MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ico Structured version   Visualization version   GIF version

Definition df-ico 13254
Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ico [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ico
StepHypRef Expression
1 cico 13250 . 2 class [,)
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11148 . . 3 class *
52cv 1539 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1539 . . . . . 6 class 𝑧
8 cle 11150 . . . . . 6 class
95, 7, 8wbr 5092 . . . . 5 wff 𝑥𝑧
103cv 1539 . . . . . 6 class 𝑦
11 clt 11149 . . . . . 6 class <
127, 10, 11wbr 5092 . . . . 5 wff 𝑧 < 𝑦
139, 12wa 395 . . . 4 wff (𝑥𝑧𝑧 < 𝑦)
1413, 6, 4crab 3394 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}
152, 3, 4, 4, 14cmpo 7351 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
161, 15wceq 1540 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  icoval  13286  elico1  13291  elicore  13301  icossico  13319  iccssico  13321  iccssico2  13323  icossxr  13335  icossicc  13339  ioossico  13341  icossioo  13343  icoun  13378  snunioo  13381  snunico  13382  ioojoin  13386  icopnfsup  13769  limsupgord  15379  leordtval2  23097  icomnfordt  23101  lecldbas  23104  mnfnei  23106  icopnfcld  24653  xrtgioo  24693  ioombl  25464  dvfsumrlimge0  25935  dvfsumrlim2  25937  psercnlem2  26332  tanord1  26444  rlimcnp  26873  rlimcnp2  26874  dchrisum0lem2a  27426  pntleml  27520  pnt  27523  joiniooico  32717  icorempo  37325  icoreresf  37326  isbasisrelowl  37332  icoreelrn  37335  relowlpssretop  37338  asindmre  37683  icof  45197  snunioo1  45493  elicores  45514  dmico  45544  liminfgord  45735  volicorescl  46534  iccdisj2  48881
  Copyright terms: Public domain W3C validator