| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ico | Structured version Visualization version GIF version | ||
| Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ico | ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cico 13308 | . 2 class [,) | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11207 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | cle 11209 | . . . . . 6 class ≤ | |
| 9 | 5, 7, 8 | wbr 5107 | . . . . 5 wff 𝑥 ≤ 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | clt 11208 | . . . . . 6 class < | |
| 12 | 7, 10, 11 | wbr 5107 | . . . . 5 wff 𝑧 < 𝑦 |
| 13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) |
| 14 | 13, 6, 4 | crab 3405 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} |
| 15 | 2, 3, 4, 4, 14 | cmpo 7389 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 16 | 1, 15 | wceq 1540 | 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: icoval 13344 elico1 13349 elicore 13359 icossico 13377 iccssico 13379 iccssico2 13381 icossxr 13393 icossicc 13397 ioossico 13399 icossioo 13401 icoun 13436 snunioo 13439 snunico 13440 ioojoin 13444 icopnfsup 13827 limsupgord 15438 leordtval2 23099 icomnfordt 23103 lecldbas 23106 mnfnei 23108 icopnfcld 24655 xrtgioo 24695 ioombl 25466 dvfsumrlimge0 25937 dvfsumrlim2 25939 psercnlem2 26334 tanord1 26446 rlimcnp 26875 rlimcnp2 26876 dchrisum0lem2a 27428 pntleml 27522 pnt 27525 joiniooico 32697 icorempo 37339 icoreresf 37340 isbasisrelowl 37346 icoreelrn 37349 relowlpssretop 37352 asindmre 37697 icof 45213 snunioo1 45510 elicores 45531 dmico 45561 liminfgord 45752 volicorescl 46551 iccdisj2 48885 |
| Copyright terms: Public domain | W3C validator |