Step | Hyp | Ref
| Expression |
1 | | ismbf3d.1 |
. 2
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
2 | | fimacnv 6597 |
. . . 4
⊢ (𝐹:𝐴⟶ℝ → (◡𝐹 “ ℝ) = 𝐴) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → (◡𝐹 “ ℝ) = 𝐴) |
4 | | imaiun 6759 |
. . . . 5
⊢ (◡𝐹 “ ∪
𝑦 ∈ ℕ (-𝑦(,)+∞)) = ∪ 𝑦 ∈ ℕ (◡𝐹 “ (-𝑦(,)+∞)) |
5 | | ioossre 12524 |
. . . . . . . . 9
⊢ (-𝑦(,)+∞) ⊆
ℝ |
6 | 5 | rgenw 3134 |
. . . . . . . 8
⊢
∀𝑦 ∈
ℕ (-𝑦(,)+∞)
⊆ ℝ |
7 | | iunss 4782 |
. . . . . . . 8
⊢ (∪ 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ ↔
∀𝑦 ∈ ℕ
(-𝑦(,)+∞) ⊆
ℝ) |
8 | 6, 7 | mpbir 223 |
. . . . . . 7
⊢ ∪ 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ |
9 | | renegcl 10666 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℝ → -𝑧 ∈
ℝ) |
10 | | arch 11616 |
. . . . . . . . . . 11
⊢ (-𝑧 ∈ ℝ →
∃𝑦 ∈ ℕ
-𝑧 < 𝑦) |
11 | 9, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ →
∃𝑦 ∈ ℕ
-𝑧 < 𝑦) |
12 | | simpl 476 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → 𝑧 ∈
ℝ) |
13 | 12 | biantrurd 530 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑦 < 𝑧 ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧))) |
14 | | nnre 11359 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
15 | | ltnegcon1 10854 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑧 < 𝑦 ↔ -𝑦 < 𝑧)) |
16 | 14, 15 | sylan2 588 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑧 < 𝑦 ↔ -𝑦 < 𝑧)) |
17 | 14 | adantl 475 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈
ℝ) |
18 | 17 | renegcld 10782 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → -𝑦 ∈
ℝ) |
19 | 18 | rexrd 10407 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → -𝑦 ∈
ℝ*) |
20 | | elioopnf 12557 |
. . . . . . . . . . . . 13
⊢ (-𝑦 ∈ ℝ*
→ (𝑧 ∈ (-𝑦(,)+∞) ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧))) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ (-𝑦(,)+∞) ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧))) |
22 | 13, 16, 21 | 3bitr4d 303 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑧 < 𝑦 ↔ 𝑧 ∈ (-𝑦(,)+∞))) |
23 | 22 | rexbidva 3260 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ℝ →
(∃𝑦 ∈ ℕ
-𝑧 < 𝑦 ↔ ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞))) |
24 | 11, 23 | mpbid 224 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℝ →
∃𝑦 ∈ ℕ
𝑧 ∈ (-𝑦(,)+∞)) |
25 | | eliun 4745 |
. . . . . . . . 9
⊢ (𝑧 ∈ ∪ 𝑦 ∈ ℕ (-𝑦(,)+∞) ↔ ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞)) |
26 | 24, 25 | sylibr 226 |
. . . . . . . 8
⊢ (𝑧 ∈ ℝ → 𝑧 ∈ ∪ 𝑦 ∈ ℕ (-𝑦(,)+∞)) |
27 | 26 | ssriv 3832 |
. . . . . . 7
⊢ ℝ
⊆ ∪ 𝑦 ∈ ℕ (-𝑦(,)+∞) |
28 | 8, 27 | eqssi 3844 |
. . . . . 6
⊢ ∪ 𝑦 ∈ ℕ (-𝑦(,)+∞) = ℝ |
29 | 28 | imaeq2i 5706 |
. . . . 5
⊢ (◡𝐹 “ ∪
𝑦 ∈ ℕ (-𝑦(,)+∞)) = (◡𝐹 “ ℝ) |
30 | 4, 29 | eqtr3i 2852 |
. . . 4
⊢ ∪ 𝑦 ∈ ℕ (◡𝐹 “ (-𝑦(,)+∞)) = (◡𝐹 “ ℝ) |
31 | | ismbf3d.2 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (𝑥(,)+∞)) ∈ dom
vol) |
32 | 31 | ralrimiva 3176 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ ℝ (◡𝐹 “ (𝑥(,)+∞)) ∈ dom
vol) |
33 | 14 | renegcld 10782 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → -𝑦 ∈
ℝ) |
34 | | oveq1 6913 |
. . . . . . . . . 10
⊢ (𝑥 = -𝑦 → (𝑥(,)+∞) = (-𝑦(,)+∞)) |
35 | 34 | imaeq2d 5708 |
. . . . . . . . 9
⊢ (𝑥 = -𝑦 → (◡𝐹 “ (𝑥(,)+∞)) = (◡𝐹 “ (-𝑦(,)+∞))) |
36 | 35 | eleq1d 2892 |
. . . . . . . 8
⊢ (𝑥 = -𝑦 → ((◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (◡𝐹 “ (-𝑦(,)+∞)) ∈ dom
vol)) |
37 | 36 | rspccva 3526 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ (◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol ∧ -𝑦 ∈ ℝ) → (◡𝐹 “ (-𝑦(,)+∞)) ∈ dom
vol) |
38 | 32, 33, 37 | syl2an 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ) → (◡𝐹 “ (-𝑦(,)+∞)) ∈ dom
vol) |
39 | 38 | ralrimiva 3176 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ ℕ (◡𝐹 “ (-𝑦(,)+∞)) ∈ dom
vol) |
40 | | iunmbl 23720 |
. . . . 5
⊢
(∀𝑦 ∈
ℕ (◡𝐹 “ (-𝑦(,)+∞)) ∈ dom vol → ∪ 𝑦 ∈ ℕ (◡𝐹 “ (-𝑦(,)+∞)) ∈ dom
vol) |
41 | 39, 40 | syl 17 |
. . . 4
⊢ (𝜑 → ∪ 𝑦 ∈ ℕ (◡𝐹 “ (-𝑦(,)+∞)) ∈ dom
vol) |
42 | 30, 41 | syl5eqelr 2912 |
. . 3
⊢ (𝜑 → (◡𝐹 “ ℝ) ∈ dom
vol) |
43 | 3, 42 | eqeltrrd 2908 |
. 2
⊢ (𝜑 → 𝐴 ∈ dom vol) |
44 | | imaiun 6759 |
. . . . . . 7
⊢ (◡𝐹 “ ∪
𝑦 ∈ ℕ
(-∞(,](𝑧 − (1 /
𝑦)))) = ∪ 𝑦 ∈ ℕ (◡𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) |
45 | | eliun 4745 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ∪ 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) ↔ ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦)))) |
46 | | 3simpb 1186 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ -∞
< 𝑥 ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦)))) |
47 | | simplr 787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑧 ∈ ℝ) |
48 | | nnrp 12126 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ+) |
49 | 48 | ad2antrl 721 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑦 ∈ ℝ+) |
50 | 49 | rpreccld 12167 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (1 / 𝑦) ∈
ℝ+) |
51 | 47, 50 | ltsubrpd 12189 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑧 − (1 / 𝑦)) < 𝑧) |
52 | | simprr 791 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ) |
53 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) |
54 | | nnrecre 11394 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℕ → (1 /
𝑦) ∈
ℝ) |
55 | | resubcl 10667 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℝ ∧ (1 / 𝑦) ∈ ℝ) → (𝑧 − (1 / 𝑦)) ∈ ℝ) |
56 | 53, 54, 55 | syl2an 591 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) ∈ ℝ) |
57 | 56 | adantrr 710 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑧 − (1 / 𝑦)) ∈ ℝ) |
58 | | lelttr 10448 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℝ ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑧) → 𝑥 < 𝑧)) |
59 | 52, 57, 47, 58 | syl3anc 1496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑧) → 𝑥 < 𝑧)) |
60 | 51, 59 | mpan2d 687 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑥 ≤ (𝑧 − (1 / 𝑦)) → 𝑥 < 𝑧)) |
61 | 60 | anassrs 461 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ≤ (𝑧 − (1 / 𝑦)) → 𝑥 < 𝑧)) |
62 | 61 | imdistanda 569 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑥 ∈ ℝ ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧))) |
63 | 46, 62 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧))) |
64 | | mnfxr 10415 |
. . . . . . . . . . . . . . . 16
⊢ -∞
∈ ℝ* |
65 | | elioc2 12525 |
. . . . . . . . . . . . . . . 16
⊢
((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))))) |
66 | 64, 56, 65 | sylancr 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))))) |
67 | | rexr 10403 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ ℝ → 𝑧 ∈
ℝ*) |
68 | 67 | adantl 475 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ*) |
69 | | elioomnf 12558 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ℝ*
→ (𝑥 ∈
(-∞(,)𝑧) ↔
(𝑥 ∈ ℝ ∧
𝑥 < 𝑧))) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧))) |
71 | 70 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧))) |
72 | 63, 66, 71 | 3imtr4d 286 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → 𝑥 ∈ (-∞(,)𝑧))) |
73 | 72 | rexlimdva 3241 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → 𝑥 ∈ (-∞(,)𝑧))) |
74 | 73, 70 | sylibd 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧))) |
75 | | simprl 789 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑥 ∈ ℝ) |
76 | 75 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧 − 𝑥))) → 𝑥 ∈ ℝ) |
77 | | mnflt 12244 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℝ → -∞
< 𝑥) |
78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧 − 𝑥))) → -∞ < 𝑥) |
79 | 56 | ad2ant2r 755 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧 − 𝑥))) → (𝑧 − (1 / 𝑦)) ∈ ℝ) |
80 | 54 | ad2antrl 721 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧 − 𝑥))) → (1 / 𝑦) ∈ ℝ) |
81 | | simplr 787 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑧 ∈ ℝ) |
82 | 81 | adantr 474 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧 − 𝑥))) → 𝑧 ∈ ℝ) |
83 | | simprr 791 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧 − 𝑥))) → (1 / 𝑦) < (𝑧 − 𝑥)) |
84 | 80, 82, 76, 83 | ltsub13d 10959 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧 − 𝑥))) → 𝑥 < (𝑧 − (1 / 𝑦))) |
85 | 76, 79, 84 | ltled 10505 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧 − 𝑥))) → 𝑥 ≤ (𝑧 − (1 / 𝑦))) |
86 | 66 | ad2ant2r 755 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧 − 𝑥))) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))))) |
87 | 76, 78, 85, 86 | mpbir3and 1448 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧 − 𝑥))) → 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦)))) |
88 | 81, 75 | resubcld 10783 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → (𝑧 − 𝑥) ∈ ℝ) |
89 | | simprr 791 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑥 < 𝑧) |
90 | 75, 81 | posdifd 10940 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → (𝑥 < 𝑧 ↔ 0 < (𝑧 − 𝑥))) |
91 | 89, 90 | mpbid 224 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 0 < (𝑧 − 𝑥)) |
92 | | nnrecl 11617 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 − 𝑥) ∈ ℝ ∧ 0 < (𝑧 − 𝑥)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝑧 − 𝑥)) |
93 | 88, 91, 92 | syl2anc 581 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝑧 − 𝑥)) |
94 | 87, 93 | reximddv 3227 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦)))) |
95 | 94 | ex 403 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ 𝑥 < 𝑧) → ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))) |
96 | 74, 95 | impbid 204 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧))) |
97 | 96, 70 | bitr4d 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ 𝑥 ∈ (-∞(,)𝑧))) |
98 | 45, 97 | syl5bb 275 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (𝑥 ∈ ∪
𝑦 ∈ ℕ
(-∞(,](𝑧 − (1 /
𝑦))) ↔ 𝑥 ∈ (-∞(,)𝑧))) |
99 | 98 | eqrdv 2824 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∪ 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) = (-∞(,)𝑧)) |
100 | 99 | imaeq2d 5708 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (◡𝐹 “ ∪
𝑦 ∈ ℕ
(-∞(,](𝑧 − (1 /
𝑦)))) = (◡𝐹 “ (-∞(,)𝑧))) |
101 | 44, 100 | syl5eqr 2876 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∪ 𝑦 ∈ ℕ (◡𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) = (◡𝐹 “ (-∞(,)𝑧))) |
102 | 1 | ad2antrr 719 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝐹:𝐴⟶ℝ) |
103 | | ffun 6282 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶ℝ → Fun 𝐹) |
104 | | funcnvcnv 6190 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → Fun ◡◡𝐹) |
105 | | imadif 6207 |
. . . . . . . . . . 11
⊢ (Fun
◡◡𝐹 → (◡𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)))) |
106 | 102, 103,
104, 105 | 4syl 19 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (◡𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)))) |
107 | 64 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → -∞ ∈
ℝ*) |
108 | 56 | rexrd 10407 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) ∈
ℝ*) |
109 | | pnfxr 10411 |
. . . . . . . . . . . . . . 15
⊢ +∞
∈ ℝ* |
110 | 109 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → +∞ ∈
ℝ*) |
111 | | mnflt 12244 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 − (1 / 𝑦)) ∈ ℝ → -∞ < (𝑧 − (1 / 𝑦))) |
112 | 56, 111 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → -∞ < (𝑧 − (1 / 𝑦))) |
113 | | ltpnf 12241 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 − (1 / 𝑦)) ∈ ℝ → (𝑧 − (1 / 𝑦)) < +∞) |
114 | 56, 113 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) < +∞) |
115 | | df-ioc 12469 |
. . . . . . . . . . . . . . 15
⊢ (,] =
(𝑢 ∈
ℝ*, 𝑣
∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤 ∧ 𝑤 ≤ 𝑣)}) |
116 | | df-ioo 12468 |
. . . . . . . . . . . . . . 15
⊢ (,) =
(𝑢 ∈
ℝ*, 𝑣
∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤 ∧ 𝑤 < 𝑣)}) |
117 | | xrltnle 10425 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ 𝑥 ∈ ℝ*)
→ ((𝑧 − (1 /
𝑦)) < 𝑥 ↔ ¬ 𝑥 ≤ (𝑧 − (1 / 𝑦)))) |
118 | | xrlelttr 12276 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ*
∧ (𝑧 − (1 / 𝑦)) ∈ ℝ*
∧ +∞ ∈ ℝ*) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < +∞) → 𝑥 < +∞)) |
119 | | xrlttr 12260 |
. . . . . . . . . . . . . . 15
⊢
((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ 𝑥 ∈ ℝ*)
→ ((-∞ < (𝑧
− (1 / 𝑦)) ∧
(𝑧 − (1 / 𝑦)) < 𝑥) → -∞ < 𝑥)) |
120 | 115, 116,
117, 116, 118, 119 | ixxun 12480 |
. . . . . . . . . . . . . 14
⊢
(((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞
∈ ℝ*) ∧ (-∞ < (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < +∞)) → ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) =
(-∞(,)+∞)) |
121 | 107, 108,
110, 112, 114, 120 | syl32anc 1503 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) =
(-∞(,)+∞)) |
122 | | uncom 3985 |
. . . . . . . . . . . . 13
⊢
((-∞(,](𝑧
− (1 / 𝑦))) ∪
((𝑧 − (1 / 𝑦))(,)+∞)) = (((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) |
123 | | ioomax 12537 |
. . . . . . . . . . . . 13
⊢
(-∞(,)+∞) = ℝ |
124 | 121, 122,
123 | 3eqtr3g 2885 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ) |
125 | | ioossre 12524 |
. . . . . . . . . . . . 13
⊢ ((𝑧 − (1 / 𝑦))(,)+∞) ⊆
ℝ |
126 | | incom 4033 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) |
127 | 115, 116,
117 | ixxdisj 12479 |
. . . . . . . . . . . . . . . 16
⊢
((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞
∈ ℝ*) → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅) |
128 | 64, 109, 127 | mp3an13 1582 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 − (1 / 𝑦)) ∈ ℝ* →
((-∞(,](𝑧 − (1
/ 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅) |
129 | 108, 128 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅) |
130 | 126, 129 | syl5eq 2874 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ∅) |
131 | | uneqdifeq 4281 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 − (1 / 𝑦))(,)+∞) ⊆ ℝ ∧ (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ∅) → ((((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ ↔ (ℝ ∖
((𝑧 − (1 / 𝑦))(,)+∞)) =
(-∞(,](𝑧 − (1 /
𝑦))))) |
132 | 125, 130,
131 | sylancr 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ ↔ (ℝ ∖
((𝑧 − (1 / 𝑦))(,)+∞)) =
(-∞(,](𝑧 − (1 /
𝑦))))) |
133 | 124, 132 | mpbid 224 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (ℝ ∖
((𝑧 − (1 / 𝑦))(,)+∞)) =
(-∞(,](𝑧 − (1 /
𝑦)))) |
134 | 133 | imaeq2d 5708 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (◡𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = (◡𝐹 “ (-∞(,](𝑧 − (1 / 𝑦))))) |
135 | 106, 134 | eqtr3d 2864 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) = (◡𝐹 “ (-∞(,](𝑧 − (1 / 𝑦))))) |
136 | 42 | ad2antrr 719 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (◡𝐹 “ ℝ) ∈ dom
vol) |
137 | | oveq1 6913 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑧 − (1 / 𝑦)) → (𝑥(,)+∞) = ((𝑧 − (1 / 𝑦))(,)+∞)) |
138 | 137 | imaeq2d 5708 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑧 − (1 / 𝑦)) → (◡𝐹 “ (𝑥(,)+∞)) = (◡𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) |
139 | 138 | eleq1d 2892 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑧 − (1 / 𝑦)) → ((◡𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (◡𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom
vol)) |
140 | 32 | ad2antrr 719 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ∀𝑥 ∈ ℝ (◡𝐹 “ (𝑥(,)+∞)) ∈ dom
vol) |
141 | 139, 140,
56 | rspcdva 3533 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (◡𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom
vol) |
142 | | difmbl 23710 |
. . . . . . . . . 10
⊢ (((◡𝐹 “ ℝ) ∈ dom vol ∧
(◡𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol) →
((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) ∈ dom
vol) |
143 | 136, 141,
142 | syl2anc 581 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) ∈ dom
vol) |
144 | 135, 143 | eqeltrrd 2908 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (◡𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol) |
145 | 144 | ralrimiva 3176 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∀𝑦 ∈ ℕ (◡𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol) |
146 | | iunmbl 23720 |
. . . . . . 7
⊢
(∀𝑦 ∈
ℕ (◡𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol → ∪ 𝑦 ∈ ℕ (◡𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol) |
147 | 145, 146 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → ∪ 𝑦 ∈ ℕ (◡𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol) |
148 | 101, 147 | eqeltrrd 2908 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑧)) ∈ dom vol) |
149 | 148 | ralrimiva 3176 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ ℝ (◡𝐹 “ (-∞(,)𝑧)) ∈ dom vol) |
150 | | oveq2 6914 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (-∞(,)𝑧) = (-∞(,)𝑥)) |
151 | 150 | imaeq2d 5708 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (◡𝐹 “ (-∞(,)𝑧)) = (◡𝐹 “ (-∞(,)𝑥))) |
152 | 151 | eleq1d 2892 |
. . . . 5
⊢ (𝑧 = 𝑥 → ((◡𝐹 “ (-∞(,)𝑧)) ∈ dom vol ↔ (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol)) |
153 | 152 | cbvralv 3384 |
. . . 4
⊢
(∀𝑧 ∈
ℝ (◡𝐹 “ (-∞(,)𝑧)) ∈ dom vol ↔ ∀𝑥 ∈ ℝ (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
154 | 149, 153 | sylib 210 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
155 | 154 | r19.21bi 3142 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑥)) ∈ dom vol) |
156 | 1, 43, 31, 155 | ismbf2d 23807 |
1
⊢ (𝜑 → 𝐹 ∈ MblFn) |