| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sneqi | ⊢ {𝐴} = {𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sneq 4595 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} = {𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-sn 4586 |
| This theorem is referenced by: fnressn 7112 fressnfv 7114 snriota 7359 xpassen 9012 ids1 14538 s3tpop 14851 bpoly3 16000 strle1 17104 2strop 17175 ghmeqker 19151 pws1 20210 pwsmgp 20212 lpival 21210 mat1dimelbas 22334 mat1dim0 22336 mat1dimid 22337 mat1dimscm 22338 mat1dimmul 22339 mat1f1o 22341 imasdsf1olem 24237 ehl0 25293 nosupcbv 27590 noinfcbv 27605 bday1s 27719 vtxval3sn 28946 iedgval3sn 28947 uspgr1v1eop 29152 hh0oi 31805 eulerpartlemmf 34339 bnj601 34883 dffv5 35885 zrdivrng 37920 isdrngo1 37923 aks5lem3a 42150 aks5lem7 42161 prjspval2 42574 mapfzcons 42677 mapfzcons1 42678 mapfzcons2 42680 df3o3 43276 fourierdlem80 46157 lmod1zr 48455 ovsng2 48820 setc1oterm 49453 setc1ohomfval 49455 setc1ocofval 49456 funcsetc1o 49459 termcfuncval 49494 termcnatval 49497 |
| Copyright terms: Public domain | W3C validator |