![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ico | Structured version Visualization version GIF version |
Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ico | ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cico 13409 | . 2 class [,) | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11323 | . . 3 class ℝ* | |
5 | 2 | cv 1536 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1536 | . . . . . 6 class 𝑧 |
8 | cle 11325 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 5166 | . . . . 5 wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1536 | . . . . . 6 class 𝑦 |
11 | clt 11324 | . . . . . 6 class < | |
12 | 7, 10, 11 | wbr 5166 | . . . . 5 wff 𝑧 < 𝑦 |
13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) |
14 | 13, 6, 4 | crab 3443 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} |
15 | 2, 3, 4, 4, 14 | cmpo 7450 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
16 | 1, 15 | wceq 1537 | 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: icoval 13445 elico1 13450 elicore 13459 icossico 13477 iccssico 13479 iccssico2 13481 icossxr 13492 icossicc 13496 ioossico 13498 icossioo 13500 icoun 13535 snunioo 13538 snunico 13539 ioojoin 13543 icopnfsup 13916 limsupgord 15518 leordtval2 23241 icomnfordt 23245 lecldbas 23248 mnfnei 23250 icopnfcld 24809 xrtgioo 24847 ioombl 25619 dvfsumrlimge0 26091 dvfsumrlim2 26093 psercnlem2 26486 tanord1 26597 rlimcnp 27026 rlimcnp2 27027 dchrisum0lem2a 27579 pntleml 27673 pnt 27676 joiniooico 32779 icorempo 37317 icoreresf 37318 isbasisrelowl 37324 icoreelrn 37327 relowlpssretop 37330 asindmre 37663 icof 45126 snunioo1 45430 elicores 45451 dmico 45483 liminfgord 45675 volicorescl 46474 iccdisj2 48577 |
Copyright terms: Public domain | W3C validator |