MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2o2 Structured version   Visualization version   GIF version

Theorem df2o2 8394
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2 2o = {∅, {∅}}

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 8393 . 2 2o = {∅, 1o}
2 df1o2 8392 . . 3 1o = {∅}
32preq2i 4690 . 2 {∅, 1o} = {∅, {∅}}
41, 3eqtri 2754 1 2o = {∅, {∅}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  c0 4283  {csn 4576  {cpr 4578  1oc1o 8378  2oc2o 8379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3905  df-un 3907  df-nul 4284  df-sn 4577  df-pr 4579  df-suc 6312  df-1o 8385  df-2o 8386
This theorem is referenced by:  2dom  8952  pw2eng  8996  pwdju1  10079  canthp1lem1  10540  pr0hash2ex  14312  hashpw  14340  cat1  18001  znidomb  21496  ssoninhaus  36481  onint1  36482  pw2f1ocnv  43069  2omomeqom  43335  df3o3  43346  setc2othin  49497
  Copyright terms: Public domain W3C validator