MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2o2 Structured version   Visualization version   GIF version

Theorem df2o2 8494
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2 2o = {∅, {∅}}

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 8493 . 2 2o = {∅, 1o}
2 df1o2 8492 . . 3 1o = {∅}
32preq2i 4742 . 2 {∅, 1o} = {∅, {∅}}
41, 3eqtri 2753 1 2o = {∅, {∅}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  c0 4323  {csn 4629  {cpr 4631  1oc1o 8478  2oc2o 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3465  df-dif 3948  df-un 3950  df-nul 4324  df-sn 4630  df-pr 4632  df-suc 6375  df-1o 8485  df-2o 8486
This theorem is referenced by:  2dom  9053  pw2eng  9101  pwdju1  10213  canthp1lem1  10675  pr0hash2ex  14399  hashpw  14427  cat1  18085  znidomb  21499  ssoninhaus  36002  onint1  36003  pw2f1ocnv  42523  2omomeqom  42797  df3o3  42808  setc2othin  48174
  Copyright terms: Public domain W3C validator