Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df2o2 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
df2o2 | ⊢ 2o = {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8282 | . 2 ⊢ 2o = {∅, 1o} | |
2 | df1o2 8279 | . . 3 ⊢ 1o = {∅} | |
3 | 2 | preq2i 4670 | . 2 ⊢ {∅, 1o} = {∅, {∅}} |
4 | 1, 3 | eqtri 2766 | 1 ⊢ 2o = {∅, {∅}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4253 {csn 4558 {cpr 4560 1oc1o 8260 2oc2o 8261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-pr 4561 df-suc 6257 df-1o 8267 df-2o 8268 |
This theorem is referenced by: 2dom 8774 pw2eng 8818 pwdju1 9877 canthp1lem1 10339 pr0hash2ex 14051 hashpw 14079 cat1 17728 znidomb 20681 ssoninhaus 34564 onint1 34565 pw2f1ocnv 40775 df3o3 41524 setc2othin 46225 |
Copyright terms: Public domain | W3C validator |