![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-ico | Structured version Visualization version GIF version |
Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
df-ico | ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cico 13326 | . 2 class [,) | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cxr 11247 | . . 3 class ℝ* | |
5 | 2 | cv 1541 | . . . . . 6 class 𝑥 |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1541 | . . . . . 6 class 𝑧 |
8 | cle 11249 | . . . . . 6 class ≤ | |
9 | 5, 7, 8 | wbr 5149 | . . . . 5 wff 𝑥 ≤ 𝑧 |
10 | 3 | cv 1541 | . . . . . 6 class 𝑦 |
11 | clt 11248 | . . . . . 6 class < | |
12 | 7, 10, 11 | wbr 5149 | . . . . 5 wff 𝑧 < 𝑦 |
13 | 9, 12 | wa 397 | . . . 4 wff (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) |
14 | 13, 6, 4 | crab 3433 | . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} |
15 | 2, 3, 4, 4, 14 | cmpo 7411 | . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
16 | 1, 15 | wceq 1542 | 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
Colors of variables: wff setvar class |
This definition is referenced by: icoval 13362 elico1 13367 elicore 13376 icossico 13394 iccssico 13396 iccssico2 13398 icossxr 13409 icossicc 13413 ioossico 13415 icossioo 13417 icoun 13452 snunioo 13455 snunico 13456 ioojoin 13460 icopnfsup 13830 limsupgord 15416 leordtval2 22716 icomnfordt 22720 lecldbas 22723 mnfnei 22725 icopnfcld 24284 xrtgioo 24322 ioombl 25082 dvfsumrlimge0 25547 dvfsumrlim2 25549 psercnlem2 25936 tanord1 26046 rlimcnp 26470 rlimcnp2 26471 dchrisum0lem2a 27020 pntleml 27114 pnt 27117 joiniooico 32016 icorempo 36280 icoreresf 36281 isbasisrelowl 36287 icoreelrn 36290 relowlpssretop 36293 asindmre 36619 icof 43966 snunioo1 44273 elicores 44294 dmico 44326 liminfgord 44518 volicorescl 45317 iccdisj2 47578 |
Copyright terms: Public domain | W3C validator |