Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . 4
⊢ ran
(𝑦 ∈
ℝ* ↦ (𝑦(,]+∞)) = ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) |
2 | | eqid 2738 |
. . . 4
⊢ ran
(𝑦 ∈
ℝ* ↦ (-∞[,)𝑦)) = ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦)) |
3 | | eqid 2738 |
. . . 4
⊢ ran (,) =
ran (,) |
4 | 1, 2, 3 | leordtval 22272 |
. . 3
⊢
(ordTop‘ ≤ ) = (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ*
↦ (-∞[,)𝑦)))
∪ ran (,))) |
5 | 4 | eleq2i 2830 |
. 2
⊢ (𝐴 ∈ (ordTop‘ ≤ )
↔ 𝐴 ∈
(topGen‘((ran (𝑦
∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦))) ∪ ran
(,)))) |
6 | | tg2 22023 |
. . 3
⊢ ((𝐴 ∈ (topGen‘((ran
(𝑦 ∈
ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦))) ∪ ran
(,))) ∧ +∞ ∈ 𝐴) → ∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ*
↦ (-∞[,)𝑦)))
∪ ran (,))(+∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴)) |
7 | | elun 4079 |
. . . . 5
⊢ (𝑢 ∈ ((ran (𝑦 ∈ ℝ*
↦ (𝑦(,]+∞))
∪ ran (𝑦 ∈
ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) ↔ (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ*
↦ (-∞[,)𝑦)))
∨ 𝑢 ∈ ran
(,))) |
8 | | elun 4079 |
. . . . . . 7
⊢ (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ*
↦ (-∞[,)𝑦)))
↔ (𝑢 ∈ ran (𝑦 ∈ ℝ*
↦ (𝑦(,]+∞))
∨ 𝑢 ∈ ran (𝑦 ∈ ℝ*
↦ (-∞[,)𝑦)))) |
9 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ*
↦ (𝑦(,]+∞)) =
(𝑦 ∈
ℝ* ↦ (𝑦(,]+∞)) |
10 | 9 | elrnmpt 5854 |
. . . . . . . . . 10
⊢ (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔
∃𝑦 ∈
ℝ* 𝑢 =
(𝑦(,]+∞))) |
11 | 10 | elv 3428 |
. . . . . . . . 9
⊢ (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔
∃𝑦 ∈
ℝ* 𝑢 =
(𝑦(,]+∞)) |
12 | | mnfxr 10963 |
. . . . . . . . . . . . . 14
⊢ -∞
∈ ℝ* |
13 | 12 | a1i 11 |
. . . . . . . . . . . . 13
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → -∞ ∈
ℝ*) |
14 | | simprl 767 |
. . . . . . . . . . . . . 14
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → 𝑦 ∈ ℝ*) |
15 | | 0xr 10953 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ* |
16 | | ifcl 4501 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ*
∧ 0 ∈ ℝ*) → if(0 ≤ 𝑦, 𝑦, 0) ∈
ℝ*) |
17 | 14, 15, 16 | sylancl 585 |
. . . . . . . . . . . . 13
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → if(0 ≤ 𝑦, 𝑦, 0) ∈
ℝ*) |
18 | | pnfxr 10960 |
. . . . . . . . . . . . . 14
⊢ +∞
∈ ℝ* |
19 | 18 | a1i 11 |
. . . . . . . . . . . . 13
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → +∞ ∈
ℝ*) |
20 | | xrmax1 12838 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 0 ≤
if(0 ≤ 𝑦, 𝑦, 0)) |
21 | 15, 14, 20 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → 0 ≤ if(0 ≤ 𝑦, 𝑦, 0)) |
22 | | ge0gtmnf 12835 |
. . . . . . . . . . . . . 14
⊢ ((if(0
≤ 𝑦, 𝑦, 0) ∈ ℝ* ∧ 0 ≤
if(0 ≤ 𝑦, 𝑦, 0)) → -∞ < if(0
≤ 𝑦, 𝑦, 0)) |
23 | 17, 21, 22 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → -∞ < if(0 ≤
𝑦, 𝑦, 0)) |
24 | | simpll 763 |
. . . . . . . . . . . . . . . . 17
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → +∞ ∈ 𝑢) |
25 | | simprr 769 |
. . . . . . . . . . . . . . . . 17
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → 𝑢 = (𝑦(,]+∞)) |
26 | 24, 25 | eleqtrd 2841 |
. . . . . . . . . . . . . . . 16
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → +∞ ∈ (𝑦(,]+∞)) |
27 | | elioc1 13050 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℝ*
∧ +∞ ∈ ℝ*) → (+∞ ∈ (𝑦(,]+∞) ↔ (+∞
∈ ℝ* ∧ 𝑦 < +∞ ∧ +∞ ≤
+∞))) |
28 | 14, 18, 27 | sylancl 585 |
. . . . . . . . . . . . . . . 16
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → (+∞ ∈ (𝑦(,]+∞) ↔ (+∞
∈ ℝ* ∧ 𝑦 < +∞ ∧ +∞ ≤
+∞))) |
29 | 26, 28 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → (+∞ ∈
ℝ* ∧ 𝑦
< +∞ ∧ +∞ ≤ +∞)) |
30 | 29 | simp2d 1141 |
. . . . . . . . . . . . . 14
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → 𝑦 < +∞) |
31 | | 0ltpnf 12787 |
. . . . . . . . . . . . . 14
⊢ 0 <
+∞ |
32 | | breq1 5073 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = if(0 ≤ 𝑦, 𝑦, 0) → (𝑦 < +∞ ↔ if(0 ≤ 𝑦, 𝑦, 0) < +∞)) |
33 | | breq1 5073 |
. . . . . . . . . . . . . . 15
⊢ (0 = if(0
≤ 𝑦, 𝑦, 0) → (0 < +∞ ↔ if(0 ≤
𝑦, 𝑦, 0) < +∞)) |
34 | 32, 33 | ifboth 4495 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 < +∞ ∧ 0 <
+∞) → if(0 ≤ 𝑦, 𝑦, 0) < +∞) |
35 | 30, 31, 34 | sylancl 585 |
. . . . . . . . . . . . 13
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → if(0 ≤ 𝑦, 𝑦, 0) < +∞) |
36 | | xrre2 12833 |
. . . . . . . . . . . . 13
⊢
(((-∞ ∈ ℝ* ∧ if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ* ∧
+∞ ∈ ℝ*) ∧ (-∞ < if(0 ≤ 𝑦, 𝑦, 0) ∧ if(0 ≤ 𝑦, 𝑦, 0) < +∞)) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ) |
37 | 13, 17, 19, 23, 35, 36 | syl32anc 1376 |
. . . . . . . . . . . 12
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ) |
38 | | xrmax2 12839 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0)) |
39 | 15, 14, 38 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → 𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0)) |
40 | | df-ioc 13013 |
. . . . . . . . . . . . . . 15
⊢ (,] =
(𝑎 ∈
ℝ*, 𝑏
∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎 < 𝑐 ∧ 𝑐 ≤ 𝑏)}) |
41 | | xrlelttr 12819 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℝ*
∧ if(0 ≤ 𝑦, 𝑦, 0) ∈ ℝ*
∧ 𝑥 ∈
ℝ*) → ((𝑦 ≤ if(0 ≤ 𝑦, 𝑦, 0) ∧ if(0 ≤ 𝑦, 𝑦, 0) < 𝑥) → 𝑦 < 𝑥)) |
42 | 40, 40, 41 | ixxss1 13026 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ*
∧ 𝑦 ≤ if(0 ≤
𝑦, 𝑦, 0)) → (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ (𝑦(,]+∞)) |
43 | 14, 39, 42 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ (𝑦(,]+∞)) |
44 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → 𝑢 ⊆ 𝐴) |
45 | 25, 44 | eqsstrrd 3956 |
. . . . . . . . . . . . 13
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → (𝑦(,]+∞) ⊆ 𝐴) |
46 | 43, 45 | sstrd 3927 |
. . . . . . . . . . . 12
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ 𝐴) |
47 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = if(0 ≤ 𝑦, 𝑦, 0) → (𝑥(,]+∞) = (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞)) |
48 | 47 | sseq1d 3948 |
. . . . . . . . . . . . 13
⊢ (𝑥 = if(0 ≤ 𝑦, 𝑦, 0) → ((𝑥(,]+∞) ⊆ 𝐴 ↔ (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ 𝐴)) |
49 | 48 | rspcev 3552 |
. . . . . . . . . . . 12
⊢ ((if(0
≤ 𝑦, 𝑦, 0) ∈ ℝ ∧ (if(0 ≤ 𝑦, 𝑦, 0)(,]+∞) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴) |
50 | 37, 46, 49 | syl2anc 583 |
. . . . . . . . . . 11
⊢
(((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) ∧ (𝑦 ∈ ℝ* ∧ 𝑢 = (𝑦(,]+∞))) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴) |
51 | 50 | rexlimdvaa 3213 |
. . . . . . . . . 10
⊢
((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) → (∃𝑦 ∈ ℝ*
𝑢 = (𝑦(,]+∞) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)) |
52 | 51 | com12 32 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
ℝ* 𝑢 =
(𝑦(,]+∞) →
((+∞ ∈ 𝑢 ∧
𝑢 ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)) |
53 | 11, 52 | sylbi 216 |
. . . . . . . 8
⊢ (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) → ((+∞
∈ 𝑢 ∧ 𝑢 ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)) |
54 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ*
↦ (-∞[,)𝑦)) =
(𝑦 ∈
ℝ* ↦ (-∞[,)𝑦)) |
55 | 54 | elrnmpt 5854 |
. . . . . . . . . 10
⊢ (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦)) ↔
∃𝑦 ∈
ℝ* 𝑢 =
(-∞[,)𝑦))) |
56 | 55 | elv 3428 |
. . . . . . . . 9
⊢ (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦)) ↔
∃𝑦 ∈
ℝ* 𝑢 =
(-∞[,)𝑦)) |
57 | | pnfnlt 12793 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ*
→ ¬ +∞ < 𝑦) |
58 | | elico1 13051 |
. . . . . . . . . . . . . . . 16
⊢
((-∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (+∞
∈ (-∞[,)𝑦)
↔ (+∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧
+∞ < 𝑦))) |
59 | 12, 58 | mpan 686 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ*
→ (+∞ ∈ (-∞[,)𝑦) ↔ (+∞ ∈ ℝ*
∧ -∞ ≤ +∞ ∧ +∞ < 𝑦))) |
60 | | simp3 1136 |
. . . . . . . . . . . . . . 15
⊢
((+∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧
+∞ < 𝑦) →
+∞ < 𝑦) |
61 | 59, 60 | syl6bi 252 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ*
→ (+∞ ∈ (-∞[,)𝑦) → +∞ < 𝑦)) |
62 | 57, 61 | mtod 197 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ*
→ ¬ +∞ ∈ (-∞[,)𝑦)) |
63 | | eleq2 2827 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (-∞[,)𝑦) → (+∞ ∈ 𝑢 ↔ +∞ ∈
(-∞[,)𝑦))) |
64 | 63 | notbid 317 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (-∞[,)𝑦) → (¬ +∞ ∈
𝑢 ↔ ¬ +∞
∈ (-∞[,)𝑦))) |
65 | 62, 64 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ*
→ (𝑢 =
(-∞[,)𝑦) → ¬
+∞ ∈ 𝑢)) |
66 | 65 | rexlimiv 3208 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
ℝ* 𝑢 =
(-∞[,)𝑦) → ¬
+∞ ∈ 𝑢) |
67 | 66 | pm2.21d 121 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
ℝ* 𝑢 =
(-∞[,)𝑦) →
(+∞ ∈ 𝑢 →
∃𝑥 ∈ ℝ
(𝑥(,]+∞) ⊆
𝐴)) |
68 | 67 | adantrd 491 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
ℝ* 𝑢 =
(-∞[,)𝑦) →
((+∞ ∈ 𝑢 ∧
𝑢 ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)) |
69 | 56, 68 | sylbi 216 |
. . . . . . . 8
⊢ (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦)) →
((+∞ ∈ 𝑢 ∧
𝑢 ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)) |
70 | 53, 69 | jaoi 853 |
. . . . . . 7
⊢ ((𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦))) →
((+∞ ∈ 𝑢 ∧
𝑢 ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)) |
71 | 8, 70 | sylbi 216 |
. . . . . 6
⊢ (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ*
↦ (-∞[,)𝑦)))
→ ((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)) |
72 | | pnfnre 10947 |
. . . . . . . . . 10
⊢ +∞
∉ ℝ |
73 | 72 | neli 3050 |
. . . . . . . . 9
⊢ ¬
+∞ ∈ ℝ |
74 | | elssuni 4868 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ ran (,) → 𝑢 ⊆ ∪ ran (,)) |
75 | | unirnioo 13110 |
. . . . . . . . . . 11
⊢ ℝ =
∪ ran (,) |
76 | 74, 75 | sseqtrrdi 3968 |
. . . . . . . . . 10
⊢ (𝑢 ∈ ran (,) → 𝑢 ⊆
ℝ) |
77 | 76 | sseld 3916 |
. . . . . . . . 9
⊢ (𝑢 ∈ ran (,) → (+∞
∈ 𝑢 → +∞
∈ ℝ)) |
78 | 73, 77 | mtoi 198 |
. . . . . . . 8
⊢ (𝑢 ∈ ran (,) → ¬
+∞ ∈ 𝑢) |
79 | 78 | pm2.21d 121 |
. . . . . . 7
⊢ (𝑢 ∈ ran (,) → (+∞
∈ 𝑢 →
∃𝑥 ∈ ℝ
(𝑥(,]+∞) ⊆
𝐴)) |
80 | 79 | adantrd 491 |
. . . . . 6
⊢ (𝑢 ∈ ran (,) →
((+∞ ∈ 𝑢 ∧
𝑢 ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)) |
81 | 71, 80 | jaoi 853 |
. . . . 5
⊢ ((𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ*
↦ (-∞[,)𝑦)))
∨ 𝑢 ∈ ran (,))
→ ((+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)) |
82 | 7, 81 | sylbi 216 |
. . . 4
⊢ (𝑢 ∈ ((ran (𝑦 ∈ ℝ*
↦ (𝑦(,]+∞))
∪ ran (𝑦 ∈
ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) → ((+∞ ∈
𝑢 ∧ 𝑢 ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴)) |
83 | 82 | rexlimiv 3208 |
. . 3
⊢
(∃𝑢 ∈
((ran (𝑦 ∈
ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦))) ∪ ran
(,))(+∞ ∈ 𝑢
∧ 𝑢 ⊆ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴) |
84 | 6, 83 | syl 17 |
. 2
⊢ ((𝐴 ∈ (topGen‘((ran
(𝑦 ∈
ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦
(-∞[,)𝑦))) ∪ ran
(,))) ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝐴) |
85 | 5, 84 | sylanb 580 |
1
⊢ ((𝐴 ∈ (ordTop‘ ≤ )
∧ +∞ ∈ 𝐴)
→ ∃𝑥 ∈
ℝ (𝑥(,]+∞)
⊆ 𝐴) |