| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df2o2 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
| Ref | Expression |
|---|---|
| df2o2 | ⊢ 2o = {∅, {∅}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 8493 | . 2 ⊢ 2o = {∅, 1o} | |
| 2 | df1o2 8492 | . . 3 ⊢ 1o = {∅} | |
| 3 | 2 | preq2i 4718 | . 2 ⊢ {∅, 1o} = {∅, {∅}} |
| 4 | 1, 3 | eqtri 2759 | 1 ⊢ 2o = {∅, {∅}} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∅c0 4313 {csn 4606 {cpr 4608 1oc1o 8478 2oc2o 8479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-nul 4314 df-sn 4607 df-pr 4609 df-suc 6363 df-1o 8485 df-2o 8486 |
| This theorem is referenced by: 2dom 9049 pw2eng 9097 pwdju1 10210 canthp1lem1 10671 pr0hash2ex 14431 hashpw 14459 cat1 18115 znidomb 21527 ssoninhaus 36471 onint1 36472 pw2f1ocnv 43028 2omomeqom 43294 df3o3 43305 setc2othin 49319 |
| Copyright terms: Public domain | W3C validator |