![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df2o2 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
df2o2 | ⊢ 2o = {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8513 | . 2 ⊢ 2o = {∅, 1o} | |
2 | df1o2 8512 | . . 3 ⊢ 1o = {∅} | |
3 | 2 | preq2i 4742 | . 2 ⊢ {∅, 1o} = {∅, {∅}} |
4 | 1, 3 | eqtri 2763 | 1 ⊢ 2o = {∅, {∅}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∅c0 4339 {csn 4631 {cpr 4633 1oc1o 8498 2oc2o 8499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-nul 4340 df-sn 4632 df-pr 4634 df-suc 6392 df-1o 8505 df-2o 8506 |
This theorem is referenced by: 2dom 9069 pw2eng 9117 pwdju1 10229 canthp1lem1 10690 pr0hash2ex 14444 hashpw 14472 cat1 18151 znidomb 21598 ssoninhaus 36431 onint1 36432 pw2f1ocnv 43026 2omomeqom 43293 df3o3 43304 setc2othin 48857 |
Copyright terms: Public domain | W3C validator |