![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sneqi | Structured version Visualization version GIF version |
Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
Ref | Expression |
---|---|
sneqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sneqi | ⊢ {𝐴} = {𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sneq 4658 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} = {𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-sn 4649 |
This theorem is referenced by: fnressn 7192 fressnfv 7194 snriota 7438 xpassen 9132 ids1 14645 s3tpop 14958 bpoly3 16106 strle1 17205 2strop1 17286 ghmeqker 19283 pws1 20348 pwsmgp 20350 lpival 21357 mat1dimelbas 22498 mat1dim0 22500 mat1dimid 22501 mat1dimscm 22502 mat1dimmul 22503 mat1f1o 22505 imasdsf1olem 24404 ehl0 25470 nosupcbv 27765 noinfcbv 27780 bday1s 27894 cutpw2 28435 pw2bday 28436 vtxval3sn 29078 iedgval3sn 29079 uspgr1v1eop 29284 hh0oi 31935 eulerpartlemmf 34340 bnj601 34896 dffv5 35888 zrdivrng 37913 isdrngo1 37916 aks5lem3a 42146 aks5lem7 42157 prjspval2 42568 mapfzcons 42672 mapfzcons1 42673 mapfzcons2 42675 df3o3 43276 fourierdlem80 46107 lmod1zr 48222 mndtchom 48757 |
Copyright terms: Public domain | W3C validator |