![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfop | Structured version Visualization version GIF version |
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
dfop.1 | ⊢ 𝐴 ∈ V |
dfop.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dfop | ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfop.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | dfop.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | dfopg 4671 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
4 | 1, 2, 3 | mp2an 680 | 1 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1508 ∈ wcel 2051 Vcvv 3408 {csn 4435 {cpr 4437 〈cop 4441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-v 3410 df-dif 3825 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-op 4442 |
This theorem is referenced by: opi1 5213 opi2 5214 op1stb 5216 opeqpr 5247 propssopi 5250 uniop 5257 xpsspw 5528 relop 5567 funopg 6219 |
Copyright terms: Public domain | W3C validator |