| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sneqi | ⊢ {𝐴} = {𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sneq 4583 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} = {𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-sn 4574 |
| This theorem is referenced by: fnressn 7091 fressnfv 7093 snriota 7336 xpassen 8984 ids1 14505 s3tpop 14816 bpoly3 15965 strle1 17069 2strop 17140 ghmeqker 19155 pws1 20243 pwsmgp 20245 lpival 21261 mat1dimelbas 22386 mat1dim0 22388 mat1dimid 22389 mat1dimscm 22390 mat1dimmul 22391 mat1f1o 22393 imasdsf1olem 24288 ehl0 25344 nosupcbv 27641 noinfcbv 27656 bday1s 27775 vtxval3sn 29021 iedgval3sn 29022 uspgr1v1eop 29227 hh0oi 31883 eulerpartlemmf 34388 bnj601 34932 dffv5 35966 zrdivrng 38003 isdrngo1 38006 aks5lem3a 42292 aks5lem7 42303 prjspval2 42716 mapfzcons 42819 mapfzcons1 42820 mapfzcons2 42822 df3o3 43417 fourierdlem80 46294 lmod1zr 48604 ovsng2 48969 setc1oterm 49602 setc1ohomfval 49604 setc1ocofval 49605 funcsetc1o 49608 termcfuncval 49643 termcnatval 49646 |
| Copyright terms: Public domain | W3C validator |