MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf3d Structured version   Visualization version   GIF version

Theorem ismbf3d 25562
Description: Simplified form of ismbfd 25547. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbf3d.1 (𝜑𝐹:𝐴⟶ℝ)
ismbf3d.2 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
Assertion
Ref Expression
ismbf3d (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ismbf3d
Dummy variables 𝑣 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismbf3d.1 . 2 (𝜑𝐹:𝐴⟶ℝ)
2 fimacnv 6713 . . . 4 (𝐹:𝐴⟶ℝ → (𝐹 “ ℝ) = 𝐴)
31, 2syl 17 . . 3 (𝜑 → (𝐹 “ ℝ) = 𝐴)
4 imaiun 7222 . . . . 5 (𝐹 𝑦 ∈ ℕ (-𝑦(,)+∞)) = 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞))
5 ioossre 13375 . . . . . . . . 9 (-𝑦(,)+∞) ⊆ ℝ
65rgenw 3049 . . . . . . . 8 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ
7 iunss 5012 . . . . . . . 8 ( 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ ↔ ∀𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ)
86, 7mpbir 231 . . . . . . 7 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ
9 renegcl 11492 . . . . . . . . . . 11 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
10 arch 12446 . . . . . . . . . . 11 (-𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ -𝑧 < 𝑦)
119, 10syl 17 . . . . . . . . . 10 (𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ -𝑧 < 𝑦)
12 simpl 482 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → 𝑧 ∈ ℝ)
1312biantrurd 532 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑦 < 𝑧 ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
14 nnre 12200 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
15 ltnegcon1 11686 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑧 < 𝑦 ↔ -𝑦 < 𝑧))
1614, 15sylan2 593 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑧 < 𝑦 ↔ -𝑦 < 𝑧))
1714adantl 481 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
1817renegcld 11612 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → -𝑦 ∈ ℝ)
1918rexrd 11231 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → -𝑦 ∈ ℝ*)
20 elioopnf 13411 . . . . . . . . . . . . 13 (-𝑦 ∈ ℝ* → (𝑧 ∈ (-𝑦(,)+∞) ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
2119, 20syl 17 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ (-𝑦(,)+∞) ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
2213, 16, 213bitr4d 311 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑧 < 𝑦𝑧 ∈ (-𝑦(,)+∞)))
2322rexbidva 3156 . . . . . . . . . 10 (𝑧 ∈ ℝ → (∃𝑦 ∈ ℕ -𝑧 < 𝑦 ↔ ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞)))
2411, 23mpbid 232 . . . . . . . . 9 (𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞))
25 eliun 4962 . . . . . . . . 9 (𝑧 𝑦 ∈ ℕ (-𝑦(,)+∞) ↔ ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞))
2624, 25sylibr 234 . . . . . . . 8 (𝑧 ∈ ℝ → 𝑧 𝑦 ∈ ℕ (-𝑦(,)+∞))
2726ssriv 3953 . . . . . . 7 ℝ ⊆ 𝑦 ∈ ℕ (-𝑦(,)+∞)
288, 27eqssi 3966 . . . . . 6 𝑦 ∈ ℕ (-𝑦(,)+∞) = ℝ
2928imaeq2i 6032 . . . . 5 (𝐹 𝑦 ∈ ℕ (-𝑦(,)+∞)) = (𝐹 “ ℝ)
304, 29eqtr3i 2755 . . . 4 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) = (𝐹 “ ℝ)
31 ismbf3d.2 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
3231ralrimiva 3126 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
3314renegcld 11612 . . . . . . 7 (𝑦 ∈ ℕ → -𝑦 ∈ ℝ)
34 oveq1 7397 . . . . . . . . . 10 (𝑥 = -𝑦 → (𝑥(,)+∞) = (-𝑦(,)+∞))
3534imaeq2d 6034 . . . . . . . . 9 (𝑥 = -𝑦 → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ (-𝑦(,)+∞)))
3635eleq1d 2814 . . . . . . . 8 (𝑥 = -𝑦 → ((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol))
3736rspccva 3590 . . . . . . 7 ((∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol ∧ -𝑦 ∈ ℝ) → (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
3832, 33, 37syl2an 596 . . . . . 6 ((𝜑𝑦 ∈ ℕ) → (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
3938ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
40 iunmbl 25461 . . . . 5 (∀𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol → 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
4139, 40syl 17 . . . 4 (𝜑 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
4230, 41eqeltrrid 2834 . . 3 (𝜑 → (𝐹 “ ℝ) ∈ dom vol)
433, 42eqeltrrd 2830 . 2 (𝜑𝐴 ∈ dom vol)
44 imaiun 7222 . . . . . . 7 (𝐹 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦)))) = 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦))))
45 eliun 4962 . . . . . . . . . 10 (𝑥 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) ↔ ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
46 3simpb 1149 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))))
47 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑧 ∈ ℝ)
48 nnrp 12970 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
4948ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑦 ∈ ℝ+)
5049rpreccld 13012 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (1 / 𝑦) ∈ ℝ+)
5147, 50ltsubrpd 13034 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑧 − (1 / 𝑦)) < 𝑧)
52 simprr 772 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ)
53 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
54 nnrecre 12235 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → (1 / 𝑦) ∈ ℝ)
55 resubcl 11493 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ (1 / 𝑦) ∈ ℝ) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
5653, 54, 55syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
5756adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
58 lelttr 11271 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑧) → 𝑥 < 𝑧))
5952, 57, 47, 58syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑧) → 𝑥 < 𝑧))
6051, 59mpan2d 694 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑥 ≤ (𝑧 − (1 / 𝑦)) → 𝑥 < 𝑧))
6160anassrs 467 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ≤ (𝑧 − (1 / 𝑦)) → 𝑥 < 𝑧))
6261imdistanda 571 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑥 ∈ ℝ ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
6346, 62syl5 34 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
64 mnfxr 11238 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
65 elioc2 13377 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
6664, 56, 65sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
67 rexr 11227 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
6867adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ*)
69 elioomnf 13412 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7068, 69syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7170adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7263, 66, 713imtr4d 294 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → 𝑥 ∈ (-∞(,)𝑧)))
7372rexlimdva 3135 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → 𝑥 ∈ (-∞(,)𝑧)))
7473, 70sylibd 239 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
75 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑥 ∈ ℝ)
7675adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ∈ ℝ)
7776mnfltd 13091 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → -∞ < 𝑥)
7856ad2ant2r 747 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
7954ad2antrl 728 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (1 / 𝑦) ∈ ℝ)
80 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑧 ∈ ℝ)
8180adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑧 ∈ ℝ)
82 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (1 / 𝑦) < (𝑧𝑥))
8379, 81, 76, 82ltsub13d 11791 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 < (𝑧 − (1 / 𝑦)))
8476, 78, 83ltled 11329 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ≤ (𝑧 − (1 / 𝑦)))
8566ad2ant2r 747 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
8676, 77, 84, 85mpbir3and 1343 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
8780, 75resubcld 11613 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → (𝑧𝑥) ∈ ℝ)
88 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑥 < 𝑧)
8975, 80posdifd 11772 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → (𝑥 < 𝑧 ↔ 0 < (𝑧𝑥)))
9088, 89mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 0 < (𝑧𝑥))
91 nnrecl 12447 . . . . . . . . . . . . . . 15 (((𝑧𝑥) ∈ ℝ ∧ 0 < (𝑧𝑥)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝑧𝑥))
9287, 90, 91syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝑧𝑥))
9386, 92reximddv 3150 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
9493ex 412 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ 𝑥 < 𝑧) → ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦)))))
9574, 94impbid 212 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
9695, 70bitr4d 282 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ 𝑥 ∈ (-∞(,)𝑧)))
9745, 96bitrid 283 . . . . . . . . 9 ((𝜑𝑧 ∈ ℝ) → (𝑥 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) ↔ 𝑥 ∈ (-∞(,)𝑧)))
9897eqrdv 2728 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) = (-∞(,)𝑧))
9998imaeq2d 6034 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → (𝐹 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦)))) = (𝐹 “ (-∞(,)𝑧)))
10044, 99eqtr3id 2779 . . . . . 6 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) = (𝐹 “ (-∞(,)𝑧)))
1011ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝐹:𝐴⟶ℝ)
102 ffun 6694 . . . . . . . . . . 11 (𝐹:𝐴⟶ℝ → Fun 𝐹)
103 funcnvcnv 6586 . . . . . . . . . . 11 (Fun 𝐹 → Fun 𝐹)
104 imadif 6603 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))))
105101, 102, 103, 1044syl 19 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))))
10664a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → -∞ ∈ ℝ*)
10756rexrd 11231 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) ∈ ℝ*)
108 pnfxr 11235 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
109108a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → +∞ ∈ ℝ*)
11056mnfltd 13091 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → -∞ < (𝑧 − (1 / 𝑦)))
11156ltpnfd 13088 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) < +∞)
112 df-ioc 13318 . . . . . . . . . . . . . . 15 (,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤𝑣)})
113 df-ioo 13317 . . . . . . . . . . . . . . 15 (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤 < 𝑣)})
114 xrltnle 11248 . . . . . . . . . . . . . . 15 (((𝑧 − (1 / 𝑦)) ∈ ℝ*𝑥 ∈ ℝ*) → ((𝑧 − (1 / 𝑦)) < 𝑥 ↔ ¬ 𝑥 ≤ (𝑧 − (1 / 𝑦))))
115 xrlelttr 13123 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < +∞) → 𝑥 < +∞))
116 xrlttr 13107 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ*𝑥 ∈ ℝ*) → ((-∞ < (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑥) → -∞ < 𝑥))
117112, 113, 114, 113, 115, 116ixxun 13329 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < +∞)) → ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,)+∞))
118106, 107, 109, 110, 111, 117syl32anc 1380 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,)+∞))
119 uncom 4124 . . . . . . . . . . . . 13 ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦))))
120 ioomax 13390 . . . . . . . . . . . . 13 (-∞(,)+∞) = ℝ
121118, 119, 1203eqtr3g 2788 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ)
122 ioossre 13375 . . . . . . . . . . . . 13 ((𝑧 − (1 / 𝑦))(,)+∞) ⊆ ℝ
123 incom 4175 . . . . . . . . . . . . . 14 (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞))
124112, 113, 114ixxdisj 13328 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
12564, 108, 124mp3an13 1454 . . . . . . . . . . . . . . 15 ((𝑧 − (1 / 𝑦)) ∈ ℝ* → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
126107, 125syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
127123, 126eqtrid 2777 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ∅)
128 uneqdifeq 4459 . . . . . . . . . . . . 13 ((((𝑧 − (1 / 𝑦))(,)+∞) ⊆ ℝ ∧ (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ∅) → ((((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ ↔ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦)))))
129122, 127, 128sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ ↔ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦)))))
130121, 129mpbid 232 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦))))
131130imaeq2d 6034 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))))
132105, 131eqtr3d 2767 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) = (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))))
13342ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ ℝ) ∈ dom vol)
134 oveq1 7397 . . . . . . . . . . . . 13 (𝑥 = (𝑧 − (1 / 𝑦)) → (𝑥(,)+∞) = ((𝑧 − (1 / 𝑦))(,)+∞))
135134imaeq2d 6034 . . . . . . . . . . . 12 (𝑥 = (𝑧 − (1 / 𝑦)) → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)))
136135eleq1d 2814 . . . . . . . . . . 11 (𝑥 = (𝑧 − (1 / 𝑦)) → ((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol))
13732ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
138136, 137, 56rspcdva 3592 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol)
139 difmbl 25451 . . . . . . . . . 10 (((𝐹 “ ℝ) ∈ dom vol ∧ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) ∈ dom vol)
140133, 138, 139syl2anc 584 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) ∈ dom vol)
141132, 140eqeltrrd 2830 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
142141ralrimiva 3126 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → ∀𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
143 iunmbl 25461 . . . . . . 7 (∀𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
144142, 143syl 17 . . . . . 6 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
145100, 144eqeltrrd 2830 . . . . 5 ((𝜑𝑧 ∈ ℝ) → (𝐹 “ (-∞(,)𝑧)) ∈ dom vol)
146145ralrimiva 3126 . . . 4 (𝜑 → ∀𝑧 ∈ ℝ (𝐹 “ (-∞(,)𝑧)) ∈ dom vol)
147 oveq2 7398 . . . . . . 7 (𝑧 = 𝑥 → (-∞(,)𝑧) = (-∞(,)𝑥))
148147imaeq2d 6034 . . . . . 6 (𝑧 = 𝑥 → (𝐹 “ (-∞(,)𝑧)) = (𝐹 “ (-∞(,)𝑥)))
149148eleq1d 2814 . . . . 5 (𝑧 = 𝑥 → ((𝐹 “ (-∞(,)𝑧)) ∈ dom vol ↔ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol))
150149cbvralvw 3216 . . . 4 (∀𝑧 ∈ ℝ (𝐹 “ (-∞(,)𝑧)) ∈ dom vol ↔ ∀𝑥 ∈ ℝ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
151146, 150sylib 218 . . 3 (𝜑 → ∀𝑥 ∈ ℝ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
152151r19.21bi 3230 . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
1531, 43, 31, 152ismbf2d 25548 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299   ciun 4958   class class class wbr 5110  ccnv 5640  dom cdm 5641  cima 5644  Fun wfun 6508  wf 6510  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  +crp 12958  (,)cioo 13313  (,]cioc 13314  volcvol 25371  MblFncmbf 25522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xadd 13080  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-xmet 21264  df-met 21265  df-ovol 25372  df-vol 25373  df-mbf 25527
This theorem is referenced by:  mbfaddlem  25568  mbfsup  25572
  Copyright terms: Public domain W3C validator