| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | brinxp 5764 | . . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥𝑅𝑥 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)) | 
| 2 | 1 | anidms 566 | . . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → (𝑥𝑅𝑥 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)) | 
| 3 | 2 | ad2antrr 726 | . . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑥 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)) | 
| 4 | 3 | notbid 318 | . . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)) | 
| 5 |  | brinxp 5764 | . . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦)) | 
| 6 | 5 | adantr 480 | . . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑦 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦)) | 
| 7 |  | brinxp 5764 | . . . . . . . . 9
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑦𝑅𝑧 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧)) | 
| 8 | 7 | adantll 714 | . . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝑦𝑅𝑧 ↔ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧)) | 
| 9 | 6, 8 | anbi12d 632 | . . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧))) | 
| 10 |  | brinxp 5764 | . . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑧 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)) | 
| 11 | 10 | adantlr 715 | . . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝑥𝑅𝑧 ↔ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)) | 
| 12 | 9, 11 | imbi12d 344 | . . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))) | 
| 13 | 4, 12 | anbi12d 632 | . . . . 5
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)))) | 
| 14 | 13 | ralbidva 3176 | . . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧 ∈ 𝐴 (¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)))) | 
| 15 | 14 | ralbidva 3176 | . . 3
⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)))) | 
| 16 | 15 | ralbiia 3091 | . 2
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))) | 
| 17 |  | df-po 5592 | . 2
⊢ (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) | 
| 18 |  | df-po 5592 | . 2
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))) | 
| 19 | 16, 17, 18 | 3bitr4i 303 | 1
⊢ (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴) |