| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df2o2 | Structured version Visualization version GIF version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
| Ref | Expression |
|---|---|
| df2o2 | ⊢ 2o = {∅, {∅}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 8393 | . 2 ⊢ 2o = {∅, 1o} | |
| 2 | df1o2 8392 | . . 3 ⊢ 1o = {∅} | |
| 3 | 2 | preq2i 4690 | . 2 ⊢ {∅, 1o} = {∅, {∅}} |
| 4 | 1, 3 | eqtri 2754 | 1 ⊢ 2o = {∅, {∅}} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4283 {csn 4576 {cpr 4578 1oc1o 8378 2oc2o 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-un 3907 df-nul 4284 df-sn 4577 df-pr 4579 df-suc 6312 df-1o 8385 df-2o 8386 |
| This theorem is referenced by: 2dom 8952 pw2eng 8996 pwdju1 10079 canthp1lem1 10540 pr0hash2ex 14312 hashpw 14340 cat1 18001 znidomb 21496 ssoninhaus 36481 onint1 36482 pw2f1ocnv 43069 2omomeqom 43335 df3o3 43346 setc2othin 49497 |
| Copyright terms: Public domain | W3C validator |