| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sneqi | ⊢ {𝐴} = {𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sneq 4587 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} = {𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-sn 4578 |
| This theorem is referenced by: fnressn 7092 fressnfv 7094 snriota 7339 xpassen 8988 ids1 14504 s3tpop 14816 bpoly3 15965 strle1 17069 2strop 17140 ghmeqker 19122 pws1 20210 pwsmgp 20212 lpival 21231 mat1dimelbas 22356 mat1dim0 22358 mat1dimid 22359 mat1dimscm 22360 mat1dimmul 22361 mat1f1o 22363 imasdsf1olem 24259 ehl0 25315 nosupcbv 27612 noinfcbv 27627 bday1s 27745 vtxval3sn 28988 iedgval3sn 28989 uspgr1v1eop 29194 hh0oi 31847 eulerpartlemmf 34343 bnj601 34887 dffv5 35902 zrdivrng 37937 isdrngo1 37940 aks5lem3a 42166 aks5lem7 42177 prjspval2 42590 mapfzcons 42693 mapfzcons1 42694 mapfzcons2 42696 df3o3 43291 fourierdlem80 46171 lmod1zr 48482 ovsng2 48847 setc1oterm 49480 setc1ohomfval 49482 setc1ocofval 49483 funcsetc1o 49486 termcfuncval 49521 termcnatval 49524 |
| Copyright terms: Public domain | W3C validator |