| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sneqi | ⊢ {𝐴} = {𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sneq 4602 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} = {𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-sn 4593 |
| This theorem is referenced by: fnressn 7133 fressnfv 7135 snriota 7380 xpassen 9040 ids1 14569 s3tpop 14882 bpoly3 16031 strle1 17135 2strop 17206 ghmeqker 19182 pws1 20241 pwsmgp 20243 lpival 21241 mat1dimelbas 22365 mat1dim0 22367 mat1dimid 22368 mat1dimscm 22369 mat1dimmul 22370 mat1f1o 22372 imasdsf1olem 24268 ehl0 25324 nosupcbv 27621 noinfcbv 27636 bday1s 27750 vtxval3sn 28977 iedgval3sn 28978 uspgr1v1eop 29183 hh0oi 31839 eulerpartlemmf 34373 bnj601 34917 dffv5 35919 zrdivrng 37954 isdrngo1 37957 aks5lem3a 42184 aks5lem7 42195 prjspval2 42608 mapfzcons 42711 mapfzcons1 42712 mapfzcons2 42714 df3o3 43310 fourierdlem80 46191 lmod1zr 48486 ovsng2 48851 setc1oterm 49484 setc1ohomfval 49486 setc1ocofval 49487 funcsetc1o 49490 termcfuncval 49525 termcnatval 49528 |
| Copyright terms: Public domain | W3C validator |