . . . 5 ⊢ (-∞(,)+∞) = ℝ | |
| 16 | 14, 15 | eqtrdi 2782 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ) |
| 17 | iocssre 13324 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ) → (-∞(,]𝐴) ⊆ ℝ) | |
| 18 | 1, 17 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ⊆ ℝ) |
| 19 | 8, 9, 10 | ixxdisj 13257 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) |
| 20 | 1, 3, 5, 19 | mp3an2i 1468 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) |
| 21 | uneqdifeq 4443 | . . . . 5 ⊢ (((-∞(,]𝐴) ⊆ ℝ ∧ ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞))) | |
| 22 | 18, 20, 21 | syl2anc 584 | . . . 4 ⊢ (𝐴 ∈ ℝ → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞))) |
| 23 | 16, 22 | mpbid 232 | . . 3 ⊢ (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞)) |
| 24 | iooretop 24678 | . . 3 ⊢ (𝐴(,)+∞) ∈ (topGen‘ran (,)) | |
| 25 | 23, 24 | eqeltrdi 2839 | . 2 ⊢ (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,))) |
| 26 | retop 24674 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
| 27 | uniretop 24675 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 28 | 27 | iscld2 22941 | . . 3 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,]𝐴) ⊆ ℝ) → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,)))) |
| 29 | 26, 18, 28 | sylancr 587 | . 2 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,)))) |
| 30 | 25, 29 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ∪ cun 3900 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 class class class wbr 5091 ran crn 5617 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 +∞cpnf 11140 -∞cmnf 11141 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 (,)cioo 13242 (,]cioc 13243 topGenctg 17338 Topctop 22806 Clsdccld 22929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-ioo 13246 df-ioc 13247 df-topgen 17344 df-top 22807 df-bases 22859 df-cld 22932 |
| This theorem is referenced by: logdmopn 26583 orvclteel 34481 dvasin 37743 dvacos 37744 dvreasin 37745 dvreacos 37746 rfcnpre4 45070 |
| Copyright terms: Public domain | W3C validator |