Step | Hyp | Ref
| Expression |
1 | | poseq.1 |
. . . . . . . . . . . 12
⊢ 𝑅 Po (𝐴 ∪ {∅}) |
2 | | poseq.2 |
. . . . . . . . . . . . . 14
⊢ 𝐹 = {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} |
3 | | feq2 6566 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑏 → (𝑓:𝑥⟶𝐴 ↔ 𝑓:𝑏⟶𝐴)) |
4 | 3 | cbvrexvw 3373 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥 ∈ On
𝑓:𝑥⟶𝐴 ↔ ∃𝑏 ∈ On 𝑓:𝑏⟶𝐴) |
5 | 4 | abbii 2809 |
. . . . . . . . . . . . . 14
⊢ {𝑓 ∣ ∃𝑥 ∈ On 𝑓:𝑥⟶𝐴} = {𝑓 ∣ ∃𝑏 ∈ On 𝑓:𝑏⟶𝐴} |
6 | 2, 5 | eqtri 2766 |
. . . . . . . . . . . . 13
⊢ 𝐹 = {𝑓 ∣ ∃𝑏 ∈ On 𝑓:𝑏⟶𝐴} |
7 | 6 | orderseqlem 33728 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ 𝐹 → (𝑎‘𝑥) ∈ (𝐴 ∪ {∅})) |
8 | | poirr 5506 |
. . . . . . . . . . . 12
⊢ ((𝑅 Po (𝐴 ∪ {∅}) ∧ (𝑎‘𝑥) ∈ (𝐴 ∪ {∅})) → ¬ (𝑎‘𝑥)𝑅(𝑎‘𝑥)) |
9 | 1, 7, 8 | sylancr 586 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ 𝐹 → ¬ (𝑎‘𝑥)𝑅(𝑎‘𝑥)) |
10 | 9 | intnand 488 |
. . . . . . . . . 10
⊢ (𝑎 ∈ 𝐹 → ¬ (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑎‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑎‘𝑥))) |
11 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑎 ∈ 𝐹 ∧ 𝑥 ∈ On) → ¬ (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑎‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑎‘𝑥))) |
12 | 11 | nrexdv 3197 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝐹 → ¬ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑎‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑎‘𝑥))) |
13 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹) → ¬ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑎‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑎‘𝑥))) |
14 | | imnan 399 |
. . . . . . 7
⊢ (((𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹) → ¬ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑎‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑎‘𝑥))) ↔ ¬ ((𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑎‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑎‘𝑥)))) |
15 | 13, 14 | mpbi 229 |
. . . . . 6
⊢ ¬
((𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑎‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑎‘𝑥))) |
16 | | vex 3426 |
. . . . . . 7
⊢ 𝑎 ∈ V |
17 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑓 = 𝑎 → (𝑓 ∈ 𝐹 ↔ 𝑎 ∈ 𝐹)) |
18 | 17 | anbi1d 629 |
. . . . . . . 8
⊢ (𝑓 = 𝑎 → ((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ↔ (𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹))) |
19 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑎 → (𝑓‘𝑦) = (𝑎‘𝑦)) |
20 | 19 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑎 → ((𝑓‘𝑦) = (𝑔‘𝑦) ↔ (𝑎‘𝑦) = (𝑔‘𝑦))) |
21 | 20 | ralbidv 3120 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑎 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑔‘𝑦))) |
22 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑎 → (𝑓‘𝑥) = (𝑎‘𝑥)) |
23 | 22 | breq1d 5080 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑎 → ((𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ (𝑎‘𝑥)𝑅(𝑔‘𝑥))) |
24 | 21, 23 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑓 = 𝑎 → ((∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)) ↔ (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑔‘𝑥)))) |
25 | 24 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑓 = 𝑎 → (∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)) ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑔‘𝑥)))) |
26 | 18, 25 | anbi12d 630 |
. . . . . . 7
⊢ (𝑓 = 𝑎 → (((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥))) ↔ ((𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑔‘𝑥))))) |
27 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑔 = 𝑎 → (𝑔 ∈ 𝐹 ↔ 𝑎 ∈ 𝐹)) |
28 | 27 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑔 = 𝑎 → ((𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ↔ (𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹))) |
29 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑎 → (𝑔‘𝑦) = (𝑎‘𝑦)) |
30 | 29 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑎 → ((𝑎‘𝑦) = (𝑔‘𝑦) ↔ (𝑎‘𝑦) = (𝑎‘𝑦))) |
31 | 30 | ralbidv 3120 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑎 → (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑎‘𝑦))) |
32 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑎 → (𝑔‘𝑥) = (𝑎‘𝑥)) |
33 | 32 | breq2d 5082 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑎 → ((𝑎‘𝑥)𝑅(𝑔‘𝑥) ↔ (𝑎‘𝑥)𝑅(𝑎‘𝑥))) |
34 | 31, 33 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑔 = 𝑎 → ((∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑔‘𝑥)) ↔ (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑎‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑎‘𝑥)))) |
35 | 34 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑔 = 𝑎 → (∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑔‘𝑥)) ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑎‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑎‘𝑥)))) |
36 | 28, 35 | anbi12d 630 |
. . . . . . 7
⊢ (𝑔 = 𝑎 → (((𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑔‘𝑥))) ↔ ((𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑎‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑎‘𝑥))))) |
37 | | poseq.3 |
. . . . . . 7
⊢ 𝑆 = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)))} |
38 | 16, 16, 26, 36, 37 | brab 5449 |
. . . . . 6
⊢ (𝑎𝑆𝑎 ↔ ((𝑎 ∈ 𝐹 ∧ 𝑎 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑎‘𝑦) = (𝑎‘𝑦) ∧ (𝑎‘𝑥)𝑅(𝑎‘𝑥)))) |
39 | 15, 38 | mtbir 322 |
. . . . 5
⊢ ¬
𝑎𝑆𝑎 |
40 | | vex 3426 |
. . . . . . . 8
⊢ 𝑏 ∈ V |
41 | | raleq 3333 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑔‘𝑦))) |
42 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑓‘𝑥) = (𝑓‘𝑧)) |
43 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑔‘𝑥) = (𝑔‘𝑧)) |
44 | 42, 43 | breq12d 5083 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ (𝑓‘𝑧)𝑅(𝑔‘𝑧))) |
45 | 41, 44 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)) ↔ (∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑧)𝑅(𝑔‘𝑧)))) |
46 | 45 | cbvrexvw 3373 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈ On
(∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)) ↔ ∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑧)𝑅(𝑔‘𝑧))) |
47 | 20 | ralbidv 3120 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑎 → (∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑔‘𝑦))) |
48 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑎 → (𝑓‘𝑧) = (𝑎‘𝑧)) |
49 | 48 | breq1d 5080 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑎 → ((𝑓‘𝑧)𝑅(𝑔‘𝑧) ↔ (𝑎‘𝑧)𝑅(𝑔‘𝑧))) |
50 | 47, 49 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑎 → ((∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑧)𝑅(𝑔‘𝑧)) ↔ (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑔‘𝑧)))) |
51 | 50 | rexbidv 3225 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑎 → (∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑧)𝑅(𝑔‘𝑧)) ↔ ∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑔‘𝑧)))) |
52 | 46, 51 | syl5bb 282 |
. . . . . . . . 9
⊢ (𝑓 = 𝑎 → (∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)) ↔ ∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑔‘𝑧)))) |
53 | 18, 52 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑓 = 𝑎 → (((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥))) ↔ ((𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑔‘𝑧))))) |
54 | | eleq1w 2821 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑏 → (𝑔 ∈ 𝐹 ↔ 𝑏 ∈ 𝐹)) |
55 | 54 | anbi2d 628 |
. . . . . . . . 9
⊢ (𝑔 = 𝑏 → ((𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ↔ (𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹))) |
56 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑏 → (𝑔‘𝑦) = (𝑏‘𝑦)) |
57 | 56 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑏 → ((𝑎‘𝑦) = (𝑔‘𝑦) ↔ (𝑎‘𝑦) = (𝑏‘𝑦))) |
58 | 57 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑏 → (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦))) |
59 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑏 → (𝑔‘𝑧) = (𝑏‘𝑧)) |
60 | 59 | breq2d 5082 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑏 → ((𝑎‘𝑧)𝑅(𝑔‘𝑧) ↔ (𝑎‘𝑧)𝑅(𝑏‘𝑧))) |
61 | 58, 60 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑏 → ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑔‘𝑧)) ↔ (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧)))) |
62 | 61 | rexbidv 3225 |
. . . . . . . . 9
⊢ (𝑔 = 𝑏 → (∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑔‘𝑧)) ↔ ∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧)))) |
63 | 55, 62 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑔 = 𝑏 → (((𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑔‘𝑧))) ↔ ((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ ∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧))))) |
64 | 16, 40, 53, 63, 37 | brab 5449 |
. . . . . . 7
⊢ (𝑎𝑆𝑏 ↔ ((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ ∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧)))) |
65 | | vex 3426 |
. . . . . . . 8
⊢ 𝑐 ∈ V |
66 | | eleq1w 2821 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑏 → (𝑓 ∈ 𝐹 ↔ 𝑏 ∈ 𝐹)) |
67 | 66 | anbi1d 629 |
. . . . . . . . 9
⊢ (𝑓 = 𝑏 → ((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ↔ (𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹))) |
68 | | raleq 3333 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝑤 (𝑓‘𝑦) = (𝑔‘𝑦))) |
69 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝑓‘𝑥) = (𝑓‘𝑤)) |
70 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝑔‘𝑥) = (𝑔‘𝑤)) |
71 | 69, 70 | breq12d 5083 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ (𝑓‘𝑤)𝑅(𝑔‘𝑤))) |
72 | 68, 71 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ((∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)) ↔ (∀𝑦 ∈ 𝑤 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑤)𝑅(𝑔‘𝑤)))) |
73 | 72 | cbvrexvw 3373 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈ On
(∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)) ↔ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑤)𝑅(𝑔‘𝑤))) |
74 | | fveq1 6755 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑏 → (𝑓‘𝑦) = (𝑏‘𝑦)) |
75 | 74 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑏 → ((𝑓‘𝑦) = (𝑔‘𝑦) ↔ (𝑏‘𝑦) = (𝑔‘𝑦))) |
76 | 75 | ralbidv 3120 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑏 → (∀𝑦 ∈ 𝑤 (𝑓‘𝑦) = (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑔‘𝑦))) |
77 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑏 → (𝑓‘𝑤) = (𝑏‘𝑤)) |
78 | 77 | breq1d 5080 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑏 → ((𝑓‘𝑤)𝑅(𝑔‘𝑤) ↔ (𝑏‘𝑤)𝑅(𝑔‘𝑤))) |
79 | 76, 78 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑏 → ((∀𝑦 ∈ 𝑤 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑤)𝑅(𝑔‘𝑤)) ↔ (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑔‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑔‘𝑤)))) |
80 | 79 | rexbidv 3225 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑏 → (∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑤)𝑅(𝑔‘𝑤)) ↔ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑔‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑔‘𝑤)))) |
81 | 73, 80 | syl5bb 282 |
. . . . . . . . 9
⊢ (𝑓 = 𝑏 → (∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)) ↔ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑔‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑔‘𝑤)))) |
82 | 67, 81 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑓 = 𝑏 → (((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥))) ↔ ((𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑔‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑔‘𝑤))))) |
83 | | eleq1w 2821 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑐 → (𝑔 ∈ 𝐹 ↔ 𝑐 ∈ 𝐹)) |
84 | 83 | anbi2d 628 |
. . . . . . . . 9
⊢ (𝑔 = 𝑐 → ((𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ↔ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹))) |
85 | | fveq1 6755 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑐 → (𝑔‘𝑦) = (𝑐‘𝑦)) |
86 | 85 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑐 → ((𝑏‘𝑦) = (𝑔‘𝑦) ↔ (𝑏‘𝑦) = (𝑐‘𝑦))) |
87 | 86 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑐 → (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦))) |
88 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑐 → (𝑔‘𝑤) = (𝑐‘𝑤)) |
89 | 88 | breq2d 5082 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑐 → ((𝑏‘𝑤)𝑅(𝑔‘𝑤) ↔ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) |
90 | 87, 89 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑐 → ((∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑔‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑔‘𝑤)) ↔ (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) |
91 | 90 | rexbidv 3225 |
. . . . . . . . 9
⊢ (𝑔 = 𝑐 → (∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑔‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑔‘𝑤)) ↔ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) |
92 | 84, 91 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑔 = 𝑐 → (((𝑏 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑔‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑔‘𝑤))) ↔ ((𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹) ∧ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))))) |
93 | 40, 65, 82, 92, 37 | brab 5449 |
. . . . . . 7
⊢ (𝑏𝑆𝑐 ↔ ((𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹) ∧ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) |
94 | | simplll 771 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) ∧ (∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧)) ∧ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → 𝑎 ∈ 𝐹) |
95 | | simplrr 774 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) ∧ (∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧)) ∧ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → 𝑐 ∈ 𝐹) |
96 | | an4 652 |
. . . . . . . . . . . . 13
⊢
(((∀𝑦 ∈
𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) ↔ ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧)) ∧ (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) |
97 | 96 | 2rexbii 3178 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈ On
∃𝑤 ∈ On
((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) ↔ ∃𝑧 ∈ On ∃𝑤 ∈ On ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧)) ∧ (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) |
98 | | reeanv 3292 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈ On
∃𝑤 ∈ On
((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧)) ∧ (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) ↔ (∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧)) ∧ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) |
99 | 97, 98 | bitri 274 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈ On
∃𝑤 ∈ On
((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) ↔ (∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧)) ∧ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) |
100 | | eloni 6261 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ On → Ord 𝑧) |
101 | | eloni 6261 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ On → Ord 𝑤) |
102 | | ordtri3or 6283 |
. . . . . . . . . . . . . 14
⊢ ((Ord
𝑧 ∧ Ord 𝑤) → (𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧)) |
103 | 100, 101,
102 | syl2an 595 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧)) |
104 | | simp1l 1195 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑧 ∈ 𝑤 ∧ ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → 𝑧 ∈ On) |
105 | | onelss 6293 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ∈ On → (𝑧 ∈ 𝑤 → 𝑧 ⊆ 𝑤)) |
106 | 105 | imp 406 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤 ∈ On ∧ 𝑧 ∈ 𝑤) → 𝑧 ⊆ 𝑤) |
107 | 106 | adantll 710 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑧 ∈ 𝑤) → 𝑧 ⊆ 𝑤) |
108 | | ssralv 3983 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ⊆ 𝑤 → (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) → ∀𝑦 ∈ 𝑧 (𝑏‘𝑦) = (𝑐‘𝑦))) |
109 | 108 | anim2d 611 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ⊆ 𝑤 → ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) → (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑧 (𝑏‘𝑦) = (𝑐‘𝑦)))) |
110 | | r19.26 3094 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦 ∈
𝑧 ((𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑏‘𝑦) = (𝑐‘𝑦)) ↔ (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑧 (𝑏‘𝑦) = (𝑐‘𝑦))) |
111 | 109, 110 | syl6ibr 251 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ⊆ 𝑤 → ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) → ∀𝑦 ∈ 𝑧 ((𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑏‘𝑦) = (𝑐‘𝑦)))) |
112 | | eqtr 2761 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑏‘𝑦) = (𝑐‘𝑦)) → (𝑎‘𝑦) = (𝑐‘𝑦)) |
113 | 112 | ralimi 3086 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑦 ∈
𝑧 ((𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑏‘𝑦) = (𝑐‘𝑦)) → ∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑐‘𝑦)) |
114 | 111, 113 | syl6 35 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ⊆ 𝑤 → ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) → ∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑐‘𝑦))) |
115 | 107, 114 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑧 ∈ 𝑤) → ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) → ∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑐‘𝑦))) |
116 | 115 | adantrd 491 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑧 ∈ 𝑤) → (((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) → ∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑐‘𝑦))) |
117 | 116 | 3impia 1115 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑧 ∈ 𝑤 ∧ ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → ∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑐‘𝑦)) |
118 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑧 → (𝑏‘𝑦) = (𝑏‘𝑧)) |
119 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑧 → (𝑐‘𝑦) = (𝑐‘𝑧)) |
120 | 118, 119 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑧 → ((𝑏‘𝑦) = (𝑐‘𝑦) ↔ (𝑏‘𝑧) = (𝑐‘𝑧))) |
121 | 120 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ 𝑤 → (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) → (𝑏‘𝑧) = (𝑐‘𝑧))) |
122 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑏‘𝑧) = (𝑐‘𝑧) → ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ↔ (𝑎‘𝑧)𝑅(𝑐‘𝑧))) |
123 | 122 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑏‘𝑧) = (𝑐‘𝑧) → ((𝑎‘𝑧)𝑅(𝑏‘𝑧) → (𝑎‘𝑧)𝑅(𝑐‘𝑧))) |
124 | 121, 123 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ 𝑤 → (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) → ((𝑎‘𝑧)𝑅(𝑏‘𝑧) → (𝑎‘𝑧)𝑅(𝑐‘𝑧)))) |
125 | 124 | com3l 89 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑦 ∈
𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) → ((𝑎‘𝑧)𝑅(𝑏‘𝑧) → (𝑧 ∈ 𝑤 → (𝑎‘𝑧)𝑅(𝑐‘𝑧)))) |
126 | 125 | imp 406 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑦 ∈
𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧)) → (𝑧 ∈ 𝑤 → (𝑎‘𝑧)𝑅(𝑐‘𝑧))) |
127 | 126 | ad2ant2lr 744 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((∀𝑦 ∈
𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) → (𝑧 ∈ 𝑤 → (𝑎‘𝑧)𝑅(𝑐‘𝑧))) |
128 | 127 | impcom 407 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ 𝑤 ∧ ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → (𝑎‘𝑧)𝑅(𝑐‘𝑧)) |
129 | 128 | 3adant1 1128 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑧 ∈ 𝑤 ∧ ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → (𝑎‘𝑧)𝑅(𝑐‘𝑧)) |
130 | | raleq 3333 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑧 → (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ↔ ∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑐‘𝑦))) |
131 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑧 → (𝑎‘𝑡) = (𝑎‘𝑧)) |
132 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑧 → (𝑐‘𝑡) = (𝑐‘𝑧)) |
133 | 131, 132 | breq12d 5083 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑧 → ((𝑎‘𝑡)𝑅(𝑐‘𝑡) ↔ (𝑎‘𝑧)𝑅(𝑐‘𝑧))) |
134 | 130, 133 | anbi12d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑧 → ((∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)) ↔ (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑐‘𝑧)))) |
135 | 134 | rspcev 3552 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ On ∧ (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑐‘𝑧))) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡))) |
136 | 104, 117,
129, 135 | syl12anc 833 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑧 ∈ 𝑤 ∧ ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡))) |
137 | 136 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑧 ∈ 𝑤 ∧ ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))) |
138 | 137 | 3exp 1117 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧 ∈ 𝑤 → (((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) → (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))))) |
139 | 2 | orderseqlem 33728 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 ∈ 𝐹 → (𝑎‘𝑧) ∈ (𝐴 ∪ {∅})) |
140 | 139 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → (𝑎‘𝑧) ∈ (𝐴 ∪ {∅})) |
141 | 2 | orderseqlem 33728 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑏 ∈ 𝐹 → (𝑏‘𝑧) ∈ (𝐴 ∪ {∅})) |
142 | 141 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → (𝑏‘𝑧) ∈ (𝐴 ∪ {∅})) |
143 | 2 | orderseqlem 33728 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 ∈ 𝐹 → (𝑐‘𝑧) ∈ (𝐴 ∪ {∅})) |
144 | 143 | ad2antll 725 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → (𝑐‘𝑧) ∈ (𝐴 ∪ {∅})) |
145 | 140, 142,
144 | 3jca 1126 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ((𝑎‘𝑧) ∈ (𝐴 ∪ {∅}) ∧ (𝑏‘𝑧) ∈ (𝐴 ∪ {∅}) ∧ (𝑐‘𝑧) ∈ (𝐴 ∪ {∅}))) |
146 | | potr 5507 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 Po (𝐴 ∪ {∅}) ∧ ((𝑎‘𝑧) ∈ (𝐴 ∪ {∅}) ∧ (𝑏‘𝑧) ∈ (𝐴 ∪ {∅}) ∧ (𝑐‘𝑧) ∈ (𝐴 ∪ {∅}))) → (((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑧)𝑅(𝑐‘𝑧)) → (𝑎‘𝑧)𝑅(𝑐‘𝑧))) |
147 | 1, 145, 146 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → (((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑧)𝑅(𝑐‘𝑧)) → (𝑎‘𝑧)𝑅(𝑐‘𝑧))) |
148 | 147 | impcom 407 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑧)𝑅(𝑐‘𝑧)) ∧ ((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹))) → (𝑎‘𝑧)𝑅(𝑐‘𝑧)) |
149 | 113, 148 | anim12i 612 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑦 ∈
𝑧 ((𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ (((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑧)𝑅(𝑐‘𝑧)) ∧ ((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)))) → (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑐‘𝑧))) |
150 | 149 | anassrs 467 |
. . . . . . . . . . . . . . . . . 18
⊢
(((∀𝑦 ∈
𝑧 ((𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑧)𝑅(𝑐‘𝑧))) ∧ ((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹))) → (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑐‘𝑧))) |
151 | 150, 135 | sylan2 592 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ On ∧ ((∀𝑦 ∈ 𝑧 ((𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑧)𝑅(𝑐‘𝑧))) ∧ ((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)))) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡))) |
152 | 151 | exp32 420 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ On →
((∀𝑦 ∈ 𝑧 ((𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑧)𝑅(𝑐‘𝑧))) → (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡))))) |
153 | | raleq 3333 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑤 → (∀𝑦 ∈ 𝑧 (𝑏‘𝑦) = (𝑐‘𝑦) ↔ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦))) |
154 | 153 | anbi2d 628 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑤 → ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑧 (𝑏‘𝑦) = (𝑐‘𝑦)) ↔ (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)))) |
155 | 110, 154 | syl5bb 282 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑤 → (∀𝑦 ∈ 𝑧 ((𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑏‘𝑦) = (𝑐‘𝑦)) ↔ (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)))) |
156 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑤 → (𝑏‘𝑧) = (𝑏‘𝑤)) |
157 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑤 → (𝑐‘𝑧) = (𝑐‘𝑤)) |
158 | 156, 157 | breq12d 5083 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑤 → ((𝑏‘𝑧)𝑅(𝑐‘𝑧) ↔ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) |
159 | 158 | anbi2d 628 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑤 → (((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑧)𝑅(𝑐‘𝑧)) ↔ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) |
160 | 155, 159 | anbi12d 630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑤 → ((∀𝑦 ∈ 𝑧 ((𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑧)𝑅(𝑐‘𝑧))) ↔ ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))))) |
161 | 160 | imbi1d 341 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑤 → (((∀𝑦 ∈ 𝑧 ((𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑧)𝑅(𝑐‘𝑧))) → (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))) ↔ (((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) → (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))))) |
162 | 152, 161 | syl5ibcom 244 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ On → (𝑧 = 𝑤 → (((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) → (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))))) |
163 | 162 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑧 = 𝑤 → (((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) → (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))))) |
164 | | simp1r 1196 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑤 ∈ 𝑧 ∧ ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → 𝑤 ∈ On) |
165 | | onelss 6293 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ On → (𝑤 ∈ 𝑧 → 𝑤 ⊆ 𝑧)) |
166 | 165 | imp 406 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ 𝑧) → 𝑤 ⊆ 𝑧) |
167 | 166 | adantlr 711 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑤 ∈ 𝑧) → 𝑤 ⊆ 𝑧) |
168 | | ssralv 3983 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ⊆ 𝑧 → (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) → ∀𝑦 ∈ 𝑤 (𝑎‘𝑦) = (𝑏‘𝑦))) |
169 | 168 | anim1d 610 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ⊆ 𝑧 → ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) → (∀𝑦 ∈ 𝑤 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)))) |
170 | | r19.26 3094 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦 ∈
𝑤 ((𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑏‘𝑦) = (𝑐‘𝑦)) ↔ (∀𝑦 ∈ 𝑤 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦))) |
171 | 112 | ralimi 3086 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦 ∈
𝑤 ((𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑏‘𝑦) = (𝑐‘𝑦)) → ∀𝑦 ∈ 𝑤 (𝑎‘𝑦) = (𝑐‘𝑦)) |
172 | 170, 171 | sylbir 234 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((∀𝑦 ∈
𝑤 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) → ∀𝑦 ∈ 𝑤 (𝑎‘𝑦) = (𝑐‘𝑦)) |
173 | 169, 172 | syl6 35 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ⊆ 𝑧 → ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) → ∀𝑦 ∈ 𝑤 (𝑎‘𝑦) = (𝑐‘𝑦))) |
174 | 173 | adantrd 491 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ⊆ 𝑧 → (((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) → ∀𝑦 ∈ 𝑤 (𝑎‘𝑦) = (𝑐‘𝑦))) |
175 | 167, 174 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑤 ∈ 𝑧) → (((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) → ∀𝑦 ∈ 𝑤 (𝑎‘𝑦) = (𝑐‘𝑦))) |
176 | 175 | 3impia 1115 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑤 ∈ 𝑧 ∧ ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → ∀𝑦 ∈ 𝑤 (𝑎‘𝑦) = (𝑐‘𝑦)) |
177 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑤 → (𝑎‘𝑦) = (𝑎‘𝑤)) |
178 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑤 → (𝑏‘𝑦) = (𝑏‘𝑤)) |
179 | 177, 178 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑤 → ((𝑎‘𝑦) = (𝑏‘𝑦) ↔ (𝑎‘𝑤) = (𝑏‘𝑤))) |
180 | 179 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ 𝑧 → (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) → (𝑎‘𝑤) = (𝑏‘𝑤))) |
181 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑎‘𝑤) = (𝑏‘𝑤) → ((𝑎‘𝑤)𝑅(𝑐‘𝑤) ↔ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) |
182 | 181 | biimprd 247 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑎‘𝑤) = (𝑏‘𝑤) → ((𝑏‘𝑤)𝑅(𝑐‘𝑤) → (𝑎‘𝑤)𝑅(𝑐‘𝑤))) |
183 | 180, 182 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ∈ 𝑧 → (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) → ((𝑏‘𝑤)𝑅(𝑐‘𝑤) → (𝑎‘𝑤)𝑅(𝑐‘𝑤)))) |
184 | 183 | com3l 89 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑦 ∈
𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) → ((𝑏‘𝑤)𝑅(𝑐‘𝑤) → (𝑤 ∈ 𝑧 → (𝑎‘𝑤)𝑅(𝑐‘𝑤)))) |
185 | 184 | imp 406 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑦 ∈
𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)) → (𝑤 ∈ 𝑧 → (𝑎‘𝑤)𝑅(𝑐‘𝑤))) |
186 | 185 | ad2ant2rl 745 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((∀𝑦 ∈
𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) → (𝑤 ∈ 𝑧 → (𝑎‘𝑤)𝑅(𝑐‘𝑤))) |
187 | 186 | impcom 407 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ 𝑧 ∧ ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → (𝑎‘𝑤)𝑅(𝑐‘𝑤)) |
188 | 187 | 3adant1 1128 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑤 ∈ 𝑧 ∧ ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → (𝑎‘𝑤)𝑅(𝑐‘𝑤)) |
189 | | raleq 3333 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑤 → (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ↔ ∀𝑦 ∈ 𝑤 (𝑎‘𝑦) = (𝑐‘𝑦))) |
190 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑤 → (𝑎‘𝑡) = (𝑎‘𝑤)) |
191 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑤 → (𝑐‘𝑡) = (𝑐‘𝑤)) |
192 | 190, 191 | breq12d 5083 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑤 → ((𝑎‘𝑡)𝑅(𝑐‘𝑡) ↔ (𝑎‘𝑤)𝑅(𝑐‘𝑤))) |
193 | 189, 192 | anbi12d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑤 → ((∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)) ↔ (∀𝑦 ∈ 𝑤 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑤)𝑅(𝑐‘𝑤)))) |
194 | 193 | rspcev 3552 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ On ∧ (∀𝑦 ∈ 𝑤 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑤)𝑅(𝑐‘𝑤))) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡))) |
195 | 164, 176,
188, 194 | syl12anc 833 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑤 ∈ 𝑧 ∧ ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡))) |
196 | 195 | a1d 25 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 ∈ On ∧ 𝑤 ∈ On) ∧ 𝑤 ∈ 𝑧 ∧ ((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))) |
197 | 196 | 3exp 1117 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → (𝑤 ∈ 𝑧 → (((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) → (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))))) |
198 | 138, 163,
197 | 3jaod 1426 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) → ((𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤 ∨ 𝑤 ∈ 𝑧) → (((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) → (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))))) |
199 | 103, 198 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ On ∧ 𝑤 ∈ On) →
(((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) → (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡))))) |
200 | 199 | rexlimivv 3220 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈ On
∃𝑤 ∈ On
((∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ ∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦)) ∧ ((𝑎‘𝑧)𝑅(𝑏‘𝑧) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) → (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))) |
201 | 99, 200 | sylbir 234 |
. . . . . . . . . 10
⊢
((∃𝑧 ∈ On
(∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧)) ∧ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤))) → (((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))) |
202 | 201 | impcom 407 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) ∧ (∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧)) ∧ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡))) |
203 | 94, 95, 202 | jca31 514 |
. . . . . . . 8
⊢ ((((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ (𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹)) ∧ (∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧)) ∧ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → ((𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹) ∧ ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))) |
204 | 203 | an4s 656 |
. . . . . . 7
⊢ ((((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹) ∧ ∃𝑧 ∈ On (∀𝑦 ∈ 𝑧 (𝑎‘𝑦) = (𝑏‘𝑦) ∧ (𝑎‘𝑧)𝑅(𝑏‘𝑧))) ∧ ((𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹) ∧ ∃𝑤 ∈ On (∀𝑦 ∈ 𝑤 (𝑏‘𝑦) = (𝑐‘𝑦) ∧ (𝑏‘𝑤)𝑅(𝑐‘𝑤)))) → ((𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹) ∧ ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))) |
205 | 64, 93, 204 | syl2anb 597 |
. . . . . 6
⊢ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → ((𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹) ∧ ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))) |
206 | | raleq 3333 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝑡 (𝑓‘𝑦) = (𝑔‘𝑦))) |
207 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑡 → (𝑓‘𝑥) = (𝑓‘𝑡)) |
208 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑡 → (𝑔‘𝑥) = (𝑔‘𝑡)) |
209 | 207, 208 | breq12d 5083 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑡 → ((𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ (𝑓‘𝑡)𝑅(𝑔‘𝑡))) |
210 | 206, 209 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑡 → ((∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)) ↔ (∀𝑦 ∈ 𝑡 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑡)𝑅(𝑔‘𝑡)))) |
211 | 210 | cbvrexvw 3373 |
. . . . . . . . 9
⊢
(∃𝑥 ∈ On
(∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)) ↔ ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑡)𝑅(𝑔‘𝑡))) |
212 | 20 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑎 → (∀𝑦 ∈ 𝑡 (𝑓‘𝑦) = (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑔‘𝑦))) |
213 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑎 → (𝑓‘𝑡) = (𝑎‘𝑡)) |
214 | 213 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑎 → ((𝑓‘𝑡)𝑅(𝑔‘𝑡) ↔ (𝑎‘𝑡)𝑅(𝑔‘𝑡))) |
215 | 212, 214 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑎 → ((∀𝑦 ∈ 𝑡 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑡)𝑅(𝑔‘𝑡)) ↔ (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑔‘𝑡)))) |
216 | 215 | rexbidv 3225 |
. . . . . . . . 9
⊢ (𝑓 = 𝑎 → (∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑡)𝑅(𝑔‘𝑡)) ↔ ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑔‘𝑡)))) |
217 | 211, 216 | syl5bb 282 |
. . . . . . . 8
⊢ (𝑓 = 𝑎 → (∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥)) ↔ ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑔‘𝑡)))) |
218 | 18, 217 | anbi12d 630 |
. . . . . . 7
⊢ (𝑓 = 𝑎 → (((𝑓 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥)𝑅(𝑔‘𝑥))) ↔ ((𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑔‘𝑡))))) |
219 | 83 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑔 = 𝑐 → ((𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ↔ (𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹))) |
220 | 85 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑐 → ((𝑎‘𝑦) = (𝑔‘𝑦) ↔ (𝑎‘𝑦) = (𝑐‘𝑦))) |
221 | 220 | ralbidv 3120 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑐 → (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦))) |
222 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑐 → (𝑔‘𝑡) = (𝑐‘𝑡)) |
223 | 222 | breq2d 5082 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑐 → ((𝑎‘𝑡)𝑅(𝑔‘𝑡) ↔ (𝑎‘𝑡)𝑅(𝑐‘𝑡))) |
224 | 221, 223 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑔 = 𝑐 → ((∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑔‘𝑡)) ↔ (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))) |
225 | 224 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑔 = 𝑐 → (∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑔‘𝑡)) ↔ ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))) |
226 | 219, 225 | anbi12d 630 |
. . . . . . 7
⊢ (𝑔 = 𝑐 → (((𝑎 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹) ∧ ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑔‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑔‘𝑡))) ↔ ((𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹) ∧ ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡))))) |
227 | 16, 65, 218, 226, 37 | brab 5449 |
. . . . . 6
⊢ (𝑎𝑆𝑐 ↔ ((𝑎 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹) ∧ ∃𝑡 ∈ On (∀𝑦 ∈ 𝑡 (𝑎‘𝑦) = (𝑐‘𝑦) ∧ (𝑎‘𝑡)𝑅(𝑐‘𝑡)))) |
228 | 205, 227 | sylibr 233 |
. . . . 5
⊢ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐) |
229 | 39, 228 | pm3.2i 470 |
. . . 4
⊢ (¬
𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐)) |
230 | 229 | a1i 11 |
. . 3
⊢ ((𝑎 ∈ 𝐹 ∧ 𝑏 ∈ 𝐹 ∧ 𝑐 ∈ 𝐹) → (¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐))) |
231 | 230 | rgen3 3127 |
. 2
⊢
∀𝑎 ∈
𝐹 ∀𝑏 ∈ 𝐹 ∀𝑐 ∈ 𝐹 (¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐)) |
232 | | df-po 5494 |
. 2
⊢ (𝑆 Po 𝐹 ↔ ∀𝑎 ∈ 𝐹 ∀𝑏 ∈ 𝐹 ∀𝑐 ∈ 𝐹 (¬ 𝑎𝑆𝑎 ∧ ((𝑎𝑆𝑏 ∧ 𝑏𝑆𝑐) → 𝑎𝑆𝑐))) |
233 | 231, 232 | mpbir 230 |
1
⊢ 𝑆 Po 𝐹 |