| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ico | Structured version Visualization version GIF version | ||
| Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ico | ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cico 13315 | . 2 class [,) | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11214 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | cle 11216 | . . . . . 6 class ≤ | |
| 9 | 5, 7, 8 | wbr 5110 | . . . . 5 wff 𝑥 ≤ 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | clt 11215 | . . . . . 6 class < | |
| 12 | 7, 10, 11 | wbr 5110 | . . . . 5 wff 𝑧 < 𝑦 |
| 13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) |
| 14 | 13, 6, 4 | crab 3408 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} |
| 15 | 2, 3, 4, 4, 14 | cmpo 7392 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 16 | 1, 15 | wceq 1540 | 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: icoval 13351 elico1 13356 elicore 13366 icossico 13384 iccssico 13386 iccssico2 13388 icossxr 13400 icossicc 13404 ioossico 13406 icossioo 13408 icoun 13443 snunioo 13446 snunico 13447 ioojoin 13451 icopnfsup 13834 limsupgord 15445 leordtval2 23106 icomnfordt 23110 lecldbas 23113 mnfnei 23115 icopnfcld 24662 xrtgioo 24702 ioombl 25473 dvfsumrlimge0 25944 dvfsumrlim2 25946 psercnlem2 26341 tanord1 26453 rlimcnp 26882 rlimcnp2 26883 dchrisum0lem2a 27435 pntleml 27529 pnt 27532 joiniooico 32704 icorempo 37346 icoreresf 37347 isbasisrelowl 37353 icoreelrn 37356 relowlpssretop 37359 asindmre 37704 icof 45220 snunioo1 45517 elicores 45538 dmico 45568 liminfgord 45759 volicorescl 46558 iccdisj2 48889 |
| Copyright terms: Public domain | W3C validator |