Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sneqi | Structured version Visualization version GIF version |
Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004.) |
Ref | Expression |
---|---|
sneqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
sneqi | ⊢ {𝐴} = {𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | sneq 4576 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} = {𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 {csn 4566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-sn 4567 |
This theorem is referenced by: fnressn 7024 fressnfv 7026 snriota 7259 xpassen 8822 ids1 14283 s3tpop 14603 bpoly3 15749 strle1 16840 2strop1 16921 ghmeqker 18842 pws1 19836 pwsmgp 19838 lpival 20497 mat1dimelbas 21601 mat1dim0 21603 mat1dimid 21604 mat1dimscm 21605 mat1dimmul 21606 mat1f1o 21608 imasdsf1olem 23507 ehl0 24562 vtxval3sn 27394 iedgval3sn 27395 uspgr1v1eop 27597 hh0oi 30244 eulerpartlemmf 32321 bnj601 32879 nosupcbv 33884 noinfcbv 33899 bday1s 34004 dffv5 34205 zrdivrng 36090 isdrngo1 36093 prjspval2 40432 mapfzcons 40518 mapfzcons1 40519 mapfzcons2 40521 df3o3 41588 fourierdlem80 43681 lmod1zr 45786 mndtchom 46323 |
Copyright terms: Public domain | W3C validator |