Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sneqi | Structured version Visualization version GIF version |
Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
Ref | Expression |
---|---|
sneqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sneqi | ⊢ {𝐴} = {𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sneq 4571 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} = {𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-sn 4562 |
This theorem is referenced by: fnressn 7030 fressnfv 7032 snriota 7266 xpassen 8853 ids1 14302 s3tpop 14622 bpoly3 15768 strle1 16859 2strop1 16940 ghmeqker 18861 pws1 19855 pwsmgp 19857 lpival 20516 mat1dimelbas 21620 mat1dim0 21622 mat1dimid 21623 mat1dimscm 21624 mat1dimmul 21625 mat1f1o 21627 imasdsf1olem 23526 ehl0 24581 vtxval3sn 27413 iedgval3sn 27414 uspgr1v1eop 27616 hh0oi 30265 eulerpartlemmf 32342 bnj601 32900 nosupcbv 33905 noinfcbv 33920 bday1s 34025 dffv5 34226 zrdivrng 36111 isdrngo1 36114 prjspval2 40452 mapfzcons 40538 mapfzcons1 40539 mapfzcons2 40541 df3o3 41635 fourierdlem80 43727 lmod1zr 45834 mndtchom 46371 |
Copyright terms: Public domain | W3C validator |