MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnei Structured version   Visualization version   GIF version

Theorem pnfnei 23114
Description: A neighborhood of +∞ contains an unbounded interval based at a real number. Together with xrtgioo 24702 (which describes neighborhoods of ) and mnfnei 23115, this gives all "negative" topological information ensuring that it is not too fine (and of course iooordt 23111 and similar ensure that it has all the sets we want). (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
pnfnei ((𝐴 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem pnfnei
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
2 eqid 2730 . . . 4 ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
3 eqid 2730 . . . 4 ran (,) = ran (,)
41, 2, 3leordtval 23107 . . 3 (ordTop‘ ≤ ) = (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)))
54eleq2i 2821 . 2 (𝐴 ∈ (ordTop‘ ≤ ) ↔ 𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))))
6 tg2 22859 . . 3 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ +∞ ∈ 𝐴) → ∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(+∞ ∈ 𝑢𝑢𝐴))
7 elun 4119 . . . . 5 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) ↔ (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)))
8 elun 4119 . . . . . . 7 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ↔ (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))))
9 eqid 2730 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
109elrnmpt 5925 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞)))
1110elv 3455 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞))
12 mnfxr 11238 . . . . . . . . . . . . . 14 -∞ ∈ ℝ*
1312a1i 11 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → -∞ ∈ ℝ*)
14 simprl 770 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑦 ∈ ℝ*)
15 0xr 11228 . . . . . . . . . . . . . 14 0 ∈ ℝ*
16 ifcl 4537 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ 0 ∈ ℝ*) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ*)
1714, 15, 16sylancl 586 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ*)
18 pnfxr 11235 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
1918a1i 11 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → +∞ ∈ ℝ*)
20 xrmax1 13142 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
2115, 14, 20sylancr 587 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0))
22 ge0gtmnf 13139 . . . . . . . . . . . . . 14 ((if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ* ∧ 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)) → -∞ < if(0 ≤ 𝑦, 𝑦, 0))
2317, 21, 22syl2anc 584 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → -∞ < if(0 ≤ 𝑦, 𝑦, 0))
24 simpll 766 . . . . . . . . . . . . . . . . 17 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → +∞ ∈ 𝑢)
25 simprr 772 . . . . . . . . . . . . . . . . 17 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑢 = (𝑦(,]+∞))
2624, 25eleqtrd 2831 . . . . . . . . . . . . . . . 16 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → +∞ ∈ (𝑦(,]+∞))
27 elioc1 13355 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (+∞ ∈ (𝑦(,]+∞) ↔ (+∞ ∈ ℝ*𝑦 < +∞ ∧ +∞ ≤ +∞)))
2814, 18, 27sylancl 586 . . . . . . . . . . . . . . . 16 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (+∞ ∈ (𝑦(,]+∞) ↔ (+∞ ∈ ℝ*𝑦 < +∞ ∧ +∞ ≤ +∞)))
2926, 28mpbid 232 . . . . . . . . . . . . . . 15 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (+∞ ∈ ℝ*𝑦 < +∞ ∧ +∞ ≤ +∞))
3029simp2d 1143 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑦 < +∞)
31 0ltpnf 13089 . . . . . . . . . . . . . 14 0 < +∞
32 breq1 5113 . . . . . . . . . . . . . . 15 (𝑦 = if(0 ≤ 𝑦, 𝑦, 0) → (𝑦 < +∞ ↔ if(0 ≤ 𝑦, 𝑦, 0) < +∞))
33 breq1 5113 . . . . . . . . . . . . . . 15 (0 = if(0 ≤ 𝑦, 𝑦, 0) → (0 < +∞ ↔ if(0 ≤ 𝑦, 𝑦, 0) < +∞))
3432, 33ifboth 4531 . . . . . . . . . . . . . 14 ((𝑦 < +∞ ∧ 0 < +∞) → if(0 ≤ 𝑦, 𝑦, 0) < +∞)
3530, 31, 34sylancl 586 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → if(0 ≤ 𝑦, 𝑦, 0) < +∞)
36 xrre2 13137 . . . . . . . . . . . . 13 (((-∞ ∈ ℝ* ∧ if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < if(0 ≤ 𝑦, 𝑦, 0) ∧ if(0 ≤ 𝑦, 𝑦, 0) < +∞)) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
3713, 17, 19, 23, 35, 36syl32anc 1380 . . . . . . . . . . . 12 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ)
38 xrmax2 13143 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0))
3915, 14, 38sylancr 587 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0))
40 df-ioc 13318 . . . . . . . . . . . . . . 15 (,] = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎 < 𝑐𝑐𝑏)})
41 xrlelttr 13123 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ*𝑥 ∈ ℝ*) → ((𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0) ∧ if(0 ≤ 𝑦, 𝑦, 0) < 𝑥) → 𝑦 < 𝑥))
4240, 40, 41ixxss1 13331 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ*𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0)) → (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ (𝑦(,]+∞))
4314, 39, 42syl2anc 584 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ (𝑦(,]+∞))
44 simplr 768 . . . . . . . . . . . . . 14 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → 𝑢𝐴)
4525, 44eqsstrrd 3985 . . . . . . . . . . . . 13 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (𝑦(,]+∞) ⊆ 𝐴)
4643, 45sstrd 3960 . . . . . . . . . . . 12 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ 𝐴)
47 oveq1 7397 . . . . . . . . . . . . . 14 (𝑥 = if(0 ≤ 𝑦, 𝑦, 0) → (𝑥(,]+∞) = (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞))
4847sseq1d 3981 . . . . . . . . . . . . 13 (𝑥 = if(0 ≤ 𝑦, 𝑦, 0) → ((𝑥(,]+∞) ⊆ 𝐴 ↔ (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ 𝐴))
4948rspcev 3591 . . . . . . . . . . . 12 ((if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ ∧ (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
5037, 46, 49syl2anc 584 . . . . . . . . . . 11 (((+∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (𝑦(,]+∞))) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
5150rexlimdvaa 3136 . . . . . . . . . 10 ((+∞ ∈ 𝑢𝑢𝐴) → (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
5251com12 32 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
5311, 52sylbi 217 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
54 eqid 2730 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
5554elrnmpt 5925 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦)))
5655elv 3455 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦))
57 pnfnlt 13095 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
58 elico1 13356 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → (+∞ ∈ (-∞[,)𝑦) ↔ (+∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦)))
5912, 58mpan 690 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → (+∞ ∈ (-∞[,)𝑦) ↔ (+∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦)))
60 simp3 1138 . . . . . . . . . . . . . . 15 ((+∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦) → +∞ < 𝑦)
6159, 60biimtrdi 253 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → (+∞ ∈ (-∞[,)𝑦) → +∞ < 𝑦))
6257, 61mtod 198 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ +∞ ∈ (-∞[,)𝑦))
63 eleq2 2818 . . . . . . . . . . . . . 14 (𝑢 = (-∞[,)𝑦) → (+∞ ∈ 𝑢 ↔ +∞ ∈ (-∞[,)𝑦)))
6463notbid 318 . . . . . . . . . . . . 13 (𝑢 = (-∞[,)𝑦) → (¬ +∞ ∈ 𝑢 ↔ ¬ +∞ ∈ (-∞[,)𝑦)))
6562, 64syl5ibrcom 247 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (𝑢 = (-∞[,)𝑦) → ¬ +∞ ∈ 𝑢))
6665rexlimiv 3128 . . . . . . . . . . 11 (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ¬ +∞ ∈ 𝑢)
6766pm2.21d 121 . . . . . . . . . 10 (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → (+∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
6867adantrd 491 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
6956, 68sylbi 217 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
7053, 69jaoi 857 . . . . . . 7 ((𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
718, 70sylbi 217 . . . . . 6 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
72 pnfnre 11222 . . . . . . . . . 10 +∞ ∉ ℝ
7372neli 3032 . . . . . . . . 9 ¬ +∞ ∈ ℝ
74 elssuni 4904 . . . . . . . . . . 11 (𝑢 ∈ ran (,) → 𝑢 ran (,))
75 unirnioo 13417 . . . . . . . . . . 11 ℝ = ran (,)
7674, 75sseqtrrdi 3991 . . . . . . . . . 10 (𝑢 ∈ ran (,) → 𝑢 ⊆ ℝ)
7776sseld 3948 . . . . . . . . 9 (𝑢 ∈ ran (,) → (+∞ ∈ 𝑢 → +∞ ∈ ℝ))
7873, 77mtoi 199 . . . . . . . 8 (𝑢 ∈ ran (,) → ¬ +∞ ∈ 𝑢)
7978pm2.21d 121 . . . . . . 7 (𝑢 ∈ ran (,) → (+∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
8079adantrd 491 . . . . . 6 (𝑢 ∈ ran (,) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
8171, 80jaoi 857 . . . . 5 ((𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
827, 81sylbi 217 . . . 4 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) → ((+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴))
8382rexlimiv 3128 . . 3 (∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(+∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
846, 83syl 17 . 2 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
855, 84sylanb 581 1 ((𝐴 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  cun 3915  wss 3917  ifcif 4491   cuni 4874   class class class wbr 5110  cmpt 5191  ran crn 5642  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  (,)cioo 13313  (,]cioc 13314  [,)cico 13315  topGenctg 17407  ordTopcordt 17469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-topgen 17413  df-ordt 17471  df-ps 18532  df-tsr 18533  df-top 22788  df-bases 22840
This theorem is referenced by:  xrge0tsms  24730  xrlimcnp  26885  xrge0tsmsd  33009  pnfneige0  33948  xlimpnfvlem2  45842
  Copyright terms: Public domain W3C validator