Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-ico | Structured version Visualization version GIF version |
Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ico | ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cico 13090 | . 2 class [,) | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11017 | . . 3 class ℝ* | |
5 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1538 | . . . . . 6 class 𝑧 |
8 | cle 11019 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 5075 | . . . . 5 wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1538 | . . . . . 6 class 𝑦 |
11 | clt 11018 | . . . . . 6 class < | |
12 | 7, 10, 11 | wbr 5075 | . . . . 5 wff 𝑧 < 𝑦 |
13 | 9, 12 | wa 396 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) |
14 | 13, 6, 4 | crab 3069 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} |
15 | 2, 3, 4, 4, 14 | cmpo 7286 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
16 | 1, 15 | wceq 1539 | 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: icoval 13126 elico1 13131 elicore 13140 icossico 13158 iccssico 13160 iccssico2 13162 icossxr 13173 icossicc 13177 ioossico 13179 icossioo 13181 icoun 13216 snunioo 13219 snunico 13220 ioojoin 13224 icopnfsup 13594 limsupgord 15190 leordtval2 22372 icomnfordt 22376 lecldbas 22379 mnfnei 22381 icopnfcld 23940 xrtgioo 23978 ioombl 24738 dvfsumrlimge0 25203 dvfsumrlim2 25205 psercnlem2 25592 tanord1 25702 rlimcnp 26124 rlimcnp2 26125 dchrisum0lem2a 26674 pntleml 26768 pnt 26771 joiniooico 31104 icorempo 35531 icoreresf 35532 isbasisrelowl 35538 icoreelrn 35541 relowlpssretop 35544 asindmre 35869 icof 42766 snunioo1 43057 elicores 43078 dmico 43110 liminfgord 43302 volicorescl 44098 iccdisj2 46202 |
Copyright terms: Public domain | W3C validator |