MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2o2 Structured version   Visualization version   GIF version

Theorem df2o2 8400
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2 2o = {∅, {∅}}

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 8399 . 2 2o = {∅, 1o}
2 df1o2 8398 . . 3 1o = {∅}
32preq2i 4689 . 2 {∅, 1o} = {∅, {∅}}
41, 3eqtri 2756 1 2o = {∅, {∅}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  c0 4282  {csn 4575  {cpr 4577  1oc1o 8384  2oc2o 8385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-dif 3901  df-un 3903  df-nul 4283  df-sn 4576  df-pr 4578  df-suc 6317  df-1o 8391  df-2o 8392
This theorem is referenced by:  2dom  8959  pw2eng  9003  pwdju1  10089  canthp1lem1  10550  pr0hash2ex  14317  hashpw  14345  cat1  18006  znidomb  21500  r12  35127  ssoninhaus  36513  onint1  36514  pw2f1ocnv  43154  2omomeqom  43420  df3o3  43431  setc2othin  49591
  Copyright terms: Public domain W3C validator