Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df2o2 | Structured version Visualization version GIF version |
Description: Expanded value of the ordinal number 2. (Contributed by NM, 29-Jan-2004.) |
Ref | Expression |
---|---|
df2o2 | ⊢ 2o = {∅, {∅}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8305 | . 2 ⊢ 2o = {∅, 1o} | |
2 | df1o2 8304 | . . 3 ⊢ 1o = {∅} | |
3 | 2 | preq2i 4673 | . 2 ⊢ {∅, 1o} = {∅, {∅}} |
4 | 1, 3 | eqtri 2766 | 1 ⊢ 2o = {∅, {∅}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4256 {csn 4561 {cpr 4563 1oc1o 8290 2oc2o 8291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-sn 4562 df-pr 4564 df-suc 6272 df-1o 8297 df-2o 8298 |
This theorem is referenced by: 2dom 8820 pw2eng 8865 pwdju1 9946 canthp1lem1 10408 pr0hash2ex 14123 hashpw 14151 cat1 17812 znidomb 20769 ssoninhaus 34637 onint1 34638 pw2f1ocnv 40859 df3o3 41635 setc2othin 46337 |
Copyright terms: Public domain | W3C validator |