MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf3d Structured version   Visualization version   GIF version

Theorem ismbf3d 25555
Description: Simplified form of ismbfd 25540. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbf3d.1 (𝜑𝐹:𝐴⟶ℝ)
ismbf3d.2 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
Assertion
Ref Expression
ismbf3d (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ismbf3d
Dummy variables 𝑣 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismbf3d.1 . 2 (𝜑𝐹:𝐴⟶ℝ)
2 fimacnv 6710 . . . 4 (𝐹:𝐴⟶ℝ → (𝐹 “ ℝ) = 𝐴)
31, 2syl 17 . . 3 (𝜑 → (𝐹 “ ℝ) = 𝐴)
4 imaiun 7219 . . . . 5 (𝐹 𝑦 ∈ ℕ (-𝑦(,)+∞)) = 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞))
5 ioossre 13368 . . . . . . . . 9 (-𝑦(,)+∞) ⊆ ℝ
65rgenw 3048 . . . . . . . 8 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ
7 iunss 5009 . . . . . . . 8 ( 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ ↔ ∀𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ)
86, 7mpbir 231 . . . . . . 7 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ
9 renegcl 11485 . . . . . . . . . . 11 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
10 arch 12439 . . . . . . . . . . 11 (-𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ -𝑧 < 𝑦)
119, 10syl 17 . . . . . . . . . 10 (𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ -𝑧 < 𝑦)
12 simpl 482 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → 𝑧 ∈ ℝ)
1312biantrurd 532 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑦 < 𝑧 ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
14 nnre 12193 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
15 ltnegcon1 11679 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑧 < 𝑦 ↔ -𝑦 < 𝑧))
1614, 15sylan2 593 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑧 < 𝑦 ↔ -𝑦 < 𝑧))
1714adantl 481 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
1817renegcld 11605 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → -𝑦 ∈ ℝ)
1918rexrd 11224 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → -𝑦 ∈ ℝ*)
20 elioopnf 13404 . . . . . . . . . . . . 13 (-𝑦 ∈ ℝ* → (𝑧 ∈ (-𝑦(,)+∞) ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
2119, 20syl 17 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ (-𝑦(,)+∞) ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
2213, 16, 213bitr4d 311 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑧 < 𝑦𝑧 ∈ (-𝑦(,)+∞)))
2322rexbidva 3155 . . . . . . . . . 10 (𝑧 ∈ ℝ → (∃𝑦 ∈ ℕ -𝑧 < 𝑦 ↔ ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞)))
2411, 23mpbid 232 . . . . . . . . 9 (𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞))
25 eliun 4959 . . . . . . . . 9 (𝑧 𝑦 ∈ ℕ (-𝑦(,)+∞) ↔ ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞))
2624, 25sylibr 234 . . . . . . . 8 (𝑧 ∈ ℝ → 𝑧 𝑦 ∈ ℕ (-𝑦(,)+∞))
2726ssriv 3950 . . . . . . 7 ℝ ⊆ 𝑦 ∈ ℕ (-𝑦(,)+∞)
288, 27eqssi 3963 . . . . . 6 𝑦 ∈ ℕ (-𝑦(,)+∞) = ℝ
2928imaeq2i 6029 . . . . 5 (𝐹 𝑦 ∈ ℕ (-𝑦(,)+∞)) = (𝐹 “ ℝ)
304, 29eqtr3i 2754 . . . 4 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) = (𝐹 “ ℝ)
31 ismbf3d.2 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
3231ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
3314renegcld 11605 . . . . . . 7 (𝑦 ∈ ℕ → -𝑦 ∈ ℝ)
34 oveq1 7394 . . . . . . . . . 10 (𝑥 = -𝑦 → (𝑥(,)+∞) = (-𝑦(,)+∞))
3534imaeq2d 6031 . . . . . . . . 9 (𝑥 = -𝑦 → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ (-𝑦(,)+∞)))
3635eleq1d 2813 . . . . . . . 8 (𝑥 = -𝑦 → ((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol))
3736rspccva 3587 . . . . . . 7 ((∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol ∧ -𝑦 ∈ ℝ) → (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
3832, 33, 37syl2an 596 . . . . . 6 ((𝜑𝑦 ∈ ℕ) → (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
3938ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
40 iunmbl 25454 . . . . 5 (∀𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol → 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
4139, 40syl 17 . . . 4 (𝜑 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
4230, 41eqeltrrid 2833 . . 3 (𝜑 → (𝐹 “ ℝ) ∈ dom vol)
433, 42eqeltrrd 2829 . 2 (𝜑𝐴 ∈ dom vol)
44 imaiun 7219 . . . . . . 7 (𝐹 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦)))) = 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦))))
45 eliun 4959 . . . . . . . . . 10 (𝑥 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) ↔ ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
46 3simpb 1149 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))))
47 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑧 ∈ ℝ)
48 nnrp 12963 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
4948ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑦 ∈ ℝ+)
5049rpreccld 13005 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (1 / 𝑦) ∈ ℝ+)
5147, 50ltsubrpd 13027 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑧 − (1 / 𝑦)) < 𝑧)
52 simprr 772 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ)
53 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
54 nnrecre 12228 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → (1 / 𝑦) ∈ ℝ)
55 resubcl 11486 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ (1 / 𝑦) ∈ ℝ) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
5653, 54, 55syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
5756adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
58 lelttr 11264 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑧) → 𝑥 < 𝑧))
5952, 57, 47, 58syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑧) → 𝑥 < 𝑧))
6051, 59mpan2d 694 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑥 ≤ (𝑧 − (1 / 𝑦)) → 𝑥 < 𝑧))
6160anassrs 467 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ≤ (𝑧 − (1 / 𝑦)) → 𝑥 < 𝑧))
6261imdistanda 571 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑥 ∈ ℝ ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
6346, 62syl5 34 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
64 mnfxr 11231 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
65 elioc2 13370 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
6664, 56, 65sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
67 rexr 11220 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
6867adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ*)
69 elioomnf 13405 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7068, 69syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7170adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7263, 66, 713imtr4d 294 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → 𝑥 ∈ (-∞(,)𝑧)))
7372rexlimdva 3134 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → 𝑥 ∈ (-∞(,)𝑧)))
7473, 70sylibd 239 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
75 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑥 ∈ ℝ)
7675adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ∈ ℝ)
7776mnfltd 13084 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → -∞ < 𝑥)
7856ad2ant2r 747 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
7954ad2antrl 728 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (1 / 𝑦) ∈ ℝ)
80 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑧 ∈ ℝ)
8180adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑧 ∈ ℝ)
82 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (1 / 𝑦) < (𝑧𝑥))
8379, 81, 76, 82ltsub13d 11784 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 < (𝑧 − (1 / 𝑦)))
8476, 78, 83ltled 11322 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ≤ (𝑧 − (1 / 𝑦)))
8566ad2ant2r 747 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
8676, 77, 84, 85mpbir3and 1343 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
8780, 75resubcld 11606 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → (𝑧𝑥) ∈ ℝ)
88 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑥 < 𝑧)
8975, 80posdifd 11765 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → (𝑥 < 𝑧 ↔ 0 < (𝑧𝑥)))
9088, 89mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 0 < (𝑧𝑥))
91 nnrecl 12440 . . . . . . . . . . . . . . 15 (((𝑧𝑥) ∈ ℝ ∧ 0 < (𝑧𝑥)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝑧𝑥))
9287, 90, 91syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝑧𝑥))
9386, 92reximddv 3149 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
9493ex 412 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ 𝑥 < 𝑧) → ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦)))))
9574, 94impbid 212 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
9695, 70bitr4d 282 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ 𝑥 ∈ (-∞(,)𝑧)))
9745, 96bitrid 283 . . . . . . . . 9 ((𝜑𝑧 ∈ ℝ) → (𝑥 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) ↔ 𝑥 ∈ (-∞(,)𝑧)))
9897eqrdv 2727 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) = (-∞(,)𝑧))
9998imaeq2d 6031 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → (𝐹 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦)))) = (𝐹 “ (-∞(,)𝑧)))
10044, 99eqtr3id 2778 . . . . . 6 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) = (𝐹 “ (-∞(,)𝑧)))
1011ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝐹:𝐴⟶ℝ)
102 ffun 6691 . . . . . . . . . . 11 (𝐹:𝐴⟶ℝ → Fun 𝐹)
103 funcnvcnv 6583 . . . . . . . . . . 11 (Fun 𝐹 → Fun 𝐹)
104 imadif 6600 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))))
105101, 102, 103, 1044syl 19 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))))
10664a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → -∞ ∈ ℝ*)
10756rexrd 11224 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) ∈ ℝ*)
108 pnfxr 11228 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
109108a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → +∞ ∈ ℝ*)
11056mnfltd 13084 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → -∞ < (𝑧 − (1 / 𝑦)))
11156ltpnfd 13081 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) < +∞)
112 df-ioc 13311 . . . . . . . . . . . . . . 15 (,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤𝑣)})
113 df-ioo 13310 . . . . . . . . . . . . . . 15 (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤 < 𝑣)})
114 xrltnle 11241 . . . . . . . . . . . . . . 15 (((𝑧 − (1 / 𝑦)) ∈ ℝ*𝑥 ∈ ℝ*) → ((𝑧 − (1 / 𝑦)) < 𝑥 ↔ ¬ 𝑥 ≤ (𝑧 − (1 / 𝑦))))
115 xrlelttr 13116 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < +∞) → 𝑥 < +∞))
116 xrlttr 13100 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ*𝑥 ∈ ℝ*) → ((-∞ < (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑥) → -∞ < 𝑥))
117112, 113, 114, 113, 115, 116ixxun 13322 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < +∞)) → ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,)+∞))
118106, 107, 109, 110, 111, 117syl32anc 1380 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,)+∞))
119 uncom 4121 . . . . . . . . . . . . 13 ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦))))
120 ioomax 13383 . . . . . . . . . . . . 13 (-∞(,)+∞) = ℝ
121118, 119, 1203eqtr3g 2787 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ)
122 ioossre 13368 . . . . . . . . . . . . 13 ((𝑧 − (1 / 𝑦))(,)+∞) ⊆ ℝ
123 incom 4172 . . . . . . . . . . . . . 14 (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞))
124112, 113, 114ixxdisj 13321 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
12564, 108, 124mp3an13 1454 . . . . . . . . . . . . . . 15 ((𝑧 − (1 / 𝑦)) ∈ ℝ* → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
126107, 125syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
127123, 126eqtrid 2776 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ∅)
128 uneqdifeq 4456 . . . . . . . . . . . . 13 ((((𝑧 − (1 / 𝑦))(,)+∞) ⊆ ℝ ∧ (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ∅) → ((((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ ↔ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦)))))
129122, 127, 128sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ ↔ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦)))))
130121, 129mpbid 232 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦))))
131130imaeq2d 6031 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))))
132105, 131eqtr3d 2766 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) = (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))))
13342ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ ℝ) ∈ dom vol)
134 oveq1 7394 . . . . . . . . . . . . 13 (𝑥 = (𝑧 − (1 / 𝑦)) → (𝑥(,)+∞) = ((𝑧 − (1 / 𝑦))(,)+∞))
135134imaeq2d 6031 . . . . . . . . . . . 12 (𝑥 = (𝑧 − (1 / 𝑦)) → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)))
136135eleq1d 2813 . . . . . . . . . . 11 (𝑥 = (𝑧 − (1 / 𝑦)) → ((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol))
13732ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
138136, 137, 56rspcdva 3589 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol)
139 difmbl 25444 . . . . . . . . . 10 (((𝐹 “ ℝ) ∈ dom vol ∧ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) ∈ dom vol)
140133, 138, 139syl2anc 584 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) ∈ dom vol)
141132, 140eqeltrrd 2829 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
142141ralrimiva 3125 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → ∀𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
143 iunmbl 25454 . . . . . . 7 (∀𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
144142, 143syl 17 . . . . . 6 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
145100, 144eqeltrrd 2829 . . . . 5 ((𝜑𝑧 ∈ ℝ) → (𝐹 “ (-∞(,)𝑧)) ∈ dom vol)
146145ralrimiva 3125 . . . 4 (𝜑 → ∀𝑧 ∈ ℝ (𝐹 “ (-∞(,)𝑧)) ∈ dom vol)
147 oveq2 7395 . . . . . . 7 (𝑧 = 𝑥 → (-∞(,)𝑧) = (-∞(,)𝑥))
148147imaeq2d 6031 . . . . . 6 (𝑧 = 𝑥 → (𝐹 “ (-∞(,)𝑧)) = (𝐹 “ (-∞(,)𝑥)))
149148eleq1d 2813 . . . . 5 (𝑧 = 𝑥 → ((𝐹 “ (-∞(,)𝑧)) ∈ dom vol ↔ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol))
150149cbvralvw 3215 . . . 4 (∀𝑧 ∈ ℝ (𝐹 “ (-∞(,)𝑧)) ∈ dom vol ↔ ∀𝑥 ∈ ℝ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
151146, 150sylib 218 . . 3 (𝜑 → ∀𝑥 ∈ ℝ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
152151r19.21bi 3229 . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
1531, 43, 31, 152ismbf2d 25541 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296   ciun 4955   class class class wbr 5107  ccnv 5637  dom cdm 5638  cima 5641  Fun wfun 6505  wf 6507  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  +crp 12951  (,)cioo 13306  (,]cioc 13307  volcvol 25364  MblFncmbf 25515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xadd 13073  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-xmet 21257  df-met 21258  df-ovol 25365  df-vol 25366  df-mbf 25520
This theorem is referenced by:  mbfaddlem  25561  mbfsup  25565
  Copyright terms: Public domain W3C validator