MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ico Structured version   Visualization version   GIF version

Definition df-ico 13366
Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ico [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ico
StepHypRef Expression
1 cico 13362 . 2 class [,)
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11266 . . 3 class *
52cv 1539 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1539 . . . . . 6 class 𝑧
8 cle 11268 . . . . . 6 class
95, 7, 8wbr 5119 . . . . 5 wff 𝑥𝑧
103cv 1539 . . . . . 6 class 𝑦
11 clt 11267 . . . . . 6 class <
127, 10, 11wbr 5119 . . . . 5 wff 𝑧 < 𝑦
139, 12wa 395 . . . 4 wff (𝑥𝑧𝑧 < 𝑦)
1413, 6, 4crab 3415 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}
152, 3, 4, 4, 14cmpo 7405 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
161, 15wceq 1540 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  icoval  13398  elico1  13403  elicore  13413  icossico  13431  iccssico  13433  iccssico2  13435  icossxr  13447  icossicc  13451  ioossico  13453  icossioo  13455  icoun  13490  snunioo  13493  snunico  13494  ioojoin  13498  icopnfsup  13880  limsupgord  15486  leordtval2  23148  icomnfordt  23152  lecldbas  23155  mnfnei  23157  icopnfcld  24704  xrtgioo  24744  ioombl  25516  dvfsumrlimge0  25987  dvfsumrlim2  25989  psercnlem2  26384  tanord1  26496  rlimcnp  26925  rlimcnp2  26926  dchrisum0lem2a  27478  pntleml  27572  pnt  27575  joiniooico  32697  icorempo  37315  icoreresf  37316  isbasisrelowl  37322  icoreelrn  37325  relowlpssretop  37328  asindmre  37673  icof  45191  snunioo1  45489  elicores  45510  dmico  45540  liminfgord  45731  volicorescl  46530  iccdisj2  48819
  Copyright terms: Public domain W3C validator