MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ico Structured version   Visualization version   GIF version

Definition df-ico 13014
Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ico [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ico
StepHypRef Expression
1 cico 13010 . 2 class [,)
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 10939 . . 3 class *
52cv 1538 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1538 . . . . . 6 class 𝑧
8 cle 10941 . . . . . 6 class
95, 7, 8wbr 5070 . . . . 5 wff 𝑥𝑧
103cv 1538 . . . . . 6 class 𝑦
11 clt 10940 . . . . . 6 class <
127, 10, 11wbr 5070 . . . . 5 wff 𝑧 < 𝑦
139, 12wa 395 . . . 4 wff (𝑥𝑧𝑧 < 𝑦)
1413, 6, 4crab 3067 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}
152, 3, 4, 4, 14cmpo 7257 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
161, 15wceq 1539 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  icoval  13046  elico1  13051  elicore  13060  icossico  13078  iccssico  13080  iccssico2  13082  icossxr  13093  icossicc  13097  ioossico  13099  icossioo  13101  icoun  13136  snunioo  13139  snunico  13140  ioojoin  13144  icopnfsup  13513  limsupgord  15109  leordtval2  22271  icomnfordt  22275  lecldbas  22278  mnfnei  22280  icopnfcld  23837  xrtgioo  23875  ioombl  24634  dvfsumrlimge0  25099  dvfsumrlim2  25101  psercnlem2  25488  tanord1  25598  rlimcnp  26020  rlimcnp2  26021  dchrisum0lem2a  26570  pntleml  26664  pnt  26667  joiniooico  30997  icorempo  35449  icoreresf  35450  isbasisrelowl  35456  icoreelrn  35459  relowlpssretop  35462  asindmre  35787  icof  42648  snunioo1  42940  elicores  42961  dmico  42993  liminfgord  43185  volicorescl  43981  iccdisj2  46079
  Copyright terms: Public domain W3C validator