| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df2o2 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
| Ref | Expression |
|---|---|
| df2o2 | ⊢ 2o = {∅, {∅}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 8399 | . 2 ⊢ 2o = {∅, 1o} | |
| 2 | df1o2 8398 | . . 3 ⊢ 1o = {∅} | |
| 3 | 2 | preq2i 4689 | . 2 ⊢ {∅, 1o} = {∅, {∅}} |
| 4 | 1, 3 | eqtri 2756 | 1 ⊢ 2o = {∅, {∅}} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4282 {csn 4575 {cpr 4577 1oc1o 8384 2oc2o 8385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-un 3903 df-nul 4283 df-sn 4576 df-pr 4578 df-suc 6317 df-1o 8391 df-2o 8392 |
| This theorem is referenced by: 2dom 8959 pw2eng 9003 pwdju1 10089 canthp1lem1 10550 pr0hash2ex 14317 hashpw 14345 cat1 18006 znidomb 21500 r12 35127 ssoninhaus 36513 onint1 36514 pw2f1ocnv 43154 2omomeqom 43420 df3o3 43431 setc2othin 49591 |
| Copyright terms: Public domain | W3C validator |