Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ico | Structured version Visualization version GIF version |
Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ico | ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cico 13010 | . 2 class [,) | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 10939 | . . 3 class ℝ* | |
5 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑧 |
8 | cle 10941 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 5070 | . . . . 5 wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1538 | . . . . . 6 class 𝑦 |
11 | clt 10940 | . . . . . 6 class < | |
12 | 7, 10, 11 | wbr 5070 | . . . . 5 wff 𝑧 < 𝑦 |
13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) |
14 | 13, 6, 4 | crab 3067 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} |
15 | 2, 3, 4, 4, 14 | cmpo 7257 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
16 | 1, 15 | wceq 1539 | 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: icoval 13046 elico1 13051 elicore 13060 icossico 13078 iccssico 13080 iccssico2 13082 icossxr 13093 icossicc 13097 ioossico 13099 icossioo 13101 icoun 13136 snunioo 13139 snunico 13140 ioojoin 13144 icopnfsup 13513 limsupgord 15109 leordtval2 22271 icomnfordt 22275 lecldbas 22278 mnfnei 22280 icopnfcld 23837 xrtgioo 23875 ioombl 24634 dvfsumrlimge0 25099 dvfsumrlim2 25101 psercnlem2 25488 tanord1 25598 rlimcnp 26020 rlimcnp2 26021 dchrisum0lem2a 26570 pntleml 26664 pnt 26667 joiniooico 30997 icorempo 35449 icoreresf 35450 isbasisrelowl 35456 icoreelrn 35459 relowlpssretop 35462 asindmre 35787 icof 42648 snunioo1 42940 elicores 42961 dmico 42993 liminfgord 43185 volicorescl 43981 iccdisj2 46079 |
Copyright terms: Public domain | W3C validator |