Step | Hyp | Ref
| Expression |
1 | | df-po 5468 |
. . 3
⊢ (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
2 | 1 | biimpi 219 |
. 2
⊢ (𝑅 Po 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
3 | | id 22 |
. . . . . 6
⊢ (𝑥 = 𝐵 → 𝑥 = 𝐵) |
4 | 3, 3 | breq12d 5066 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝑥 ↔ 𝐵𝑅𝐵)) |
5 | 4 | notbid 321 |
. . . 4
⊢ (𝑥 = 𝐵 → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝐵𝑅𝐵)) |
6 | | breq1 5056 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝑦 ↔ 𝐵𝑅𝑦)) |
7 | 6 | anbi1d 633 |
. . . . 5
⊢ (𝑥 = 𝐵 → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) ↔ (𝐵𝑅𝑦 ∧ 𝑦𝑅𝑧))) |
8 | | breq1 5056 |
. . . . 5
⊢ (𝑥 = 𝐵 → (𝑥𝑅𝑧 ↔ 𝐵𝑅𝑧)) |
9 | 7, 8 | imbi12d 348 |
. . . 4
⊢ (𝑥 = 𝐵 → (((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝐵𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝐵𝑅𝑧))) |
10 | 5, 9 | anbi12d 634 |
. . 3
⊢ (𝑥 = 𝐵 → ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝐵𝑅𝑧)))) |
11 | | breq2 5057 |
. . . . . 6
⊢ (𝑦 = 𝐶 → (𝐵𝑅𝑦 ↔ 𝐵𝑅𝐶)) |
12 | | breq1 5056 |
. . . . . 6
⊢ (𝑦 = 𝐶 → (𝑦𝑅𝑧 ↔ 𝐶𝑅𝑧)) |
13 | 11, 12 | anbi12d 634 |
. . . . 5
⊢ (𝑦 = 𝐶 → ((𝐵𝑅𝑦 ∧ 𝑦𝑅𝑧) ↔ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝑧))) |
14 | 13 | imbi1d 345 |
. . . 4
⊢ (𝑦 = 𝐶 → (((𝐵𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝐵𝑅𝑧) ↔ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝑧) → 𝐵𝑅𝑧))) |
15 | 14 | anbi2d 632 |
. . 3
⊢ (𝑦 = 𝐶 → ((¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝐵𝑅𝑧)) ↔ (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝑧) → 𝐵𝑅𝑧)))) |
16 | | breq2 5057 |
. . . . . 6
⊢ (𝑧 = 𝐷 → (𝐶𝑅𝑧 ↔ 𝐶𝑅𝐷)) |
17 | 16 | anbi2d 632 |
. . . . 5
⊢ (𝑧 = 𝐷 → ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝑧) ↔ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷))) |
18 | | breq2 5057 |
. . . . 5
⊢ (𝑧 = 𝐷 → (𝐵𝑅𝑧 ↔ 𝐵𝑅𝐷)) |
19 | 17, 18 | imbi12d 348 |
. . . 4
⊢ (𝑧 = 𝐷 → (((𝐵𝑅𝐶 ∧ 𝐶𝑅𝑧) → 𝐵𝑅𝑧) ↔ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷))) |
20 | 19 | anbi2d 632 |
. . 3
⊢ (𝑧 = 𝐷 → ((¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝑧) → 𝐵𝑅𝑧)) ↔ (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)))) |
21 | 10, 15, 20 | rspc3v 3550 |
. 2
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)))) |
22 | 2, 21 | syl5com 31 |
1
⊢ (𝑅 Po 𝐴 → ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) → 𝐵𝑅𝐷)))) |