Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocmnfcld Structured version   Visualization version   GIF version

Theorem iocmnfcld 23384
 Description: Left-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.)
Assertion
Ref Expression
iocmnfcld (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))

Proof of Theorem iocmnfcld
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 10690 . . . . . . 7 -∞ ∈ ℝ*
21a1i 11 . . . . . 6 (𝐴 ∈ ℝ → -∞ ∈ ℝ*)
3 rexr 10679 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 pnfxr 10687 . . . . . . 7 +∞ ∈ ℝ*
54a1i 11 . . . . . 6 (𝐴 ∈ ℝ → +∞ ∈ ℝ*)
6 mnflt 12509 . . . . . 6 (𝐴 ∈ ℝ → -∞ < 𝐴)
7 ltpnf 12506 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < +∞)
8 df-ioc 12734 . . . . . . 7 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
9 df-ioo 12733 . . . . . . 7 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
10 xrltnle 10700 . . . . . . 7 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤𝐴))
11 xrlelttr 12540 . . . . . . 7 ((𝑤 ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤𝐴𝐴 < +∞) → 𝑤 < +∞))
12 xrlttr 12524 . . . . . . 7 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 𝐴𝐴 < 𝑤) → -∞ < 𝑤))
138, 9, 10, 9, 11, 12ixxun 12745 . . . . . 6 (((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < +∞)) → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞))
142, 3, 5, 6, 7, 13syl32anc 1375 . . . . 5 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞))
15 ioomax 12803 . . . . 5 (-∞(,)+∞) = ℝ
1614, 15eqtrdi 2849 . . . 4 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ)
17 iocssre 12808 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ) → (-∞(,]𝐴) ⊆ ℝ)
181, 17mpan 689 . . . . 5 (𝐴 ∈ ℝ → (-∞(,]𝐴) ⊆ ℝ)
198, 9, 10ixxdisj 12744 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅)
201, 3, 5, 19mp3an2i 1463 . . . . 5 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅)
21 uneqdifeq 4396 . . . . 5 (((-∞(,]𝐴) ⊆ ℝ ∧ ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞)))
2218, 20, 21syl2anc 587 . . . 4 (𝐴 ∈ ℝ → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞)))
2316, 22mpbid 235 . . 3 (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞))
24 iooretop 23381 . . 3 (𝐴(,)+∞) ∈ (topGen‘ran (,))
2523, 24eqeltrdi 2898 . 2 (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,)))
26 retop 23377 . . 3 (topGen‘ran (,)) ∈ Top
27 uniretop 23378 . . . 4 ℝ = (topGen‘ran (,))
2827iscld2 21643 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,]𝐴) ⊆ ℝ) → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,))))
2926, 18, 28sylancr 590 . 2 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,))))
3025, 29mpbird 260 1 (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2111   ∖ cdif 3878   ∪ cun 3879   ∩ cin 3880   ⊆ wss 3881  ∅c0 4243   class class class wbr 5031  ran crn 5521  ‘cfv 6325  (class class class)co 7136  ℝcr 10528  +∞cpnf 10664  -∞cmnf 10665  ℝ*cxr 10666   < clt 10667   ≤ cle 10668  (,)cioo 12729  (,]cioc 12730  topGenctg 16706  Topctop 21508  Clsdccld 21631 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-sup 8893  df-inf 8894  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-n0 11889  df-z 11973  df-uz 12235  df-q 12340  df-ioo 12733  df-ioc 12734  df-topgen 16712  df-top 21509  df-bases 21561  df-cld 21634 This theorem is referenced by:  logdmopn  25250  orvclteel  31855  dvasin  35160  dvacos  35161  dvreasin  35162  dvreacos  35163  rfcnpre4  41706
 Copyright terms: Public domain W3C validator