![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df2o2 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
df2o2 | ⊢ 2𝑜 = {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 7811 | . 2 ⊢ 2𝑜 = {∅, 1𝑜} | |
2 | df1o2 7810 | . . 3 ⊢ 1𝑜 = {∅} | |
3 | 2 | preq2i 4459 | . 2 ⊢ {∅, 1𝑜} = {∅, {∅}} |
4 | 1, 3 | eqtri 2819 | 1 ⊢ 2𝑜 = {∅, {∅}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∅c0 4113 {csn 4366 {cpr 4368 1𝑜c1o 7790 2𝑜c2o 7791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-v 3385 df-dif 3770 df-un 3772 df-nul 4114 df-sn 4367 df-pr 4369 df-suc 5945 df-1o 7797 df-2o 7798 |
This theorem is referenced by: 2dom 8266 pw2eng 8306 pwcda1 9302 canthp1lem1 9760 pr0hash2ex 13441 hashpw 13468 znidomb 20228 ssoninhaus 32947 onint1 32948 pw2f1ocnv 38377 df3o3 39093 |
Copyright terms: Public domain | W3C validator |