Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpotr Structured version   Visualization version   GIF version

Theorem elpotr 33028
Description: A class of transitive sets is partially ordered by E. (Contributed by Scott Fenton, 15-Oct-2010.)
Assertion
Ref Expression
elpotr (∀𝑧𝐴 Tr 𝑧 → E Po 𝐴)
Distinct variable group:   𝑧,𝐴

Proof of Theorem elpotr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alral 3149 . . . . . 6 (∀𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
21alimi 1812 . . . . 5 (∀𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑥𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
3 alral 3149 . . . . 5 (∀𝑥𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
42, 3syl 17 . . . 4 (∀𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
54ralimi 3155 . . 3 (∀𝑧𝐴𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑧𝐴𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
6 ralcom 3349 . . . 4 (∀𝑧𝐴𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑥𝐴𝑧𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
7 ralcom 3349 . . . . 5 (∀𝑧𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
87ralbii 3160 . . . 4 (∀𝑥𝐴𝑧𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
96, 8bitri 277 . . 3 (∀𝑧𝐴𝑥𝐴𝑦𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
105, 9sylib 220 . 2 (∀𝑧𝐴𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧) → ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
11 dftr2 5155 . . 3 (Tr 𝑧 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
1211ralbii 3160 . 2 (∀𝑧𝐴 Tr 𝑧 ↔ ∀𝑧𝐴𝑥𝑦((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
13 df-po 5455 . . 3 ( E Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
14 epel 5450 . . . . . . . 8 (𝑥 E 𝑦𝑥𝑦)
15 epel 5450 . . . . . . . 8 (𝑦 E 𝑧𝑦𝑧)
1614, 15anbi12i 628 . . . . . . 7 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
17 epel 5450 . . . . . . 7 (𝑥 E 𝑧𝑥𝑧)
1816, 17imbi12i 353 . . . . . 6 (((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧) ↔ ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
19 elirrv 9041 . . . . . . . 8 ¬ 𝑥𝑥
20 epel 5450 . . . . . . . 8 (𝑥 E 𝑥𝑥𝑥)
2119, 20mtbir 325 . . . . . . 7 ¬ 𝑥 E 𝑥
2221biantrur 533 . . . . . 6 (((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧) ↔ (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
2318, 22bitr3i 279 . . . . 5 (((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ (¬ 𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
2423ralbii 3160 . . . 4 (∀𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑧𝐴𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
25242ralbii 3161 . . 3 (∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥 E 𝑥 ∧ ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
2613, 25bitr4i 280 . 2 ( E Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
2710, 12, 263imtr4i 294 1 (∀𝑧𝐴 Tr 𝑧 → E Po 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wal 1535  wral 3133   class class class wbr 5047  Tr wtr 5153   E cep 5445   Po wpo 5453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5184  ax-nul 5191  ax-pr 5311  ax-reg 9037
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3483  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-nul 4275  df-if 4449  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-br 5048  df-opab 5110  df-tr 5154  df-eprel 5446  df-po 5455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator