| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ico | Structured version Visualization version GIF version | ||
| Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| df-ico | ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cico 13362 | . 2 class [,) | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | cxr 11266 | . . 3 class ℝ* | |
| 5 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | vz | . . . . . . 7 setvar 𝑧 | |
| 7 | 6 | cv 1539 | . . . . . 6 class 𝑧 |
| 8 | cle 11268 | . . . . . 6 class ≤ | |
| 9 | 5, 7, 8 | wbr 5119 | . . . . 5 wff 𝑥 ≤ 𝑧 |
| 10 | 3 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | clt 11267 | . . . . . 6 class < | |
| 12 | 7, 10, 11 | wbr 5119 | . . . . 5 wff 𝑧 < 𝑦 |
| 13 | 9, 12 | wa 395 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) |
| 14 | 13, 6, 4 | crab 3415 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} |
| 15 | 2, 3, 4, 4, 14 | cmpo 7405 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 16 | 1, 15 | wceq 1540 | 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: icoval 13398 elico1 13403 elicore 13413 icossico 13431 iccssico 13433 iccssico2 13435 icossxr 13447 icossicc 13451 ioossico 13453 icossioo 13455 icoun 13490 snunioo 13493 snunico 13494 ioojoin 13498 icopnfsup 13880 limsupgord 15486 leordtval2 23148 icomnfordt 23152 lecldbas 23155 mnfnei 23157 icopnfcld 24704 xrtgioo 24744 ioombl 25516 dvfsumrlimge0 25987 dvfsumrlim2 25989 psercnlem2 26384 tanord1 26496 rlimcnp 26925 rlimcnp2 26926 dchrisum0lem2a 27478 pntleml 27572 pnt 27575 joiniooico 32697 icorempo 37315 icoreresf 37316 isbasisrelowl 37322 icoreelrn 37325 relowlpssretop 37328 asindmre 37673 icof 45191 snunioo1 45489 elicores 45510 dmico 45540 liminfgord 45731 volicorescl 46530 iccdisj2 48819 |
| Copyright terms: Public domain | W3C validator |