MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocmnfcld Structured version   Visualization version   GIF version

Theorem iocmnfcld 23060
Description: Left-unbounded closed intervals are closed sets of the standard topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Assertion
Ref Expression
iocmnfcld (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))

Proof of Theorem iocmnfcld
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 10545 . . . . . . 7 -∞ ∈ ℝ*
21a1i 11 . . . . . 6 (𝐴 ∈ ℝ → -∞ ∈ ℝ*)
3 rexr 10533 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 pnfxr 10541 . . . . . . 7 +∞ ∈ ℝ*
54a1i 11 . . . . . 6 (𝐴 ∈ ℝ → +∞ ∈ ℝ*)
6 mnflt 12368 . . . . . 6 (𝐴 ∈ ℝ → -∞ < 𝐴)
7 ltpnf 12365 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < +∞)
8 df-ioc 12593 . . . . . . 7 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
9 df-ioo 12592 . . . . . . 7 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
10 xrltnle 10555 . . . . . . 7 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤𝐴))
11 xrlelttr 12399 . . . . . . 7 ((𝑤 ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤𝐴𝐴 < +∞) → 𝑤 < +∞))
12 xrlttr 12383 . . . . . . 7 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 𝐴𝐴 < 𝑤) → -∞ < 𝑤))
138, 9, 10, 9, 11, 12ixxun 12604 . . . . . 6 (((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < +∞)) → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞))
142, 3, 5, 6, 7, 13syl32anc 1371 . . . . 5 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞))
15 ioomax 12661 . . . . 5 (-∞(,)+∞) = ℝ
1614, 15syl6eq 2847 . . . 4 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ)
17 iocssre 12666 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ) → (-∞(,]𝐴) ⊆ ℝ)
181, 17mpan 686 . . . . 5 (𝐴 ∈ ℝ → (-∞(,]𝐴) ⊆ ℝ)
198, 9, 10ixxdisj 12603 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅)
201, 3, 5, 19mp3an2i 1458 . . . . 5 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅)
21 uneqdifeq 4352 . . . . 5 (((-∞(,]𝐴) ⊆ ℝ ∧ ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞)))
2218, 20, 21syl2anc 584 . . . 4 (𝐴 ∈ ℝ → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞)))
2316, 22mpbid 233 . . 3 (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞))
24 iooretop 23057 . . 3 (𝐴(,)+∞) ∈ (topGen‘ran (,))
2523, 24syl6eqel 2891 . 2 (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,)))
26 retop 23053 . . 3 (topGen‘ran (,)) ∈ Top
27 uniretop 23054 . . . 4 ℝ = (topGen‘ran (,))
2827iscld2 21320 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,]𝐴) ⊆ ℝ) → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,))))
2926, 18, 28sylancr 587 . 2 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,))))
3025, 29mpbird 258 1 (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207   = wceq 1522  wcel 2081  cdif 3856  cun 3857  cin 3858  wss 3859  c0 4211   class class class wbr 4962  ran crn 5444  cfv 6225  (class class class)co 7016  cr 10382  +∞cpnf 10518  -∞cmnf 10519  *cxr 10520   < clt 10521  cle 10522  (,)cioo 12588  (,]cioc 12589  topGenctg 16540  Topctop 21185  Clsdccld 21308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094  df-q 12198  df-ioo 12592  df-ioc 12593  df-topgen 16546  df-top 21186  df-bases 21238  df-cld 21311
This theorem is referenced by:  logdmopn  24913  orvclteel  31347  dvasin  34528  dvacos  34529  dvreasin  34530  dvreacos  34531  rfcnpre4  40849
  Copyright terms: Public domain W3C validator