MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnei Structured version   Visualization version   GIF version

Theorem pnfnei 23105
Description: A neighborhood of +∞ contains an unbounded interval based at a real number. Together with xrtgioo 24693 (which describes neighborhoods of ) and mnfnei 23106, this gives all "negative" topological information ensuring that it is not too fine (and of course iooordt 23102 and similar ensure that it has all the sets we want). (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
pnfnei ((𝐴 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem pnfnei
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
2 eqid 2729 . . . 4 ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
3 eqid 2729 . . . 4 ran (,) = ran (,)
41, 2, 3leordtval 23098 . . 3 (ordTop‘ ≤ ) = (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)))
54eleq2i 2820 . 2 (𝐴 ∈ (ordTop‘ ≤ ) ↔ 𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))))
6 tg2 22850 . . 3 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ +∞ ∈ 𝐴) → ∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(+∞ ∈ 𝑢𝑢𝐴))
7 elun 4104 . . . . 5 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) ↔ (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)))
8 elun 4104 . . . . . . 7 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ↔ (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))))
9 eqid 2729 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
109elrnmpt 5900 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞)))
1110elv 3441 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞))
12 mnfxr 11172 . . . . . . . . . . . . . 14 -∞ ∈ ℝ*
1312a1i 11 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → -∞ ∈ ℝ*)
14 simprl 770 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑦 ∈ ℝ*)
15 0xr 11162 . . . . . . . . . . . . . 14 0 ∈ ℝ*
16 ifcl 4522 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ 0 ∈ ℝ*) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ*)
1714, 15, 16sylancl 586 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ*)
18 pnfxr 11169 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
1918a1i 11 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → +∞ ∈ ℝ*)
20 xrmax1 13077 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
2115, 14, 20sylancr 587 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
22 ge0gtmnf 13074 . . . . . . . . . . . . . 14 ((if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)) → -∞ < if(0 ≤ 𝑦, 𝑦, 0))
2317, 21, 22syl2anc 584 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → -∞ < if(0 ≤ 𝑦, 𝑦, 0))
24 simpll 766 . . . . . . . . . . . . . . . . 17 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → +∞ ∈ 𝑢)
25 simprr 772 . . . . . . . . . . . . . . . . 17 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑢 = (𝑦(,]+∞))
2624, 25eleqtrd 2830 . . . . . . . . . . . . . . . 16 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → +∞ ∈ (𝑦(,]+∞))
27 elioc1 13290 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (+∞ ∈ (𝑦(,]+∞) ↔ (+∞ ∈ ℝ*𝑦 < +∞ ∧ +∞ ≤ +∞)))
2814, 18, 27sylancl 586 . . . . . . . . . . . . . . . 16 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (+∞ ∈ (𝑦(,]+∞) ↔ (+∞ ∈ ℝ*𝑦 < +∞ ∧ +∞ ≤ +∞)))
2926, 28mpbid 232 . . . . . . . . . . . . . . 15 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (+∞ ∈ ℝ*𝑦 < +∞ ∧ +∞ ≤ +∞))
3029simp2d 1143 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑦 < +∞)
31 0ltpnf 13024 . . . . . . . . . . . . . 14 0 < +∞
32 breq1 5095 . . . . . . . . . . . . . . 15 (𝑦 = if(0 ≤ 𝑦, 𝑦, 0) → (𝑦 < +∞ ↔ if(0 ≤ 𝑦, 𝑦, 0) < +∞))
33 breq1 5095 . . . . . . . . . . . . . . 15 (0 = if(0 ≤ 𝑦, 𝑦, 0) → (0 < +∞ ↔ if(0 ≤ 𝑦, 𝑦, 0) < +∞))
3432, 33ifboth 4516 . . . . . . . . . . . . . 14 ((𝑦 < +∞ ∧ 0 < +∞) → if(0 ≤ 𝑦, 𝑦, 0) < +∞)
3530, 31, 34sylancl 586 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → if(0 ≤ 𝑦, 𝑦, 0) < +∞)
36 xrre2 13072 . . . . . . . . . . . . 13 (((-∞ ∈ ℝ* ∧ if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < if(0 ≤ 𝑦, 𝑦, 0) ∧ if(0 ≤ 𝑦, 𝑦, 0) < +∞)) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
3713, 17, 19, 23, 35, 36syl32anc 1380 . . . . . . . . . . . 12 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
38 xrmax2 13078 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0))
3915, 14, 38sylancr 587 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0))
40 df-ioc 13253 . . . . . . . . . . . . . . 15 (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎 < 𝑐𝑐𝑏)})
41 xrlelttr 13058 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ*𝑥 ∈ ℝ*) → ((𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0) ∧ if(0 ≤ 𝑦, 𝑦, 0) < 𝑥) → 𝑦 < 𝑥))
4240, 40, 41ixxss1 13266 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ*𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0)) → (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ (𝑦(,]+∞))
4314, 39, 42syl2anc 584 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ (𝑦(,]+∞))
44 simplr 768 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑢𝐴)
4525, 44eqsstrrd 3971 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (𝑦(,]+∞) ⊆ 𝐴)
4643, 45sstrd 3946 . . . . . . . . . . . 12 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ 𝐴)
47 oveq1 7356 . . . . . . . . . . . . . 14 (𝑥 = if(0 ≤ 𝑦, 𝑦, 0) → (𝑥(,]+∞) = (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞))
4847sseq1d 3967 . . . . . . . . . . . . 13 (𝑥 = if(0 ≤ 𝑦, 𝑦, 0) → ((𝑥(,]+∞) ⊆ 𝐴 ↔ (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ 𝐴))
4948rspcev 3577 . . . . . . . . . . . 12 ((if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ ∧ (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
5037, 46, 49syl2anc 584 . . . . . . . . . . 11 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
5150rexlimdvaa 3131 . . . . . . . . . 10 ((+∞ ∈ 𝑢𝑢𝐴) → (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
5251com12 32 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
5311, 52sylbi 217 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
54 eqid 2729 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
5554elrnmpt 5900 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦)))
5655elv 3441 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦))
57 pnfnlt 13030 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
58 elico1 13291 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → (+∞ ∈ (-∞[,)𝑦) ↔ (+∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦)))
5912, 58mpan 690 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → (+∞ ∈ (-∞[,)𝑦) ↔ (+∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦)))
60 simp3 1138 . . . . . . . . . . . . . . 15 ((+∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦) → +∞ < 𝑦)
6159, 60biimtrdi 253 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → (+∞ ∈ (-∞[,)𝑦) → +∞ < 𝑦))
6257, 61mtod 198 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ +∞ ∈ (-∞[,)𝑦))
63 eleq2 2817 . . . . . . . . . . . . . 14 (𝑢 = (-∞[,)𝑦) → (+∞ ∈ 𝑢 ↔ +∞ ∈ (-∞[,)𝑦)))
6463notbid 318 . . . . . . . . . . . . 13 (𝑢 = (-∞[,)𝑦) → (¬ +∞ ∈ 𝑢 ↔ ¬ +∞ ∈ (-∞[,)𝑦)))
6562, 64syl5ibrcom 247 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (𝑢 = (-∞[,)𝑦) → ¬ +∞ ∈ 𝑢))
6665rexlimiv 3123 . . . . . . . . . . 11 (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ¬ +∞ ∈ 𝑢)
6766pm2.21d 121 . . . . . . . . . 10 (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → (+∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
6867adantrd 491 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
6956, 68sylbi 217 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
7053, 69jaoi 857 . . . . . . 7 ((𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
718, 70sylbi 217 . . . . . 6 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
72 pnfnre 11156 . . . . . . . . . 10 +∞ ∉ ℝ
7372neli 3031 . . . . . . . . 9 ¬ +∞ ∈ ℝ
74 elssuni 4888 . . . . . . . . . . 11 (𝑢 ∈ ran (,) → 𝑢 ran (,))
75 unirnioo 13352 . . . . . . . . . . 11 ℝ = ran (,)
7674, 75sseqtrrdi 3977 . . . . . . . . . 10 (𝑢 ∈ ran (,) → 𝑢 ⊆ ℝ)
7776sseld 3934 . . . . . . . . 9 (𝑢 ∈ ran (,) → (+∞ ∈ 𝑢 → +∞ ∈ ℝ))
7873, 77mtoi 199 . . . . . . . 8 (𝑢 ∈ ran (,) → ¬ +∞ ∈ 𝑢)
7978pm2.21d 121 . . . . . . 7 (𝑢 ∈ ran (,) → (+∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
8079adantrd 491 . . . . . 6 (𝑢 ∈ ran (,) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
8171, 80jaoi 857 . . . . 5 ((𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
827, 81sylbi 217 . . . 4 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
8382rexlimiv 3123 . . 3 (∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
846, 83syl 17 . 2 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
855, 84sylanb 581 1 ((𝐴 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3436  cun 3901  wss 3903  ifcif 4476   cuni 4858   class class class wbr 5092  cmpt 5173  ran crn 5620  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  (,)cioo 13248  (,]cioc 13249  [,)cico 13250  topGenctg 17341  ordTopcordt 17403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-topgen 17347  df-ordt 17405  df-ps 18472  df-tsr 18473  df-top 22779  df-bases 22831
This theorem is referenced by:  xrge0tsms  24721  xrlimcnp  26876  xrge0tsmsd  33015  pnfneige0  33918  xlimpnfvlem2  45818
  Copyright terms: Public domain W3C validator