| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iocmnfcld | Structured version Visualization version GIF version | ||
| Description: Left-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| Ref | Expression |
|---|---|
| iocmnfcld | ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11238 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -∞ ∈ ℝ*) |
| 3 | rexr 11227 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 4 | pnfxr 11235 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → +∞ ∈ ℝ*) |
| 6 | mnflt 13090 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 7 | ltpnf 13087 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
| 8 | df-ioc 13318 | . . . . . . 7 ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 9 | df-ioo 13317 | . . . . . . 7 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 10 | xrltnle 11248 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐴)) | |
| 11 | xrlelttr 13123 | . . . . . . 7 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 ≤ 𝐴 ∧ 𝐴 < +∞) → 𝑤 < +∞)) | |
| 12 | xrlttr 13107 | . . . . . . 7 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((-∞ < 𝐴 ∧ 𝐴 < 𝑤) → -∞ < 𝑤)) | |
| 13 | 8, 9, 10, 9, 11, 12 | ixxun 13329 | . . . . . 6 ⊢ (((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴 ∧ 𝐴 < +∞)) → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞)) |
| 14 | 2, 3, 5, 6, 7, 13 | syl32anc 1380 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞)) |
| 15 | ioomax 13390 | . . . . 5 ⊢ (-∞(,)+∞) = ℝ | |
| 16 | 14, 15 | eqtrdi 2781 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ) |
| 17 | iocssre 13395 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ) → (-∞(,]𝐴) ⊆ ℝ) | |
| 18 | 1, 17 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ⊆ ℝ) |
| 19 | 8, 9, 10 | ixxdisj 13328 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) |
| 20 | 1, 3, 5, 19 | mp3an2i 1468 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) |
| 21 | uneqdifeq 4459 | . . . . 5 ⊢ (((-∞(,]𝐴) ⊆ ℝ ∧ ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞))) | |
| 22 | 18, 20, 21 | syl2anc 584 | . . . 4 ⊢ (𝐴 ∈ ℝ → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞))) |
| 23 | 16, 22 | mpbid 232 | . . 3 ⊢ (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞)) |
| 24 | iooretop 24660 | . . 3 ⊢ (𝐴(,)+∞) ∈ (topGen‘ran (,)) | |
| 25 | 23, 24 | eqeltrdi 2837 | . 2 ⊢ (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,))) |
| 26 | retop 24656 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
| 27 | uniretop 24657 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 28 | 27 | iscld2 22922 | . . 3 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,]𝐴) ⊆ ℝ) → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,)))) |
| 29 | 26, 18, 28 | sylancr 587 | . 2 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,)))) |
| 30 | 25, 29 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ∪ cun 3915 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 class class class wbr 5110 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 +∞cpnf 11212 -∞cmnf 11213 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 (,)cioo 13313 (,]cioc 13314 topGenctg 17407 Topctop 22787 Clsdccld 22910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-ioo 13317 df-ioc 13318 df-topgen 17413 df-top 22788 df-bases 22840 df-cld 22913 |
| This theorem is referenced by: logdmopn 26565 orvclteel 34471 dvasin 37705 dvacos 37706 dvreasin 37707 dvreacos 37708 rfcnpre4 45035 |
| Copyright terms: Public domain | W3C validator |