| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sneqi | ⊢ {𝐴} = {𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sneq 4599 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} = {𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-sn 4590 |
| This theorem is referenced by: fnressn 7130 fressnfv 7132 snriota 7377 xpassen 9035 ids1 14562 s3tpop 14875 bpoly3 16024 strle1 17128 2strop 17199 ghmeqker 19175 pws1 20234 pwsmgp 20236 lpival 21234 mat1dimelbas 22358 mat1dim0 22360 mat1dimid 22361 mat1dimscm 22362 mat1dimmul 22363 mat1f1o 22365 imasdsf1olem 24261 ehl0 25317 nosupcbv 27614 noinfcbv 27629 bday1s 27743 vtxval3sn 28970 iedgval3sn 28971 uspgr1v1eop 29176 hh0oi 31832 eulerpartlemmf 34366 bnj601 34910 dffv5 35912 zrdivrng 37947 isdrngo1 37950 aks5lem3a 42177 aks5lem7 42188 prjspval2 42601 mapfzcons 42704 mapfzcons1 42705 mapfzcons2 42707 df3o3 43303 fourierdlem80 46184 lmod1zr 48482 ovsng2 48847 setc1oterm 49480 setc1ohomfval 49482 setc1ocofval 49483 funcsetc1o 49486 termcfuncval 49521 termcnatval 49524 |
| Copyright terms: Public domain | W3C validator |