Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . 4
β’ ran
(π¦ β
β* β¦ (π¦(,]+β)) = ran (π¦ β β* β¦ (π¦(,]+β)) |
2 | | eqid 2732 |
. . . 4
β’ ran
(π¦ β
β* β¦ (-β[,)π¦)) = ran (π¦ β β* β¦
(-β[,)π¦)) |
3 | | eqid 2732 |
. . . 4
β’ ran (,) =
ran (,) |
4 | 1, 2, 3 | leordtval 22708 |
. . 3
β’
(ordTopβ β€ ) = (topGenβ((ran (π¦ β β* β¦ (π¦(,]+β)) βͺ ran (π¦ β β*
β¦ (-β[,)π¦)))
βͺ ran (,))) |
5 | 4 | eleq2i 2825 |
. 2
β’ (π΄ β (ordTopβ β€ )
β π΄ β
(topGenβ((ran (π¦
β β* β¦ (π¦(,]+β)) βͺ ran (π¦ β β* β¦
(-β[,)π¦))) βͺ ran
(,)))) |
6 | | tg2 22459 |
. . 3
β’ ((π΄ β (topGenβ((ran
(π¦ β
β* β¦ (π¦(,]+β)) βͺ ran (π¦ β β* β¦
(-β[,)π¦))) βͺ ran
(,))) β§ +β β π΄) β βπ’ β ((ran (π¦ β β* β¦ (π¦(,]+β)) βͺ ran (π¦ β β*
β¦ (-β[,)π¦)))
βͺ ran (,))(+β β π’ β§ π’ β π΄)) |
7 | | elun 4147 |
. . . . 5
β’ (π’ β ((ran (π¦ β β*
β¦ (π¦(,]+β))
βͺ ran (π¦ β
β* β¦ (-β[,)π¦))) βͺ ran (,)) β (π’ β (ran (π¦ β β* β¦ (π¦(,]+β)) βͺ ran (π¦ β β*
β¦ (-β[,)π¦)))
β¨ π’ β ran
(,))) |
8 | | elun 4147 |
. . . . . . 7
β’ (π’ β (ran (π¦ β β* β¦ (π¦(,]+β)) βͺ ran (π¦ β β*
β¦ (-β[,)π¦)))
β (π’ β ran (π¦ β β*
β¦ (π¦(,]+β))
β¨ π’ β ran (π¦ β β*
β¦ (-β[,)π¦)))) |
9 | | eqid 2732 |
. . . . . . . . . . 11
β’ (π¦ β β*
β¦ (π¦(,]+β)) =
(π¦ β
β* β¦ (π¦(,]+β)) |
10 | 9 | elrnmpt 5953 |
. . . . . . . . . 10
β’ (π’ β V β (π’ β ran (π¦ β β* β¦ (π¦(,]+β)) β
βπ¦ β
β* π’ =
(π¦(,]+β))) |
11 | 10 | elv 3480 |
. . . . . . . . 9
β’ (π’ β ran (π¦ β β* β¦ (π¦(,]+β)) β
βπ¦ β
β* π’ =
(π¦(,]+β)) |
12 | | mnfxr 11267 |
. . . . . . . . . . . . . 14
β’ -β
β β* |
13 | 12 | a1i 11 |
. . . . . . . . . . . . 13
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β -β β
β*) |
14 | | simprl 769 |
. . . . . . . . . . . . . 14
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β π¦ β β*) |
15 | | 0xr 11257 |
. . . . . . . . . . . . . 14
β’ 0 β
β* |
16 | | ifcl 4572 |
. . . . . . . . . . . . . 14
β’ ((π¦ β β*
β§ 0 β β*) β if(0 β€ π¦, π¦, 0) β
β*) |
17 | 14, 15, 16 | sylancl 586 |
. . . . . . . . . . . . 13
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β if(0 β€ π¦, π¦, 0) β
β*) |
18 | | pnfxr 11264 |
. . . . . . . . . . . . . 14
β’ +β
β β* |
19 | 18 | a1i 11 |
. . . . . . . . . . . . 13
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β +β β
β*) |
20 | | xrmax1 13150 |
. . . . . . . . . . . . . . 15
β’ ((0
β β* β§ π¦ β β*) β 0 β€
if(0 β€ π¦, π¦, 0)) |
21 | 15, 14, 20 | sylancr 587 |
. . . . . . . . . . . . . 14
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β 0 β€ if(0 β€ π¦, π¦, 0)) |
22 | | ge0gtmnf 13147 |
. . . . . . . . . . . . . 14
β’ ((if(0
β€ π¦, π¦, 0) β β* β§ 0 β€
if(0 β€ π¦, π¦, 0)) β -β < if(0
β€ π¦, π¦, 0)) |
23 | 17, 21, 22 | syl2anc 584 |
. . . . . . . . . . . . 13
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β -β < if(0 β€
π¦, π¦, 0)) |
24 | | simpll 765 |
. . . . . . . . . . . . . . . . 17
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β +β β π’) |
25 | | simprr 771 |
. . . . . . . . . . . . . . . . 17
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β π’ = (π¦(,]+β)) |
26 | 24, 25 | eleqtrd 2835 |
. . . . . . . . . . . . . . . 16
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β +β β (π¦(,]+β)) |
27 | | elioc1 13362 |
. . . . . . . . . . . . . . . . 17
β’ ((π¦ β β*
β§ +β β β*) β (+β β (π¦(,]+β) β (+β
β β* β§ π¦ < +β β§ +β β€
+β))) |
28 | 14, 18, 27 | sylancl 586 |
. . . . . . . . . . . . . . . 16
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β (+β β (π¦(,]+β) β (+β
β β* β§ π¦ < +β β§ +β β€
+β))) |
29 | 26, 28 | mpbid 231 |
. . . . . . . . . . . . . . 15
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β (+β β
β* β§ π¦
< +β β§ +β β€ +β)) |
30 | 29 | simp2d 1143 |
. . . . . . . . . . . . . 14
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β π¦ < +β) |
31 | | 0ltpnf 13098 |
. . . . . . . . . . . . . 14
β’ 0 <
+β |
32 | | breq1 5150 |
. . . . . . . . . . . . . . 15
β’ (π¦ = if(0 β€ π¦, π¦, 0) β (π¦ < +β β if(0 β€ π¦, π¦, 0) < +β)) |
33 | | breq1 5150 |
. . . . . . . . . . . . . . 15
β’ (0 = if(0
β€ π¦, π¦, 0) β (0 < +β β if(0 β€
π¦, π¦, 0) < +β)) |
34 | 32, 33 | ifboth 4566 |
. . . . . . . . . . . . . 14
β’ ((π¦ < +β β§ 0 <
+β) β if(0 β€ π¦, π¦, 0) < +β) |
35 | 30, 31, 34 | sylancl 586 |
. . . . . . . . . . . . 13
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β if(0 β€ π¦, π¦, 0) < +β) |
36 | | xrre2 13145 |
. . . . . . . . . . . . 13
β’
(((-β β β* β§ if(0 β€ π¦, π¦, 0) β β* β§
+β β β*) β§ (-β < if(0 β€ π¦, π¦, 0) β§ if(0 β€ π¦, π¦, 0) < +β)) β if(0 β€ π¦, π¦, 0) β β) |
37 | 13, 17, 19, 23, 35, 36 | syl32anc 1378 |
. . . . . . . . . . . 12
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β if(0 β€ π¦, π¦, 0) β β) |
38 | | xrmax2 13151 |
. . . . . . . . . . . . . . 15
β’ ((0
β β* β§ π¦ β β*) β π¦ β€ if(0 β€ π¦, π¦, 0)) |
39 | 15, 14, 38 | sylancr 587 |
. . . . . . . . . . . . . 14
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β π¦ β€ if(0 β€ π¦, π¦, 0)) |
40 | | df-ioc 13325 |
. . . . . . . . . . . . . . 15
β’ (,] =
(π β
β*, π
β β* β¦ {π β β* β£ (π < π β§ π β€ π)}) |
41 | | xrlelttr 13131 |
. . . . . . . . . . . . . . 15
β’ ((π¦ β β*
β§ if(0 β€ π¦, π¦, 0) β β*
β§ π₯ β
β*) β ((π¦ β€ if(0 β€ π¦, π¦, 0) β§ if(0 β€ π¦, π¦, 0) < π₯) β π¦ < π₯)) |
42 | 40, 40, 41 | ixxss1 13338 |
. . . . . . . . . . . . . 14
β’ ((π¦ β β*
β§ π¦ β€ if(0 β€
π¦, π¦, 0)) β (if(0 β€ π¦, π¦, 0)(,]+β) β (π¦(,]+β)) |
43 | 14, 39, 42 | syl2anc 584 |
. . . . . . . . . . . . 13
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β (if(0 β€ π¦, π¦, 0)(,]+β) β (π¦(,]+β)) |
44 | | simplr 767 |
. . . . . . . . . . . . . 14
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β π’ β π΄) |
45 | 25, 44 | eqsstrrd 4020 |
. . . . . . . . . . . . 13
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β (π¦(,]+β) β π΄) |
46 | 43, 45 | sstrd 3991 |
. . . . . . . . . . . 12
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β (if(0 β€ π¦, π¦, 0)(,]+β) β π΄) |
47 | | oveq1 7412 |
. . . . . . . . . . . . . 14
β’ (π₯ = if(0 β€ π¦, π¦, 0) β (π₯(,]+β) = (if(0 β€ π¦, π¦, 0)(,]+β)) |
48 | 47 | sseq1d 4012 |
. . . . . . . . . . . . 13
β’ (π₯ = if(0 β€ π¦, π¦, 0) β ((π₯(,]+β) β π΄ β (if(0 β€ π¦, π¦, 0)(,]+β) β π΄)) |
49 | 48 | rspcev 3612 |
. . . . . . . . . . . 12
β’ ((if(0
β€ π¦, π¦, 0) β β β§ (if(0 β€ π¦, π¦, 0)(,]+β) β π΄) β βπ₯ β β (π₯(,]+β) β π΄) |
50 | 37, 46, 49 | syl2anc 584 |
. . . . . . . . . . 11
β’
(((+β β π’
β§ π’ β π΄) β§ (π¦ β β* β§ π’ = (π¦(,]+β))) β βπ₯ β β (π₯(,]+β) β π΄) |
51 | 50 | rexlimdvaa 3156 |
. . . . . . . . . 10
β’
((+β β π’
β§ π’ β π΄) β (βπ¦ β β*
π’ = (π¦(,]+β) β βπ₯ β β (π₯(,]+β) β π΄)) |
52 | 51 | com12 32 |
. . . . . . . . 9
β’
(βπ¦ β
β* π’ =
(π¦(,]+β) β
((+β β π’ β§
π’ β π΄) β βπ₯ β β (π₯(,]+β) β π΄)) |
53 | 11, 52 | sylbi 216 |
. . . . . . . 8
β’ (π’ β ran (π¦ β β* β¦ (π¦(,]+β)) β ((+β
β π’ β§ π’ β π΄) β βπ₯ β β (π₯(,]+β) β π΄)) |
54 | | eqid 2732 |
. . . . . . . . . . 11
β’ (π¦ β β*
β¦ (-β[,)π¦)) =
(π¦ β
β* β¦ (-β[,)π¦)) |
55 | 54 | elrnmpt 5953 |
. . . . . . . . . 10
β’ (π’ β V β (π’ β ran (π¦ β β* β¦
(-β[,)π¦)) β
βπ¦ β
β* π’ =
(-β[,)π¦))) |
56 | 55 | elv 3480 |
. . . . . . . . 9
β’ (π’ β ran (π¦ β β* β¦
(-β[,)π¦)) β
βπ¦ β
β* π’ =
(-β[,)π¦)) |
57 | | pnfnlt 13104 |
. . . . . . . . . . . . . 14
β’ (π¦ β β*
β Β¬ +β < π¦) |
58 | | elico1 13363 |
. . . . . . . . . . . . . . . 16
β’
((-β β β* β§ π¦ β β*) β (+β
β (-β[,)π¦)
β (+β β β* β§ -β β€ +β β§
+β < π¦))) |
59 | 12, 58 | mpan 688 |
. . . . . . . . . . . . . . 15
β’ (π¦ β β*
β (+β β (-β[,)π¦) β (+β β β*
β§ -β β€ +β β§ +β < π¦))) |
60 | | simp3 1138 |
. . . . . . . . . . . . . . 15
β’
((+β β β* β§ -β β€ +β β§
+β < π¦) β
+β < π¦) |
61 | 59, 60 | syl6bi 252 |
. . . . . . . . . . . . . 14
β’ (π¦ β β*
β (+β β (-β[,)π¦) β +β < π¦)) |
62 | 57, 61 | mtod 197 |
. . . . . . . . . . . . 13
β’ (π¦ β β*
β Β¬ +β β (-β[,)π¦)) |
63 | | eleq2 2822 |
. . . . . . . . . . . . . 14
β’ (π’ = (-β[,)π¦) β (+β β π’ β +β β
(-β[,)π¦))) |
64 | 63 | notbid 317 |
. . . . . . . . . . . . 13
β’ (π’ = (-β[,)π¦) β (Β¬ +β β
π’ β Β¬ +β
β (-β[,)π¦))) |
65 | 62, 64 | syl5ibrcom 246 |
. . . . . . . . . . . 12
β’ (π¦ β β*
β (π’ =
(-β[,)π¦) β Β¬
+β β π’)) |
66 | 65 | rexlimiv 3148 |
. . . . . . . . . . 11
β’
(βπ¦ β
β* π’ =
(-β[,)π¦) β Β¬
+β β π’) |
67 | 66 | pm2.21d 121 |
. . . . . . . . . 10
β’
(βπ¦ β
β* π’ =
(-β[,)π¦) β
(+β β π’ β
βπ₯ β β
(π₯(,]+β) β
π΄)) |
68 | 67 | adantrd 492 |
. . . . . . . . 9
β’
(βπ¦ β
β* π’ =
(-β[,)π¦) β
((+β β π’ β§
π’ β π΄) β βπ₯ β β (π₯(,]+β) β π΄)) |
69 | 56, 68 | sylbi 216 |
. . . . . . . 8
β’ (π’ β ran (π¦ β β* β¦
(-β[,)π¦)) β
((+β β π’ β§
π’ β π΄) β βπ₯ β β (π₯(,]+β) β π΄)) |
70 | 53, 69 | jaoi 855 |
. . . . . . 7
β’ ((π’ β ran (π¦ β β* β¦ (π¦(,]+β)) β¨ π’ β ran (π¦ β β* β¦
(-β[,)π¦))) β
((+β β π’ β§
π’ β π΄) β βπ₯ β β (π₯(,]+β) β π΄)) |
71 | 8, 70 | sylbi 216 |
. . . . . 6
β’ (π’ β (ran (π¦ β β* β¦ (π¦(,]+β)) βͺ ran (π¦ β β*
β¦ (-β[,)π¦)))
β ((+β β π’
β§ π’ β π΄) β βπ₯ β β (π₯(,]+β) β π΄)) |
72 | | pnfnre 11251 |
. . . . . . . . . 10
β’ +β
β β |
73 | 72 | neli 3048 |
. . . . . . . . 9
β’ Β¬
+β β β |
74 | | elssuni 4940 |
. . . . . . . . . . 11
β’ (π’ β ran (,) β π’ β βͺ ran (,)) |
75 | | unirnioo 13422 |
. . . . . . . . . . 11
β’ β =
βͺ ran (,) |
76 | 74, 75 | sseqtrrdi 4032 |
. . . . . . . . . 10
β’ (π’ β ran (,) β π’ β
β) |
77 | 76 | sseld 3980 |
. . . . . . . . 9
β’ (π’ β ran (,) β (+β
β π’ β +β
β β)) |
78 | 73, 77 | mtoi 198 |
. . . . . . . 8
β’ (π’ β ran (,) β Β¬
+β β π’) |
79 | 78 | pm2.21d 121 |
. . . . . . 7
β’ (π’ β ran (,) β (+β
β π’ β
βπ₯ β β
(π₯(,]+β) β
π΄)) |
80 | 79 | adantrd 492 |
. . . . . 6
β’ (π’ β ran (,) β
((+β β π’ β§
π’ β π΄) β βπ₯ β β (π₯(,]+β) β π΄)) |
81 | 71, 80 | jaoi 855 |
. . . . 5
β’ ((π’ β (ran (π¦ β β* β¦ (π¦(,]+β)) βͺ ran (π¦ β β*
β¦ (-β[,)π¦)))
β¨ π’ β ran (,))
β ((+β β π’
β§ π’ β π΄) β βπ₯ β β (π₯(,]+β) β π΄)) |
82 | 7, 81 | sylbi 216 |
. . . 4
β’ (π’ β ((ran (π¦ β β*
β¦ (π¦(,]+β))
βͺ ran (π¦ β
β* β¦ (-β[,)π¦))) βͺ ran (,)) β ((+β β
π’ β§ π’ β π΄) β βπ₯ β β (π₯(,]+β) β π΄)) |
83 | 82 | rexlimiv 3148 |
. . 3
β’
(βπ’ β
((ran (π¦ β
β* β¦ (π¦(,]+β)) βͺ ran (π¦ β β* β¦
(-β[,)π¦))) βͺ ran
(,))(+β β π’
β§ π’ β π΄) β βπ₯ β β (π₯(,]+β) β π΄) |
84 | 6, 83 | syl 17 |
. 2
β’ ((π΄ β (topGenβ((ran
(π¦ β
β* β¦ (π¦(,]+β)) βͺ ran (π¦ β β* β¦
(-β[,)π¦))) βͺ ran
(,))) β§ +β β π΄) β βπ₯ β β (π₯(,]+β) β π΄) |
85 | 5, 84 | sylanb 581 |
1
β’ ((π΄ β (ordTopβ β€ )
β§ +β β π΄)
β βπ₯ β
β (π₯(,]+β)
β π΄) |