MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2o2 Structured version   Visualization version   GIF version

Theorem df2o2 8489
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2 2o = {∅, {∅}}

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 8488 . 2 2o = {∅, 1o}
2 df1o2 8487 . . 3 1o = {∅}
32preq2i 4737 . 2 {∅, 1o} = {∅, {∅}}
41, 3eqtri 2755 1 2o = {∅, {∅}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  c0 4318  {csn 4624  {cpr 4626  1oc1o 8473  2oc2o 8474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471  df-dif 3947  df-un 3949  df-nul 4319  df-sn 4625  df-pr 4627  df-suc 6369  df-1o 8480  df-2o 8481
This theorem is referenced by:  2dom  9046  pw2eng  9094  pwdju1  10205  canthp1lem1  10667  pr0hash2ex  14391  hashpw  14419  cat1  18077  znidomb  21482  ssoninhaus  35868  onint1  35869  pw2f1ocnv  42380  2omomeqom  42655  df3o3  42666  setc2othin  47985
  Copyright terms: Public domain W3C validator