MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df2o2 Structured version   Visualization version   GIF version

Theorem df2o2 8446
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.)
Assertion
Ref Expression
df2o2 2o = {∅, {∅}}

Proof of Theorem df2o2
StepHypRef Expression
1 df2o3 8445 . 2 2o = {∅, 1o}
2 df1o2 8444 . . 3 1o = {∅}
32preq2i 4704 . 2 {∅, 1o} = {∅, {∅}}
41, 3eqtri 2753 1 2o = {∅, {∅}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4299  {csn 4592  {cpr 4594  1oc1o 8430  2oc2o 8431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-un 3922  df-nul 4300  df-sn 4593  df-pr 4595  df-suc 6341  df-1o 8437  df-2o 8438
This theorem is referenced by:  2dom  9004  pw2eng  9052  pwdju1  10151  canthp1lem1  10612  pr0hash2ex  14380  hashpw  14408  cat1  18066  znidomb  21478  ssoninhaus  36443  onint1  36444  pw2f1ocnv  43033  2omomeqom  43299  df3o3  43310  setc2othin  49459
  Copyright terms: Public domain W3C validator