MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocmnfcld Structured version   Visualization version   GIF version

Theorem iocmnfcld 23930
Description: Left-unbounded closed intervals are closed sets of the standard topology on . (Contributed by Mario Carneiro, 17-Feb-2015.)
Assertion
Ref Expression
iocmnfcld (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))

Proof of Theorem iocmnfcld
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 11033 . . . . . . 7 -∞ ∈ ℝ*
21a1i 11 . . . . . 6 (𝐴 ∈ ℝ → -∞ ∈ ℝ*)
3 rexr 11022 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 pnfxr 11030 . . . . . . 7 +∞ ∈ ℝ*
54a1i 11 . . . . . 6 (𝐴 ∈ ℝ → +∞ ∈ ℝ*)
6 mnflt 12858 . . . . . 6 (𝐴 ∈ ℝ → -∞ < 𝐴)
7 ltpnf 12855 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < +∞)
8 df-ioc 13083 . . . . . . 7 (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
9 df-ioo 13082 . . . . . . 7 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
10 xrltnle 11043 . . . . . . 7 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤𝐴))
11 xrlelttr 12889 . . . . . . 7 ((𝑤 ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤𝐴𝐴 < +∞) → 𝑤 < +∞))
12 xrlttr 12873 . . . . . . 7 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 𝐴𝐴 < 𝑤) → -∞ < 𝑤))
138, 9, 10, 9, 11, 12ixxun 13094 . . . . . 6 (((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < +∞)) → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞))
142, 3, 5, 6, 7, 13syl32anc 1377 . . . . 5 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞))
15 ioomax 13153 . . . . 5 (-∞(,)+∞) = ℝ
1614, 15eqtrdi 2796 . . . 4 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ)
17 iocssre 13158 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ) → (-∞(,]𝐴) ⊆ ℝ)
181, 17mpan 687 . . . . 5 (𝐴 ∈ ℝ → (-∞(,]𝐴) ⊆ ℝ)
198, 9, 10ixxdisj 13093 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅)
201, 3, 5, 19mp3an2i 1465 . . . . 5 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅)
21 uneqdifeq 4429 . . . . 5 (((-∞(,]𝐴) ⊆ ℝ ∧ ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞)))
2218, 20, 21syl2anc 584 . . . 4 (𝐴 ∈ ℝ → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞)))
2316, 22mpbid 231 . . 3 (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞))
24 iooretop 23927 . . 3 (𝐴(,)+∞) ∈ (topGen‘ran (,))
2523, 24eqeltrdi 2849 . 2 (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,)))
26 retop 23923 . . 3 (topGen‘ran (,)) ∈ Top
27 uniretop 23924 . . . 4 ℝ = (topGen‘ran (,))
2827iscld2 22177 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,]𝐴) ⊆ ℝ) → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,))))
2926, 18, 28sylancr 587 . 2 (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,))))
3025, 29mpbird 256 1 (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2110  cdif 3889  cun 3890  cin 3891  wss 3892  c0 4262   class class class wbr 5079  ran crn 5591  cfv 6432  (class class class)co 7271  cr 10871  +∞cpnf 11007  -∞cmnf 11008  *cxr 11009   < clt 11010  cle 11011  (,)cioo 13078  (,]cioc 13079  topGenctg 17146  Topctop 22040  Clsdccld 22165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-ioo 13082  df-ioc 13083  df-topgen 17152  df-top 22041  df-bases 22094  df-cld 22168
This theorem is referenced by:  logdmopn  25802  orvclteel  32435  dvasin  35857  dvacos  35858  dvreasin  35859  dvreacos  35860  rfcnpre4  42547
  Copyright terms: Public domain W3C validator