MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfop Structured version   Visualization version   GIF version

Theorem dfop 4800
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
dfop.1 𝐴 ∈ V
dfop.2 𝐵 ∈ V
Assertion
Ref Expression
dfop 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}

Proof of Theorem dfop
StepHypRef Expression
1 dfop.1 . 2 𝐴 ∈ V
2 dfop.2 . 2 𝐵 ∈ V
3 dfopg 4799 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
41, 2, 3mp2an 688 1 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  {cpr 4560  cop 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-nul 4254  df-if 4457  df-op 4565
This theorem is referenced by:  opi1  5377  opi2  5378  op1stb  5380  opeqpr  5413  propssopi  5416  uniop  5423  xpsspw  5708  relop  5748  funopg  6452
  Copyright terms: Public domain W3C validator