MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ico Structured version   Visualization version   GIF version

Definition df-ico 13319
Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
df-ico [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-ico
StepHypRef Expression
1 cico 13315 . 2 class [,)
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cxr 11214 . . 3 class *
52cv 1539 . . . . . 6 class 𝑥
6 vz . . . . . . 7 setvar 𝑧
76cv 1539 . . . . . 6 class 𝑧
8 cle 11216 . . . . . 6 class
95, 7, 8wbr 5110 . . . . 5 wff 𝑥𝑧
103cv 1539 . . . . . 6 class 𝑦
11 clt 11215 . . . . . 6 class <
127, 10, 11wbr 5110 . . . . 5 wff 𝑧 < 𝑦
139, 12wa 395 . . . 4 wff (𝑥𝑧𝑧 < 𝑦)
1413, 6, 4crab 3408 . . 3 class {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)}
152, 3, 4, 4, 14cmpo 7392 . 2 class (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
161, 15wceq 1540 1 wff [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
Colors of variables: wff setvar class
This definition is referenced by:  icoval  13351  elico1  13356  elicore  13366  icossico  13384  iccssico  13386  iccssico2  13388  icossxr  13400  icossicc  13404  ioossico  13406  icossioo  13408  icoun  13443  snunioo  13446  snunico  13447  ioojoin  13451  icopnfsup  13834  limsupgord  15445  leordtval2  23106  icomnfordt  23110  lecldbas  23113  mnfnei  23115  icopnfcld  24662  xrtgioo  24702  ioombl  25473  dvfsumrlimge0  25944  dvfsumrlim2  25946  psercnlem2  26341  tanord1  26453  rlimcnp  26882  rlimcnp2  26883  dchrisum0lem2a  27435  pntleml  27529  pnt  27532  joiniooico  32704  icorempo  37346  icoreresf  37347  isbasisrelowl  37353  icoreelrn  37356  relowlpssretop  37359  asindmre  37704  icof  45220  snunioo1  45517  elicores  45538  dmico  45568  liminfgord  45759  volicorescl  46558  iccdisj2  48889
  Copyright terms: Public domain W3C validator