MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2o2 Structured version   Visualization version   GIF version

Theorem df2o2 8531
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2 2o = {∅, {∅}}

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 8530 . 2 2o = {∅, 1o}
2 df1o2 8529 . . 3 1o = {∅}
32preq2i 4762 . 2 {∅, 1o} = {∅, {∅}}
41, 3eqtri 2768 1 2o = {∅, {∅}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  c0 4352  {csn 4648  {cpr 4650  1oc1o 8515  2oc2o 8516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-un 3981  df-nul 4353  df-sn 4649  df-pr 4651  df-suc 6401  df-1o 8522  df-2o 8523
This theorem is referenced by:  2dom  9095  pw2eng  9144  pwdju1  10260  canthp1lem1  10721  pr0hash2ex  14457  hashpw  14485  cat1  18164  znidomb  21603  ssoninhaus  36414  onint1  36415  pw2f1ocnv  42994  2omomeqom  43265  df3o3  43276  setc2othin  48723
  Copyright terms: Public domain W3C validator