MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf3d Structured version   Visualization version   GIF version

Theorem ismbf3d 25583
Description: Simplified form of ismbfd 25568. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbf3d.1 (𝜑𝐹:𝐴⟶ℝ)
ismbf3d.2 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
Assertion
Ref Expression
ismbf3d (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ismbf3d
Dummy variables 𝑣 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismbf3d.1 . 2 (𝜑𝐹:𝐴⟶ℝ)
2 fimacnv 6678 . . . 4 (𝐹:𝐴⟶ℝ → (𝐹 “ ℝ) = 𝐴)
31, 2syl 17 . . 3 (𝜑 → (𝐹 “ ℝ) = 𝐴)
4 imaiun 7185 . . . . 5 (𝐹 𝑦 ∈ ℕ (-𝑦(,)+∞)) = 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞))
5 ioossre 13309 . . . . . . . . 9 (-𝑦(,)+∞) ⊆ ℝ
65rgenw 3052 . . . . . . . 8 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ
7 iunss 4995 . . . . . . . 8 ( 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ ↔ ∀𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ)
86, 7mpbir 231 . . . . . . 7 𝑦 ∈ ℕ (-𝑦(,)+∞) ⊆ ℝ
9 renegcl 11431 . . . . . . . . . . 11 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
10 arch 12385 . . . . . . . . . . 11 (-𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ -𝑧 < 𝑦)
119, 10syl 17 . . . . . . . . . 10 (𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ -𝑧 < 𝑦)
12 simpl 482 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → 𝑧 ∈ ℝ)
1312biantrurd 532 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑦 < 𝑧 ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
14 nnre 12139 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
15 ltnegcon1 11625 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑧 < 𝑦 ↔ -𝑦 < 𝑧))
1614, 15sylan2 593 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑧 < 𝑦 ↔ -𝑦 < 𝑧))
1714adantl 481 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
1817renegcld 11551 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → -𝑦 ∈ ℝ)
1918rexrd 11169 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → -𝑦 ∈ ℝ*)
20 elioopnf 13345 . . . . . . . . . . . . 13 (-𝑦 ∈ ℝ* → (𝑧 ∈ (-𝑦(,)+∞) ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
2119, 20syl 17 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ (-𝑦(,)+∞) ↔ (𝑧 ∈ ℝ ∧ -𝑦 < 𝑧)))
2213, 16, 213bitr4d 311 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℕ) → (-𝑧 < 𝑦𝑧 ∈ (-𝑦(,)+∞)))
2322rexbidva 3155 . . . . . . . . . 10 (𝑧 ∈ ℝ → (∃𝑦 ∈ ℕ -𝑧 < 𝑦 ↔ ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞)))
2411, 23mpbid 232 . . . . . . . . 9 (𝑧 ∈ ℝ → ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞))
25 eliun 4945 . . . . . . . . 9 (𝑧 𝑦 ∈ ℕ (-𝑦(,)+∞) ↔ ∃𝑦 ∈ ℕ 𝑧 ∈ (-𝑦(,)+∞))
2624, 25sylibr 234 . . . . . . . 8 (𝑧 ∈ ℝ → 𝑧 𝑦 ∈ ℕ (-𝑦(,)+∞))
2726ssriv 3934 . . . . . . 7 ℝ ⊆ 𝑦 ∈ ℕ (-𝑦(,)+∞)
288, 27eqssi 3947 . . . . . 6 𝑦 ∈ ℕ (-𝑦(,)+∞) = ℝ
2928imaeq2i 6011 . . . . 5 (𝐹 𝑦 ∈ ℕ (-𝑦(,)+∞)) = (𝐹 “ ℝ)
304, 29eqtr3i 2758 . . . 4 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) = (𝐹 “ ℝ)
31 ismbf3d.2 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
3231ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
3314renegcld 11551 . . . . . . 7 (𝑦 ∈ ℕ → -𝑦 ∈ ℝ)
34 oveq1 7359 . . . . . . . . . 10 (𝑥 = -𝑦 → (𝑥(,)+∞) = (-𝑦(,)+∞))
3534imaeq2d 6013 . . . . . . . . 9 (𝑥 = -𝑦 → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ (-𝑦(,)+∞)))
3635eleq1d 2818 . . . . . . . 8 (𝑥 = -𝑦 → ((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol))
3736rspccva 3572 . . . . . . 7 ((∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol ∧ -𝑦 ∈ ℝ) → (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
3832, 33, 37syl2an 596 . . . . . 6 ((𝜑𝑦 ∈ ℕ) → (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
3938ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
40 iunmbl 25482 . . . . 5 (∀𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol → 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
4139, 40syl 17 . . . 4 (𝜑 𝑦 ∈ ℕ (𝐹 “ (-𝑦(,)+∞)) ∈ dom vol)
4230, 41eqeltrrid 2838 . . 3 (𝜑 → (𝐹 “ ℝ) ∈ dom vol)
433, 42eqeltrrd 2834 . 2 (𝜑𝐴 ∈ dom vol)
44 imaiun 7185 . . . . . . 7 (𝐹 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦)))) = 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦))))
45 eliun 4945 . . . . . . . . . 10 (𝑥 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) ↔ ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
46 3simpb 1149 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))))
47 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑧 ∈ ℝ)
48 nnrp 12904 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
4948ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑦 ∈ ℝ+)
5049rpreccld 12946 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (1 / 𝑦) ∈ ℝ+)
5147, 50ltsubrpd 12968 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑧 − (1 / 𝑦)) < 𝑧)
52 simprr 772 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → 𝑥 ∈ ℝ)
53 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
54 nnrecre 12174 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → (1 / 𝑦) ∈ ℝ)
55 resubcl 11432 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ (1 / 𝑦) ∈ ℝ) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
5653, 54, 55syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
5756adantrr 717 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
58 lelttr 11210 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑧) → 𝑥 < 𝑧))
5952, 57, 47, 58syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑧) → 𝑥 < 𝑧))
6051, 59mpan2d 694 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ℝ) ∧ (𝑦 ∈ ℕ ∧ 𝑥 ∈ ℝ)) → (𝑥 ≤ (𝑧 − (1 / 𝑦)) → 𝑥 < 𝑧))
6160anassrs 467 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑥 ≤ (𝑧 − (1 / 𝑦)) → 𝑥 < 𝑧))
6261imdistanda 571 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑥 ∈ ℝ ∧ 𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
6346, 62syl5 34 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
64 mnfxr 11176 . . . . . . . . . . . . . . . 16 -∞ ∈ ℝ*
65 elioc2 13311 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
6664, 56, 65sylancr 587 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
67 rexr 11165 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
6867adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ*)
69 elioomnf 13346 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7068, 69syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7170adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,)𝑧) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
7263, 66, 713imtr4d 294 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → 𝑥 ∈ (-∞(,)𝑧)))
7372rexlimdva 3134 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → 𝑥 ∈ (-∞(,)𝑧)))
7473, 70sylibd 239 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) → (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
75 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑥 ∈ ℝ)
7675adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ∈ ℝ)
7776mnfltd 13025 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → -∞ < 𝑥)
7856ad2ant2r 747 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (𝑧 − (1 / 𝑦)) ∈ ℝ)
7954ad2antrl 728 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (1 / 𝑦) ∈ ℝ)
80 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑧 ∈ ℝ)
8180adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑧 ∈ ℝ)
82 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (1 / 𝑦) < (𝑧𝑥))
8379, 81, 76, 82ltsub13d 11730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 < (𝑧 − (1 / 𝑦)))
8476, 78, 83ltled 11268 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ≤ (𝑧 − (1 / 𝑦)))
8566ad2ant2r 747 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → (𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ -∞ < 𝑥𝑥 ≤ (𝑧 − (1 / 𝑦)))))
8676, 77, 84, 85mpbir3and 1343 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) ∧ (𝑦 ∈ ℕ ∧ (1 / 𝑦) < (𝑧𝑥))) → 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
8780, 75resubcld 11552 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → (𝑧𝑥) ∈ ℝ)
88 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 𝑥 < 𝑧)
8975, 80posdifd 11711 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → (𝑥 < 𝑧 ↔ 0 < (𝑧𝑥)))
9088, 89mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → 0 < (𝑧𝑥))
91 nnrecl 12386 . . . . . . . . . . . . . . 15 (((𝑧𝑥) ∈ ℝ ∧ 0 < (𝑧𝑥)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝑧𝑥))
9287, 90, 91syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → ∃𝑦 ∈ ℕ (1 / 𝑦) < (𝑧𝑥))
9386, 92reximddv 3149 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)) → ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))))
9493ex 412 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℝ) → ((𝑥 ∈ ℝ ∧ 𝑥 < 𝑧) → ∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦)))))
9574, 94impbid 212 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝑧)))
9695, 70bitr4d 282 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℝ) → (∃𝑦 ∈ ℕ 𝑥 ∈ (-∞(,](𝑧 − (1 / 𝑦))) ↔ 𝑥 ∈ (-∞(,)𝑧)))
9745, 96bitrid 283 . . . . . . . . 9 ((𝜑𝑧 ∈ ℝ) → (𝑥 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) ↔ 𝑥 ∈ (-∞(,)𝑧)))
9897eqrdv 2731 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦))) = (-∞(,)𝑧))
9998imaeq2d 6013 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → (𝐹 𝑦 ∈ ℕ (-∞(,](𝑧 − (1 / 𝑦)))) = (𝐹 “ (-∞(,)𝑧)))
10044, 99eqtr3id 2782 . . . . . 6 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) = (𝐹 “ (-∞(,)𝑧)))
1011ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → 𝐹:𝐴⟶ℝ)
102 ffun 6659 . . . . . . . . . . 11 (𝐹:𝐴⟶ℝ → Fun 𝐹)
103 funcnvcnv 6553 . . . . . . . . . . 11 (Fun 𝐹 → Fun 𝐹)
104 imadif 6570 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))))
105101, 102, 103, 1044syl 19 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))))
10664a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → -∞ ∈ ℝ*)
10756rexrd 11169 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) ∈ ℝ*)
108 pnfxr 11173 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
109108a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → +∞ ∈ ℝ*)
11056mnfltd 13025 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → -∞ < (𝑧 − (1 / 𝑦)))
11156ltpnfd 13022 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝑧 − (1 / 𝑦)) < +∞)
112 df-ioc 13252 . . . . . . . . . . . . . . 15 (,] = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤𝑣)})
113 df-ioo 13251 . . . . . . . . . . . . . . 15 (,) = (𝑢 ∈ ℝ*, 𝑣 ∈ ℝ* ↦ {𝑤 ∈ ℝ* ∣ (𝑢 < 𝑤𝑤 < 𝑣)})
114 xrltnle 11186 . . . . . . . . . . . . . . 15 (((𝑧 − (1 / 𝑦)) ∈ ℝ*𝑥 ∈ ℝ*) → ((𝑧 − (1 / 𝑦)) < 𝑥 ↔ ¬ 𝑥 ≤ (𝑧 − (1 / 𝑦))))
115 xrlelttr 13057 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑥 ≤ (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < +∞) → 𝑥 < +∞))
116 xrlttr 13041 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ*𝑥 ∈ ℝ*) → ((-∞ < (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < 𝑥) → -∞ < 𝑥))
117112, 113, 114, 113, 115, 116ixxun 13263 . . . . . . . . . . . . . 14 (((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < (𝑧 − (1 / 𝑦)) ∧ (𝑧 − (1 / 𝑦)) < +∞)) → ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,)+∞))
118106, 107, 109, 110, 111, 117syl32anc 1380 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,)+∞))
119 uncom 4107 . . . . . . . . . . . . 13 ((-∞(,](𝑧 − (1 / 𝑦))) ∪ ((𝑧 − (1 / 𝑦))(,)+∞)) = (((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦))))
120 ioomax 13324 . . . . . . . . . . . . 13 (-∞(,)+∞) = ℝ
121118, 119, 1203eqtr3g 2791 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ)
122 ioossre 13309 . . . . . . . . . . . . 13 ((𝑧 − (1 / 𝑦))(,)+∞) ⊆ ℝ
123 incom 4158 . . . . . . . . . . . . . 14 (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞))
124112, 113, 114ixxdisj 13262 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ (𝑧 − (1 / 𝑦)) ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
12564, 108, 124mp3an13 1454 . . . . . . . . . . . . . . 15 ((𝑧 − (1 / 𝑦)) ∈ ℝ* → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
126107, 125syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((-∞(,](𝑧 − (1 / 𝑦))) ∩ ((𝑧 − (1 / 𝑦))(,)+∞)) = ∅)
127123, 126eqtrid 2780 . . . . . . . . . . . . 13 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ∅)
128 uneqdifeq 4442 . . . . . . . . . . . . 13 ((((𝑧 − (1 / 𝑦))(,)+∞) ⊆ ℝ ∧ (((𝑧 − (1 / 𝑦))(,)+∞) ∩ (-∞(,](𝑧 − (1 / 𝑦)))) = ∅) → ((((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ ↔ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦)))))
129122, 127, 128sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((((𝑧 − (1 / 𝑦))(,)+∞) ∪ (-∞(,](𝑧 − (1 / 𝑦)))) = ℝ ↔ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦)))))
130121, 129mpbid 232 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞)) = (-∞(,](𝑧 − (1 / 𝑦))))
131130imaeq2d 6013 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (ℝ ∖ ((𝑧 − (1 / 𝑦))(,)+∞))) = (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))))
132105, 131eqtr3d 2770 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) = (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))))
13342ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ ℝ) ∈ dom vol)
134 oveq1 7359 . . . . . . . . . . . . 13 (𝑥 = (𝑧 − (1 / 𝑦)) → (𝑥(,)+∞) = ((𝑧 − (1 / 𝑦))(,)+∞))
135134imaeq2d 6013 . . . . . . . . . . . 12 (𝑥 = (𝑧 − (1 / 𝑦)) → (𝐹 “ (𝑥(,)+∞)) = (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)))
136135eleq1d 2818 . . . . . . . . . . 11 (𝑥 = (𝑧 − (1 / 𝑦)) → ((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ↔ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol))
13732ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ∀𝑥 ∈ ℝ (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
138136, 137, 56rspcdva 3574 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol)
139 difmbl 25472 . . . . . . . . . 10 (((𝐹 “ ℝ) ∈ dom vol ∧ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞)) ∈ dom vol) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) ∈ dom vol)
140133, 138, 139syl2anc 584 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → ((𝐹 “ ℝ) ∖ (𝐹 “ ((𝑧 − (1 / 𝑦))(,)+∞))) ∈ dom vol)
141132, 140eqeltrrd 2834 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑦 ∈ ℕ) → (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
142141ralrimiva 3125 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → ∀𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
143 iunmbl 25482 . . . . . . 7 (∀𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
144142, 143syl 17 . . . . . 6 ((𝜑𝑧 ∈ ℝ) → 𝑦 ∈ ℕ (𝐹 “ (-∞(,](𝑧 − (1 / 𝑦)))) ∈ dom vol)
145100, 144eqeltrrd 2834 . . . . 5 ((𝜑𝑧 ∈ ℝ) → (𝐹 “ (-∞(,)𝑧)) ∈ dom vol)
146145ralrimiva 3125 . . . 4 (𝜑 → ∀𝑧 ∈ ℝ (𝐹 “ (-∞(,)𝑧)) ∈ dom vol)
147 oveq2 7360 . . . . . . 7 (𝑧 = 𝑥 → (-∞(,)𝑧) = (-∞(,)𝑥))
148147imaeq2d 6013 . . . . . 6 (𝑧 = 𝑥 → (𝐹 “ (-∞(,)𝑧)) = (𝐹 “ (-∞(,)𝑥)))
149148eleq1d 2818 . . . . 5 (𝑧 = 𝑥 → ((𝐹 “ (-∞(,)𝑧)) ∈ dom vol ↔ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol))
150149cbvralvw 3211 . . . 4 (∀𝑧 ∈ ℝ (𝐹 “ (-∞(,)𝑧)) ∈ dom vol ↔ ∀𝑥 ∈ ℝ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
151146, 150sylib 218 . . 3 (𝜑 → ∀𝑥 ∈ ℝ (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
152151r19.21bi 3225 . 2 ((𝜑𝑥 ∈ ℝ) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
1531, 43, 31, 152ismbf2d 25569 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282   ciun 4941   class class class wbr 5093  ccnv 5618  dom cdm 5619  cima 5622  Fun wfun 6480  wf 6482  (class class class)co 7352  cr 11012  0cc0 11013  1c1 11014  +∞cpnf 11150  -∞cmnf 11151  *cxr 11152   < clt 11153  cle 11154  cmin 11351  -cneg 11352   / cdiv 11781  cn 12132  +crp 12892  (,)cioo 13247  (,]cioc 13248  volcvol 25392  MblFncmbf 25543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cc 10333  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-xadd 13014  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-rlim 15398  df-sum 15596  df-xmet 21286  df-met 21287  df-ovol 25393  df-vol 25394  df-mbf 25548
This theorem is referenced by:  mbfaddlem  25589  mbfsup  25593
  Copyright terms: Public domain W3C validator