Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sneqi | Structured version Visualization version GIF version |
Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
Ref | Expression |
---|---|
sneqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sneqi | ⊢ {𝐴} = {𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sneq 4568 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} = {𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-sn 4559 |
This theorem is referenced by: fnressn 7012 fressnfv 7014 snriota 7246 xpassen 8806 ids1 14230 s3tpop 14550 bpoly3 15696 strle1 16787 2strop1 16866 ghmeqker 18776 pws1 19770 pwsmgp 19772 lpival 20429 mat1dimelbas 21528 mat1dim0 21530 mat1dimid 21531 mat1dimscm 21532 mat1dimmul 21533 mat1f1o 21535 imasdsf1olem 23434 ehl0 24486 vtxval3sn 27316 iedgval3sn 27317 uspgr1v1eop 27519 hh0oi 30166 eulerpartlemmf 32242 bnj601 32800 nosupcbv 33832 noinfcbv 33847 bday1s 33952 dffv5 34153 zrdivrng 36038 isdrngo1 36041 prjspval2 40373 mapfzcons 40454 mapfzcons1 40455 mapfzcons2 40457 df3o3 41524 fourierdlem80 43617 lmod1zr 45722 mndtchom 46257 |
Copyright terms: Public domain | W3C validator |