![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df2o2 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
df2o2 | ⊢ 2o = {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8530 | . 2 ⊢ 2o = {∅, 1o} | |
2 | df1o2 8529 | . . 3 ⊢ 1o = {∅} | |
3 | 2 | preq2i 4762 | . 2 ⊢ {∅, 1o} = {∅, {∅}} |
4 | 1, 3 | eqtri 2768 | 1 ⊢ 2o = {∅, {∅}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∅c0 4352 {csn 4648 {cpr 4650 1oc1o 8515 2oc2o 8516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-pr 4651 df-suc 6401 df-1o 8522 df-2o 8523 |
This theorem is referenced by: 2dom 9095 pw2eng 9144 pwdju1 10260 canthp1lem1 10721 pr0hash2ex 14457 hashpw 14485 cat1 18164 znidomb 21603 ssoninhaus 36414 onint1 36415 pw2f1ocnv 42994 2omomeqom 43265 df3o3 43276 setc2othin 48723 |
Copyright terms: Public domain | W3C validator |