Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpotr Structured version   Visualization version   GIF version

Theorem elpotr 35745
Description: A class of transitive sets is partially ordered by E. (Contributed by Scott Fenton, 15-Oct-2010.)
Assertion
Ref Expression
elpotr (∀𝑧𝐴 Tr 𝑧 → E Po 𝐴)
Distinct variable group:   𝑧,𝐴

Proof of Theorem elpotr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alral 3081 . . . . . 6 (∀𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
21alimi 1809 . . . . 5 (∀𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑥𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
3 alral 3081 . . . . 5 (∀𝑥𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
42, 3syl 17 . . . 4 (∀𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
54ralimi 3089 . . 3 (∀𝑧𝐴𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑧𝐴𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
6 ralcom 3295 . . . 4 (∀𝑧𝐴𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑥𝐴𝑧𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
7 ralcom 3295 . . . . 5 (∀𝑧𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
87ralbii 3099 . . . 4 (∀𝑥𝐴𝑧𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
96, 8bitri 275 . . 3 (∀𝑧𝐴𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
105, 9sylib 218 . 2 (∀𝑧𝐴𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
11 dftr2 5285 . . 3 (Tr 𝑧 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
1211ralbii 3099 . 2 (∀𝑧𝐴 Tr 𝑧 ↔ ∀𝑧𝐴𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
13 df-po 5607 . . 3 ( E Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
14 epel 5602 . . . . . . . 8 (𝑥 E 𝑦𝑥𝑦)
15 epel 5602 . . . . . . . 8 (𝑦 E 𝑧𝑦𝑧)
1614, 15anbi12i 627 . . . . . . 7 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
17 epel 5602 . . . . . . 7 (𝑥 E 𝑧𝑥𝑧)
1816, 17imbi12i 350 . . . . . 6 (((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧) ↔ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
19 elirrv 9665 . . . . . . . 8 ¬ 𝑥𝑥
20 epel 5602 . . . . . . . 8 (𝑥 E 𝑥𝑥𝑥)
2119, 20mtbir 323 . . . . . . 7 ¬ 𝑥 E 𝑥
2221biantrur 530 . . . . . 6 (((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧) ↔ (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
2318, 22bitr3i 277 . . . . 5 (((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
2423ralbii 3099 . . . 4 (∀𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑧𝐴𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
25242ralbii 3134 . . 3 (∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
2613, 25bitr4i 278 . 2 ( E Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
2710, 12, 263imtr4i 292 1 (∀𝑧𝐴 Tr 𝑧 → E Po 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1535  wral 3067   class class class wbr 5166  Tr wtr 5283   E cep 5598   Po wpo 5605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator