MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocmnfcld Structured version   Visualization version   GIF version

Theorem iocmnfcld 23838
Description: Left-unbounded closed intervals are closed sets of the standard topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Assertion
Ref Expression
iocmnfcld (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))

Proof of Theorem iocmnfcld
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 10963 . . . . . . 7 -∞ ∈ ℝ*
21a1i 11 . . . . . 6 (𝐴 ∈ ℝ → -∞ ∈ ℝ*)
3 rexr 10952 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 pnfxr 10960 . . . . . . 7 +∞ ∈ ℝ*
54a1i 11 . . . . . 6 (𝐴 ∈ ℝ → +∞ ∈ ℝ*)
6 mnflt 12788 . . . . . 6 (𝐴 ∈ ℝ → -∞ < 𝐴)
7 ltpnf 12785 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < +∞)
8 df-ioc 13013 . . . . . . 7 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
9 df-ioo 13012 . . . . . . 7 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
10 xrltnle 10973 . . . . . . 7 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤𝐴))
11 xrlelttr 12819 . . . . . . 7 ((𝑤 ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤𝐴𝐴 < +∞) → 𝑤 < +∞))
12 xrlttr 12803 . . . . . . 7 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 𝐴𝐴 < 𝑤) → -∞ < 𝑤))
138, 9, 10, 9, 11, 12ixxun 13024 . . . . . 6 (((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < +∞)) → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞))
142, 3, 5, 6, 7, 13syl32anc 1376 . . . . 5 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞))
15 ioomax 13083 . . . . 5 (-∞(,)+∞) = ℝ
1614, 15eqtrdi 2795 . . . 4 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ)
17 iocssre 13088 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ) → (-∞(,]𝐴) ⊆ ℝ)
181, 17mpan 686 . . . . 5 (𝐴 ∈ ℝ → (-∞(,]𝐴) ⊆ ℝ)
198, 9, 10ixxdisj 13023 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅)
201, 3, 5, 19mp3an2i 1464 . . . . 5 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅)
21 uneqdifeq 4420 . . . . 5 (((-∞(,]𝐴) ⊆ ℝ ∧ ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞)))
2218, 20, 21syl2anc 583 . . . 4 (𝐴 ∈ ℝ → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞)))
2316, 22mpbid 231 . . 3 (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞))
24 iooretop 23835 . . 3 (𝐴(,)+∞) ∈ (topGen‘ran (,))
2523, 24eqeltrdi 2847 . 2 (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,)))
26 retop 23831 . . 3 (topGen‘ran (,)) ∈ Top
27 uniretop 23832 . . . 4 ℝ = (topGen‘ran (,))
2827iscld2 22087 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,]𝐴) ⊆ ℝ) → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,))))
2926, 18, 28sylancr 586 . 2 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,))))
3025, 29mpbird 256 1 (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253   class class class wbr 5070  ran crn 5581  cfv 6418  (class class class)co 7255  cr 10801  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  (,)cioo 13008  (,]cioc 13009  topGenctg 17065  Topctop 21950  Clsdccld 22075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-ioo 13012  df-ioc 13013  df-topgen 17071  df-top 21951  df-bases 22004  df-cld 22078
This theorem is referenced by:  logdmopn  25709  orvclteel  32339  dvasin  35788  dvacos  35789  dvreasin  35790  dvreacos  35791  rfcnpre4  42466
  Copyright terms: Public domain W3C validator