MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2o2 Structured version   Visualization version   GIF version

Theorem df2o2 8218
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2 2o = {∅, {∅}}

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 8217 . 2 2o = {∅, 1o}
2 df1o2 8214 . . 3 1o = {∅}
32preq2i 4653 . 2 {∅, 1o} = {∅, {∅}}
41, 3eqtri 2765 1 2o = {∅, {∅}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  c0 4237  {csn 4541  {cpr 4543  1oc1o 8195  2oc2o 8196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-dif 3869  df-un 3871  df-nul 4238  df-sn 4542  df-pr 4544  df-suc 6219  df-1o 8202  df-2o 8203
This theorem is referenced by:  2dom  8707  pw2eng  8751  pwdju1  9804  canthp1lem1  10266  pr0hash2ex  13975  hashpw  14003  cat1  17603  znidomb  20526  ssoninhaus  34374  onint1  34375  pw2f1ocnv  40562  df3o3  41312  setc2othin  46010
  Copyright terms: Public domain W3C validator