| Step | Hyp | Ref
| Expression |
| 1 | | isof1o 7326 |
. . . . . . . . . . 11
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| 2 | | f1of 6829 |
. . . . . . . . . . 11
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) |
| 3 | | ffvelcdm 7082 |
. . . . . . . . . . . . 13
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑑 ∈ 𝐴) → (𝐻‘𝑑) ∈ 𝐵) |
| 4 | 3 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝐻:𝐴⟶𝐵 → (𝑑 ∈ 𝐴 → (𝐻‘𝑑) ∈ 𝐵)) |
| 5 | | ffvelcdm 7082 |
. . . . . . . . . . . . 13
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑒 ∈ 𝐴) → (𝐻‘𝑒) ∈ 𝐵) |
| 6 | 5 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝐻:𝐴⟶𝐵 → (𝑒 ∈ 𝐴 → (𝐻‘𝑒) ∈ 𝐵)) |
| 7 | | ffvelcdm 7082 |
. . . . . . . . . . . . 13
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑓 ∈ 𝐴) → (𝐻‘𝑓) ∈ 𝐵) |
| 8 | 7 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝐻:𝐴⟶𝐵 → (𝑓 ∈ 𝐴 → (𝐻‘𝑓) ∈ 𝐵)) |
| 9 | 4, 6, 8 | 3anim123d 1444 |
. . . . . . . . . . 11
⊢ (𝐻:𝐴⟶𝐵 → ((𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴) → ((𝐻‘𝑑) ∈ 𝐵 ∧ (𝐻‘𝑒) ∈ 𝐵 ∧ (𝐻‘𝑓) ∈ 𝐵))) |
| 10 | 1, 2, 9 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴) → ((𝐻‘𝑑) ∈ 𝐵 ∧ (𝐻‘𝑒) ∈ 𝐵 ∧ (𝐻‘𝑓) ∈ 𝐵))) |
| 11 | 10 | imp 406 |
. . . . . . . . 9
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → ((𝐻‘𝑑) ∈ 𝐵 ∧ (𝐻‘𝑒) ∈ 𝐵 ∧ (𝐻‘𝑓) ∈ 𝐵)) |
| 12 | | breq12 5130 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = (𝐻‘𝑑) ∧ 𝑎 = (𝐻‘𝑑)) → (𝑎𝑆𝑎 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑑))) |
| 13 | 12 | anidms 566 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝐻‘𝑑) → (𝑎𝑆𝑎 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑑))) |
| 14 | 13 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝐻‘𝑑) → (¬ 𝑎𝑆𝑎 ↔ ¬ (𝐻‘𝑑)𝑆(𝐻‘𝑑))) |
| 15 | | breq1 5128 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝐻‘𝑑) → (𝑎𝑆𝑏 ↔ (𝐻‘𝑑)𝑆𝑏)) |
| 16 | 15 | anbi1d 631 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝐻‘𝑑) → ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) ↔ ((𝐻‘𝑑)𝑆𝑏 ∧ 𝑏𝑆𝑐))) |
| 17 | | breq1 5128 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝐻‘𝑑) → (𝑎𝑆𝑐 ↔ (𝐻‘𝑑)𝑆𝑐)) |
| 18 | 16, 17 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝐻‘𝑑) → (((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐) ↔ (((𝐻‘𝑑)𝑆𝑏 ∧ 𝑏𝑆𝑐) → (𝐻‘𝑑)𝑆𝑐))) |
| 19 | 14, 18 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑎 = (𝐻‘𝑑) → ((¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐)) ↔ (¬ (𝐻‘𝑑)𝑆(𝐻‘𝑑) ∧ (((𝐻‘𝑑)𝑆𝑏 ∧ 𝑏𝑆𝑐) → (𝐻‘𝑑)𝑆𝑐)))) |
| 20 | | breq2 5129 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (𝐻‘𝑒) → ((𝐻‘𝑑)𝑆𝑏 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑒))) |
| 21 | | breq1 5128 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (𝐻‘𝑒) → (𝑏𝑆𝑐 ↔ (𝐻‘𝑒)𝑆𝑐)) |
| 22 | 20, 21 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝐻‘𝑒) → (((𝐻‘𝑑)𝑆𝑏 ∧ 𝑏𝑆𝑐) ↔ ((𝐻‘𝑑)𝑆(𝐻‘𝑒) ∧ (𝐻‘𝑒)𝑆𝑐))) |
| 23 | 22 | imbi1d 341 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝐻‘𝑒) → ((((𝐻‘𝑑)𝑆𝑏 ∧ 𝑏𝑆𝑐) → (𝐻‘𝑑)𝑆𝑐) ↔ (((𝐻‘𝑑)𝑆(𝐻‘𝑒) ∧ (𝐻‘𝑒)𝑆𝑐) → (𝐻‘𝑑)𝑆𝑐))) |
| 24 | 23 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑏 = (𝐻‘𝑒) → ((¬ (𝐻‘𝑑)𝑆(𝐻‘𝑑) ∧ (((𝐻‘𝑑)𝑆𝑏 ∧ 𝑏𝑆𝑐) → (𝐻‘𝑑)𝑆𝑐)) ↔ (¬ (𝐻‘𝑑)𝑆(𝐻‘𝑑) ∧ (((𝐻‘𝑑)𝑆(𝐻‘𝑒) ∧ (𝐻‘𝑒)𝑆𝑐) → (𝐻‘𝑑)𝑆𝑐)))) |
| 25 | | breq2 5129 |
. . . . . . . . . . . . 13
⊢ (𝑐 = (𝐻‘𝑓) → ((𝐻‘𝑒)𝑆𝑐 ↔ (𝐻‘𝑒)𝑆(𝐻‘𝑓))) |
| 26 | 25 | anbi2d 630 |
. . . . . . . . . . . 12
⊢ (𝑐 = (𝐻‘𝑓) → (((𝐻‘𝑑)𝑆(𝐻‘𝑒) ∧ (𝐻‘𝑒)𝑆𝑐) ↔ ((𝐻‘𝑑)𝑆(𝐻‘𝑒) ∧ (𝐻‘𝑒)𝑆(𝐻‘𝑓)))) |
| 27 | | breq2 5129 |
. . . . . . . . . . . 12
⊢ (𝑐 = (𝐻‘𝑓) → ((𝐻‘𝑑)𝑆𝑐 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑓))) |
| 28 | 26, 27 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑐 = (𝐻‘𝑓) → ((((𝐻‘𝑑)𝑆(𝐻‘𝑒) ∧ (𝐻‘𝑒)𝑆𝑐) → (𝐻‘𝑑)𝑆𝑐) ↔ (((𝐻‘𝑑)𝑆(𝐻‘𝑒) ∧ (𝐻‘𝑒)𝑆(𝐻‘𝑓)) → (𝐻‘𝑑)𝑆(𝐻‘𝑓)))) |
| 29 | 28 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑐 = (𝐻‘𝑓) → ((¬ (𝐻‘𝑑)𝑆(𝐻‘𝑑) ∧ (((𝐻‘𝑑)𝑆(𝐻‘𝑒) ∧ (𝐻‘𝑒)𝑆𝑐) → (𝐻‘𝑑)𝑆𝑐)) ↔ (¬ (𝐻‘𝑑)𝑆(𝐻‘𝑑) ∧ (((𝐻‘𝑑)𝑆(𝐻‘𝑒) ∧ (𝐻‘𝑒)𝑆(𝐻‘𝑓)) → (𝐻‘𝑑)𝑆(𝐻‘𝑓))))) |
| 30 | 19, 24, 29 | rspc3v 3622 |
. . . . . . . . 9
⊢ (((𝐻‘𝑑) ∈ 𝐵 ∧ (𝐻‘𝑒) ∈ 𝐵 ∧ (𝐻‘𝑓) ∈ 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → (¬ (𝐻‘𝑑)𝑆(𝐻‘𝑑) ∧ (((𝐻‘𝑑)𝑆(𝐻‘𝑒) ∧ (𝐻‘𝑒)𝑆(𝐻‘𝑓)) → (𝐻‘𝑑)𝑆(𝐻‘𝑓))))) |
| 31 | 11, 30 | syl 17 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → (¬ (𝐻‘𝑑)𝑆(𝐻‘𝑑) ∧ (((𝐻‘𝑑)𝑆(𝐻‘𝑒) ∧ (𝐻‘𝑒)𝑆(𝐻‘𝑓)) → (𝐻‘𝑑)𝑆(𝐻‘𝑓))))) |
| 32 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
| 33 | | simpr1 1194 |
. . . . . . . . . . 11
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → 𝑑 ∈ 𝐴) |
| 34 | | isorel 7329 |
. . . . . . . . . . 11
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) → (𝑑𝑅𝑑 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑑))) |
| 35 | 32, 33, 33, 34 | syl12anc 836 |
. . . . . . . . . 10
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → (𝑑𝑅𝑑 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑑))) |
| 36 | 35 | notbid 318 |
. . . . . . . . 9
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → (¬ 𝑑𝑅𝑑 ↔ ¬ (𝐻‘𝑑)𝑆(𝐻‘𝑑))) |
| 37 | | simpr2 1195 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → 𝑒 ∈ 𝐴) |
| 38 | | isorel 7329 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴)) → (𝑑𝑅𝑒 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑒))) |
| 39 | 32, 33, 37, 38 | syl12anc 836 |
. . . . . . . . . . 11
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → (𝑑𝑅𝑒 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑒))) |
| 40 | | simpr3 1196 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → 𝑓 ∈ 𝐴) |
| 41 | | isorel 7329 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → (𝑒𝑅𝑓 ↔ (𝐻‘𝑒)𝑆(𝐻‘𝑓))) |
| 42 | 32, 37, 40, 41 | syl12anc 836 |
. . . . . . . . . . 11
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → (𝑒𝑅𝑓 ↔ (𝐻‘𝑒)𝑆(𝐻‘𝑓))) |
| 43 | 39, 42 | anbi12d 632 |
. . . . . . . . . 10
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → ((𝑑𝑅𝑒 ∧ 𝑒𝑅𝑓) ↔ ((𝐻‘𝑑)𝑆(𝐻‘𝑒) ∧ (𝐻‘𝑒)𝑆(𝐻‘𝑓)))) |
| 44 | | isorel 7329 |
. . . . . . . . . . 11
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → (𝑑𝑅𝑓 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑓))) |
| 45 | 32, 33, 40, 44 | syl12anc 836 |
. . . . . . . . . 10
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → (𝑑𝑅𝑓 ↔ (𝐻‘𝑑)𝑆(𝐻‘𝑓))) |
| 46 | 43, 45 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → (((𝑑𝑅𝑒 ∧ 𝑒𝑅𝑓) → 𝑑𝑅𝑓) ↔ (((𝐻‘𝑑)𝑆(𝐻‘𝑒) ∧ (𝐻‘𝑒)𝑆(𝐻‘𝑓)) → (𝐻‘𝑑)𝑆(𝐻‘𝑓)))) |
| 47 | 36, 46 | anbi12d 632 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → ((¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒 ∧ 𝑒𝑅𝑓) → 𝑑𝑅𝑓)) ↔ (¬ (𝐻‘𝑑)𝑆(𝐻‘𝑑) ∧ (((𝐻‘𝑑)𝑆(𝐻‘𝑒) ∧ (𝐻‘𝑒)𝑆(𝐻‘𝑓)) → (𝐻‘𝑑)𝑆(𝐻‘𝑓))))) |
| 48 | 31, 47 | sylibrd 259 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒 ∧ 𝑒𝑅𝑓) → 𝑑𝑅𝑓)))) |
| 49 | 48 | ex 412 |
. . . . . 6
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ((𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒 ∧ 𝑒𝑅𝑓) → 𝑑𝑅𝑓))))) |
| 50 | 49 | com23 86 |
. . . . 5
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → ((𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴) → (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒 ∧ 𝑒𝑅𝑓) → 𝑑𝑅𝑓))))) |
| 51 | 50 | imp31 417 |
. . . 4
⊢ (((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐))) ∧ (𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐴)) → (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒 ∧ 𝑒𝑅𝑓) → 𝑑𝑅𝑓))) |
| 52 | 51 | ralrimivvva 3192 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐))) → ∀𝑑 ∈ 𝐴 ∀𝑒 ∈ 𝐴 ∀𝑓 ∈ 𝐴 (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒 ∧ 𝑒𝑅𝑓) → 𝑑𝑅𝑓))) |
| 53 | 52 | ex 412 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐)) → ∀𝑑 ∈ 𝐴 ∀𝑒 ∈ 𝐴 ∀𝑓 ∈ 𝐴 (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒 ∧ 𝑒𝑅𝑓) → 𝑑𝑅𝑓)))) |
| 54 | | df-po 5574 |
. 2
⊢ (𝑆 Po 𝐵 ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐))) |
| 55 | | df-po 5574 |
. 2
⊢ (𝑅 Po 𝐴 ↔ ∀𝑑 ∈ 𝐴 ∀𝑒 ∈ 𝐴 ∀𝑓 ∈ 𝐴 (¬ 𝑑𝑅𝑑 ∧ ((𝑑𝑅𝑒 ∧ 𝑒𝑅𝑓) → 𝑑𝑅𝑓))) |
| 56 | 53, 54, 55 | 3imtr4g 296 |
1
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵 → 𝑅 Po 𝐴)) |