| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
| Ref | Expression |
|---|---|
| sneqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| sneqi | ⊢ {𝐴} = {𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | sneq 4611 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} = {𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-sn 4602 |
| This theorem is referenced by: fnressn 7148 fressnfv 7150 snriota 7395 xpassen 9080 ids1 14615 s3tpop 14928 bpoly3 16074 strle1 17177 2strop 17250 ghmeqker 19226 pws1 20285 pwsmgp 20287 lpival 21285 mat1dimelbas 22409 mat1dim0 22411 mat1dimid 22412 mat1dimscm 22413 mat1dimmul 22414 mat1f1o 22416 imasdsf1olem 24312 ehl0 25369 nosupcbv 27666 noinfcbv 27681 bday1s 27795 vtxval3sn 29022 iedgval3sn 29023 uspgr1v1eop 29228 hh0oi 31884 eulerpartlemmf 34407 bnj601 34951 dffv5 35942 zrdivrng 37977 isdrngo1 37980 aks5lem3a 42202 aks5lem7 42213 prjspval2 42636 mapfzcons 42739 mapfzcons1 42740 mapfzcons2 42742 df3o3 43338 fourierdlem80 46215 lmod1zr 48469 ovsng2 48835 setc1oterm 49376 setc1ohomfval 49378 setc1ocofval 49379 funcsetc1o 49382 termcfuncval 49417 termcnatval 49420 |
| Copyright terms: Public domain | W3C validator |