MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2o2 Structured version   Visualization version   GIF version

Theorem df2o2 8472
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2 2o = {∅, {∅}}

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 8471 . 2 2o = {∅, 1o}
2 df1o2 8470 . . 3 1o = {∅}
32preq2i 4741 . 2 {∅, 1o} = {∅, {∅}}
41, 3eqtri 2761 1 2o = {∅, {∅}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  c0 4322  {csn 4628  {cpr 4630  1oc1o 8456  2oc2o 8457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-dif 3951  df-un 3953  df-nul 4323  df-sn 4629  df-pr 4631  df-suc 6368  df-1o 8463  df-2o 8464
This theorem is referenced by:  2dom  9027  pw2eng  9075  pwdju1  10182  canthp1lem1  10644  pr0hash2ex  14365  hashpw  14393  cat1  18044  znidomb  21109  ssoninhaus  35322  onint1  35323  pw2f1ocnv  41762  2omomeqom  42039  df3o3  42050  setc2othin  47630
  Copyright terms: Public domain W3C validator