| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ico | Structured version Visualization version GIF version | ||
| Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ico | ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cico 13250 | . 2 class [,) | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11148 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | cle 11150 | . . . . . 6 class ≤ | |
| 9 | 5, 7, 8 | wbr 5092 | . . . . 5 wff 𝑥 ≤ 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | clt 11149 | . . . . . 6 class < | |
| 12 | 7, 10, 11 | wbr 5092 | . . . . 5 wff 𝑧 < 𝑦 |
| 13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) |
| 14 | 13, 6, 4 | crab 3394 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} |
| 15 | 2, 3, 4, 4, 14 | cmpo 7351 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 16 | 1, 15 | wceq 1540 | 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: icoval 13286 elico1 13291 elicore 13301 icossico 13319 iccssico 13321 iccssico2 13323 icossxr 13335 icossicc 13339 ioossico 13341 icossioo 13343 icoun 13378 snunioo 13381 snunico 13382 ioojoin 13386 icopnfsup 13769 limsupgord 15379 leordtval2 23097 icomnfordt 23101 lecldbas 23104 mnfnei 23106 icopnfcld 24653 xrtgioo 24693 ioombl 25464 dvfsumrlimge0 25935 dvfsumrlim2 25937 psercnlem2 26332 tanord1 26444 rlimcnp 26873 rlimcnp2 26874 dchrisum0lem2a 27426 pntleml 27520 pnt 27523 joiniooico 32717 icorempo 37325 icoreresf 37326 isbasisrelowl 37332 icoreelrn 37335 relowlpssretop 37338 asindmre 37683 icof 45197 snunioo1 45493 elicores 45514 dmico 45544 liminfgord 45735 volicorescl 46534 iccdisj2 48881 |
| Copyright terms: Public domain | W3C validator |