![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ico | Structured version Visualization version GIF version |
Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ico | ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cico 13385 | . 2 class [,) | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11291 | . . 3 class ℝ* | |
5 | 2 | cv 1535 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1535 | . . . . . 6 class 𝑧 |
8 | cle 11293 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 5147 | . . . . 5 wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1535 | . . . . . 6 class 𝑦 |
11 | clt 11292 | . . . . . 6 class < | |
12 | 7, 10, 11 | wbr 5147 | . . . . 5 wff 𝑧 < 𝑦 |
13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) |
14 | 13, 6, 4 | crab 3432 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} |
15 | 2, 3, 4, 4, 14 | cmpo 7432 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
16 | 1, 15 | wceq 1536 | 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: icoval 13421 elico1 13426 elicore 13435 icossico 13453 iccssico 13455 iccssico2 13457 icossxr 13468 icossicc 13472 ioossico 13474 icossioo 13476 icoun 13511 snunioo 13514 snunico 13515 ioojoin 13519 icopnfsup 13901 limsupgord 15504 leordtval2 23235 icomnfordt 23239 lecldbas 23242 mnfnei 23244 icopnfcld 24803 xrtgioo 24841 ioombl 25613 dvfsumrlimge0 26085 dvfsumrlim2 26087 psercnlem2 26482 tanord1 26593 rlimcnp 27022 rlimcnp2 27023 dchrisum0lem2a 27575 pntleml 27669 pnt 27672 joiniooico 32782 icorempo 37333 icoreresf 37334 isbasisrelowl 37340 icoreelrn 37343 relowlpssretop 37346 asindmre 37689 icof 45161 snunioo1 45464 elicores 45485 dmico 45517 liminfgord 45709 volicorescl 46508 iccdisj2 48693 |
Copyright terms: Public domain | W3C validator |