![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sneqi | Structured version Visualization version GIF version |
Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
Ref | Expression |
---|---|
sneqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sneqi | ⊢ {𝐴} = {𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sneq 4641 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} = {𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-sn 4632 |
This theorem is referenced by: fnressn 7178 fressnfv 7180 snriota 7421 xpassen 9105 ids1 14632 s3tpop 14945 bpoly3 16091 strle1 17192 2strop1 17273 ghmeqker 19274 pws1 20339 pwsmgp 20341 lpival 21352 mat1dimelbas 22493 mat1dim0 22495 mat1dimid 22496 mat1dimscm 22497 mat1dimmul 22498 mat1f1o 22500 imasdsf1olem 24399 ehl0 25465 nosupcbv 27762 noinfcbv 27777 bday1s 27891 cutpw2 28432 pw2bday 28433 vtxval3sn 29075 iedgval3sn 29076 uspgr1v1eop 29281 hh0oi 31932 eulerpartlemmf 34357 bnj601 34913 dffv5 35906 zrdivrng 37940 isdrngo1 37943 aks5lem3a 42171 aks5lem7 42182 prjspval2 42600 mapfzcons 42704 mapfzcons1 42705 mapfzcons2 42707 df3o3 43304 fourierdlem80 46142 lmod1zr 48339 mndtchom 48893 |
Copyright terms: Public domain | W3C validator |