MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf3d Structured version   Visualization version   GIF version

Theorem ismbf3d 25690
Description: Simplified form of ismbfd 25675. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbf3d.1 (𝜑𝐹:𝐴⟶ℝ)
ismbf3d.2 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
Assertion
Ref Expression
ismbf3d (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ismbf3d
Dummy variables 𝑣 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismbf3d.1 . 2 (𝜑𝐹:𝐴⟶ℝ)
2 fimacnv 6757 . . . 4 (𝐹:𝐴⟶ℝ → (𝐹 “ ℝ) = 𝐴)
31, 2syl 17 . . 3 (𝜑 → (𝐹 “ ℝ) = 𝐴)
4 imaiun 7266 . . . . 5 (𝐹 𝑦 ∈ ℕ (-𝑦(,)+∞)) = 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞))
5 ioossre 13449 . . . . . . . . 9 (-𝑦(,)+∞) ⊆ ℝ
65rgenw 3064 . . . . . . . 8 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ
7 iunss 5044 . . . . . . . 8 ( 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ ↔ ∀𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ)
86, 7mpbir 231 . . . . . . 7 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ
9 renegcl 11573 . . . . . . . . . . 11 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
10 arch 12525 . . . . . . . . . . 11 (-𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ -𝑧 < 𝑦)
119, 10syl 17 . . . . . . . . . 10 (𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ -𝑧 < 𝑦)
12 simpl 482 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → 𝑧 ∈ ℝ)
1312biantrurd 532 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑦 < 𝑧 ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
14 nnre 12274 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
15 ltnegcon1 11765 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑧 < 𝑦 ↔ -𝑦 < 𝑧))
1614, 15sylan2 593 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑧 < 𝑦 ↔ -𝑦 < 𝑧))
1714adantl 481 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
1817renegcld 11691 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → -𝑦 ∈ ℝ)
1918rexrd 11312 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → -𝑦 ∈ ℝ*)
20 elioopnf 13484 . . . . . . . . . . . . 13 (-𝑦 ∈ ℝ* → (𝑧 ∈ (-𝑦(,)+∞) ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
2119, 20syl 17 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ (-𝑦(,)+∞) ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
2213, 16, 213bitr4d 311 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑧 < 𝑦𝑧 ∈ (-𝑦(,)+∞)))
2322rexbidva 3176 . . . . . . . . . 10 (𝑧 ∈ ℝ → (∃𝑦 ∈ ℕ -𝑧 < 𝑦 ↔ ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞)))
2411, 23mpbid 232 . . . . . . . . 9 (𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞))
25 eliun 4994 . . . . . . . . 9 (𝑧 𝑦 ∈ ℕ (-𝑦(,)+∞) ↔ ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞))
2624, 25sylibr 234 . . . . . . . 8 (𝑧 ∈ ℝ → 𝑧 𝑦 ∈ ℕ (-𝑦(,)+∞))
2726ssriv 3986 . . . . . . 7 ℝ ⊆ 𝑦 ∈ ℕ (-𝑦(,)+∞)
288, 27eqssi 3999 . . . . . 6 𝑦 ∈ ℕ (-𝑦(,)+∞) = ℝ
2928imaeq2i 6075 . . . . 5 (𝐹 𝑦 ∈ ℕ (-𝑦(,)+∞)) = (𝐹 “ ℝ)
304, 29eqtr3i 2766 . . . 4 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) = (𝐹 “ ℝ)
31 ismbf3d.2 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
3231ralrimiva 3145 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
3314renegcld 11691 . . . . . . 7 (𝑦 ∈ ℕ → -𝑦 ∈ ℝ)
34 oveq1 7439 . . . . . . . . . 10 (𝑥 = -𝑦 → (𝑥(,)+∞) = (-𝑦(,)+∞))
3534imaeq2d 6077 . . . . . . . . 9 (𝑥 = -𝑦 → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ (-𝑦(,)+∞)))
3635eleq1d 2825 . . . . . . . 8 (𝑥 = -𝑦 → ((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol))
3736rspccva 3620 . . . . . . 7 ((∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol ∧ -𝑦 ∈ ℝ) → (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
3832, 33, 37syl2an 596 . . . . . 6 ((𝜑𝑦 ∈ ℕ) → (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
3938ralrimiva 3145 . . . . 5 (𝜑 → ∀𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
40 iunmbl 25589 . . . . 5 (∀𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol → 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
4139, 40syl 17 . . . 4 (𝜑 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
4230, 41eqeltrrid 2845 . . 3 (𝜑 → (𝐹 “ ℝ) ∈ dom vol)
433, 42eqeltrrd 2841 . 2 (𝜑𝐴 ∈ dom vol)
44 imaiun 7266 . . . . . . 7 (𝐹 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦)))) = 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦))))
45 eliun 4994 . . . . . . . . . 10 (𝑥 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) ↔ ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
46 3simpb 1149 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))))
47 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑧 ∈ ℝ)
48 nnrp 13047 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
4948ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑦 ∈ ℝ+)
5049rpreccld 13088 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (1 / 𝑦) ∈ ℝ+)
5147, 50ltsubrpd 13110 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑧 − (1 / 𝑦)) < 𝑧)
52 simprr 772 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ)
53 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
54 nnrecre 12309 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → (1 / 𝑦) ∈ ℝ)
55 resubcl 11574 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ (1 / 𝑦) ∈ ℝ) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
5653, 54, 55syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
5756adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
58 lelttr 11352 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑧) → 𝑥 < 𝑧))
5952, 57, 47, 58syl3anc 1372 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑧) → 𝑥 < 𝑧))
6051, 59mpan2d 694 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑥 ≤ (𝑧 − (1 / 𝑦)) → 𝑥 < 𝑧))
6160anassrs 467 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ≤ (𝑧 − (1 / 𝑦)) → 𝑥 < 𝑧))
6261imdistanda 571 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑥 ∈ ℝ ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
6346, 62syl5 34 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
64 mnfxr 11319 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
65 elioc2 13451 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
6664, 56, 65sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
67 rexr 11308 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
6867adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ*)
69 elioomnf 13485 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7068, 69syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7170adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7263, 66, 713imtr4d 294 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → 𝑥 ∈ (-∞(,)𝑧)))
7372rexlimdva 3154 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → 𝑥 ∈ (-∞(,)𝑧)))
7473, 70sylibd 239 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
75 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑥 ∈ ℝ)
7675adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ∈ ℝ)
7776mnfltd 13167 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → -∞ < 𝑥)
7856ad2ant2r 747 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
7954ad2antrl 728 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (1 / 𝑦) ∈ ℝ)
80 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑧 ∈ ℝ)
8180adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑧 ∈ ℝ)
82 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (1 / 𝑦) < (𝑧𝑥))
8379, 81, 76, 82ltsub13d 11870 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 < (𝑧 − (1 / 𝑦)))
8476, 78, 83ltled 11410 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ≤ (𝑧 − (1 / 𝑦)))
8566ad2ant2r 747 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
8676, 77, 84, 85mpbir3and 1342 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
8780, 75resubcld 11692 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → (𝑧𝑥) ∈ ℝ)
88 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑥 < 𝑧)
8975, 80posdifd 11851 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → (𝑥 < 𝑧 ↔ 0 < (𝑧𝑥)))
9088, 89mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 0 < (𝑧𝑥))
91 nnrecl 12526 . . . . . . . . . . . . . . 15 (((𝑧𝑥) ∈ ℝ ∧ 0 < (𝑧𝑥)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝑧𝑥))
9287, 90, 91syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝑧𝑥))
9386, 92reximddv 3170 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
9493ex 412 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ 𝑥 < 𝑧) → ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦)))))
9574, 94impbid 212 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
9695, 70bitr4d 282 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ 𝑥 ∈ (-∞(,)𝑧)))
9745, 96bitrid 283 . . . . . . . . 9 ((𝜑𝑧 ∈ ℝ) → (𝑥 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) ↔ 𝑥 ∈ (-∞(,)𝑧)))
9897eqrdv 2734 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) = (-∞(,)𝑧))
9998imaeq2d 6077 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → (𝐹 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦)))) = (𝐹 “ (-∞(,)𝑧)))
10044, 99eqtr3id 2790 . . . . . 6 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) = (𝐹 “ (-∞(,)𝑧)))
1011ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝐹:𝐴⟶ℝ)
102 ffun 6738 . . . . . . . . . . 11 (𝐹:𝐴⟶ℝ → Fun 𝐹)
103 funcnvcnv 6632 . . . . . . . . . . 11 (Fun 𝐹 → Fun 𝐹)
104 imadif 6649 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))))
105101, 102, 103, 1044syl 19 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))))
10664a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → -∞ ∈ ℝ*)
10756rexrd 11312 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) ∈ ℝ*)
108 pnfxr 11316 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
109108a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → +∞ ∈ ℝ*)
11056mnfltd 13167 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → -∞ < (𝑧 − (1 / 𝑦)))
11156ltpnfd 13164 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) < +∞)
112 df-ioc 13393 . . . . . . . . . . . . . . 15 (,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤𝑣)})
113 df-ioo 13392 . . . . . . . . . . . . . . 15 (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤 < 𝑣)})
114 xrltnle 11329 . . . . . . . . . . . . . . 15 (((𝑧 − (1 / 𝑦)) ∈ ℝ*𝑥 ∈ ℝ*) → ((𝑧 − (1 / 𝑦)) < 𝑥 ↔ ¬ 𝑥 ≤ (𝑧 − (1 / 𝑦))))
115 xrlelttr 13199 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < +∞) → 𝑥 < +∞))
116 xrlttr 13183 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ*𝑥 ∈ ℝ*) → ((-∞ < (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑥) → -∞ < 𝑥))
117112, 113, 114, 113, 115, 116ixxun 13404 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < +∞)) → ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,)+∞))
118106, 107, 109, 110, 111, 117syl32anc 1379 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,)+∞))
119 uncom 4157 . . . . . . . . . . . . 13 ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦))))
120 ioomax 13463 . . . . . . . . . . . . 13 (-∞(,)+∞) = ℝ
121118, 119, 1203eqtr3g 2799 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ)
122 ioossre 13449 . . . . . . . . . . . . 13 ((𝑧 − (1 / 𝑦))(,)+∞) ⊆ ℝ
123 incom 4208 . . . . . . . . . . . . . 14 (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞))
124112, 113, 114ixxdisj 13403 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
12564, 108, 124mp3an13 1453 . . . . . . . . . . . . . . 15 ((𝑧 − (1 / 𝑦)) ∈ ℝ* → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
126107, 125syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
127123, 126eqtrid 2788 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ∅)
128 uneqdifeq 4492 . . . . . . . . . . . . 13 ((((𝑧 − (1 / 𝑦))(,)+∞) ⊆ ℝ ∧ (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ∅) → ((((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ ↔ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦)))))
129122, 127, 128sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ ↔ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦)))))
130121, 129mpbid 232 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦))))
131130imaeq2d 6077 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))))
132105, 131eqtr3d 2778 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) = (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))))
13342ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ ℝ) ∈ dom vol)
134 oveq1 7439 . . . . . . . . . . . . 13 (𝑥 = (𝑧 − (1 / 𝑦)) → (𝑥(,)+∞) = ((𝑧 − (1 / 𝑦))(,)+∞))
135134imaeq2d 6077 . . . . . . . . . . . 12 (𝑥 = (𝑧 − (1 / 𝑦)) → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)))
136135eleq1d 2825 . . . . . . . . . . 11 (𝑥 = (𝑧 − (1 / 𝑦)) → ((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol))
13732ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
138136, 137, 56rspcdva 3622 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol)
139 difmbl 25579 . . . . . . . . . 10 (((𝐹 “ ℝ) ∈ dom vol ∧ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) ∈ dom vol)
140133, 138, 139syl2anc 584 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) ∈ dom vol)
141132, 140eqeltrrd 2841 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
142141ralrimiva 3145 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → ∀𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
143 iunmbl 25589 . . . . . . 7 (∀𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
144142, 143syl 17 . . . . . 6 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
145100, 144eqeltrrd 2841 . . . . 5 ((𝜑𝑧 ∈ ℝ) → (𝐹 “ (-∞(,)𝑧)) ∈ dom vol)
146145ralrimiva 3145 . . . 4 (𝜑 → ∀𝑧 ∈ ℝ (𝐹 “ (-∞(,)𝑧)) ∈ dom vol)
147 oveq2 7440 . . . . . . 7 (𝑧 = 𝑥 → (-∞(,)𝑧) = (-∞(,)𝑥))
148147imaeq2d 6077 . . . . . 6 (𝑧 = 𝑥 → (𝐹 “ (-∞(,)𝑧)) = (𝐹 “ (-∞(,)𝑥)))
149148eleq1d 2825 . . . . 5 (𝑧 = 𝑥 → ((𝐹 “ (-∞(,)𝑧)) ∈ dom vol ↔ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol))
150149cbvralvw 3236 . . . 4 (∀𝑧 ∈ ℝ (𝐹 “ (-∞(,)𝑧)) ∈ dom vol ↔ ∀𝑥 ∈ ℝ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
151146, 150sylib 218 . . 3 (𝜑 → ∀𝑥 ∈ ℝ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
152151r19.21bi 3250 . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
1531, 43, 31, 152ismbf2d 25676 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  wrex 3069  cdif 3947  cun 3948  cin 3949  wss 3950  c0 4332   ciun 4990   class class class wbr 5142  ccnv 5683  dom cdm 5684  cima 5687  Fun wfun 6554  wf 6556  (class class class)co 7432  cr 11155  0cc0 11156  1c1 11157  +∞cpnf 11293  -∞cmnf 11294  *cxr 11295   < clt 11296  cle 11297  cmin 11493  -cneg 11494   / cdiv 11921  cn 12267  +crp 13035  (,)cioo 13388  (,]cioc 13389  volcvol 25499  MblFncmbf 25650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cc 10476  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-xadd 13156  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724  df-xmet 21358  df-met 21359  df-ovol 25500  df-vol 25501  df-mbf 25655
This theorem is referenced by:  mbfaddlem  25696  mbfsup  25700
  Copyright terms: Public domain W3C validator