| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sneqi | ⊢ {𝐴} = {𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sneq 4595 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} = {𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-sn 4586 |
| This theorem is referenced by: fnressn 7112 fressnfv 7114 snriota 7359 xpassen 9012 ids1 14538 s3tpop 14851 bpoly3 16000 strle1 17104 2strop 17175 ghmeqker 19157 pws1 20245 pwsmgp 20247 lpival 21266 mat1dimelbas 22391 mat1dim0 22393 mat1dimid 22394 mat1dimscm 22395 mat1dimmul 22396 mat1f1o 22398 imasdsf1olem 24294 ehl0 25350 nosupcbv 27647 noinfcbv 27662 bday1s 27780 vtxval3sn 29023 iedgval3sn 29024 uspgr1v1eop 29229 hh0oi 31882 eulerpartlemmf 34359 bnj601 34903 dffv5 35905 zrdivrng 37940 isdrngo1 37943 aks5lem3a 42170 aks5lem7 42181 prjspval2 42594 mapfzcons 42697 mapfzcons1 42698 mapfzcons2 42700 df3o3 43296 fourierdlem80 46177 lmod1zr 48475 ovsng2 48840 setc1oterm 49473 setc1ohomfval 49475 setc1ocofval 49476 funcsetc1o 49479 termcfuncval 49514 termcnatval 49517 |
| Copyright terms: Public domain | W3C validator |