| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iocmnfcld | Structured version Visualization version GIF version | ||
| Description: Left-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| Ref | Expression |
|---|---|
| iocmnfcld | ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11176 | . . . . . . 7 ⊢ -∞ ∈ ℝ* | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -∞ ∈ ℝ*) |
| 3 | rexr 11165 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 4 | pnfxr 11173 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → +∞ ∈ ℝ*) |
| 6 | mnflt 13024 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 7 | ltpnf 13021 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
| 8 | df-ioc 13252 | . . . . . . 7 ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 9 | df-ioo 13251 | . . . . . . 7 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 10 | xrltnle 11186 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐴)) | |
| 11 | xrlelttr 13057 | . . . . . . 7 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 ≤ 𝐴 ∧ 𝐴 < +∞) → 𝑤 < +∞)) | |
| 12 | xrlttr 13041 | . . . . . . 7 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((-∞ < 𝐴 ∧ 𝐴 < 𝑤) → -∞ < 𝑤)) | |
| 13 | 8, 9, 10, 9, 11, 12 | ixxun 13263 | . . . . . 6 ⊢ (((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴 ∧ 𝐴 < +∞)) → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞)) |
| 14 | 2, 3, 5, 6, 7, 13 | syl32anc 1380 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = (-∞(,)+∞)) |
| 15 | ioomax 13324 | . . . . 5 ⊢ (-∞(,)+∞) = ℝ | |
| 16 | 14, 15 | eqtrdi 2784 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ) |
| 17 | iocssre 13329 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ) → (-∞(,]𝐴) ⊆ ℝ) | |
| 18 | 1, 17 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ⊆ ℝ) |
| 19 | 8, 9, 10 | ixxdisj 13262 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) |
| 20 | 1, 3, 5, 19 | mp3an2i 1468 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) |
| 21 | uneqdifeq 4442 | . . . . 5 ⊢ (((-∞(,]𝐴) ⊆ ℝ ∧ ((-∞(,]𝐴) ∩ (𝐴(,)+∞)) = ∅) → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞))) | |
| 22 | 18, 20, 21 | syl2anc 584 | . . . 4 ⊢ (𝐴 ∈ ℝ → (((-∞(,]𝐴) ∪ (𝐴(,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞))) |
| 23 | 16, 22 | mpbid 232 | . . 3 ⊢ (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) = (𝐴(,)+∞)) |
| 24 | iooretop 24681 | . . 3 ⊢ (𝐴(,)+∞) ∈ (topGen‘ran (,)) | |
| 25 | 23, 24 | eqeltrdi 2841 | . 2 ⊢ (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,))) |
| 26 | retop 24677 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
| 27 | uniretop 24678 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 28 | 27 | iscld2 22944 | . . 3 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,]𝐴) ⊆ ℝ) → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,)))) |
| 29 | 26, 18, 28 | sylancr 587 | . 2 ⊢ (𝐴 ∈ ℝ → ((-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (-∞(,]𝐴)) ∈ (topGen‘ran (,)))) |
| 30 | 25, 29 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 class class class wbr 5093 ran crn 5620 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 +∞cpnf 11150 -∞cmnf 11151 ℝ*cxr 11152 < clt 11153 ≤ cle 11154 (,)cioo 13247 (,]cioc 13248 topGenctg 17343 Topctop 22809 Clsdccld 22932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-ioo 13251 df-ioc 13252 df-topgen 17349 df-top 22810 df-bases 22862 df-cld 22935 |
| This theorem is referenced by: logdmopn 26586 orvclteel 34507 dvasin 37764 dvacos 37765 dvreasin 37766 dvreacos 37767 rfcnpre4 45155 |
| Copyright terms: Public domain | W3C validator |