Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfop | Structured version Visualization version GIF version |
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
dfop.1 | ⊢ 𝐴 ∈ V |
dfop.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dfop | ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfop.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | dfop.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | dfopg 4814 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3441 {csn 4572 {cpr 4574 〈cop 4578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-dif 3900 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-op 4579 |
This theorem is referenced by: opi1 5407 opi2 5408 op1stb 5410 opeqpr 5443 propssopi 5446 uniop 5453 xpsspw 5745 relop 5786 funopg 6512 |
Copyright terms: Public domain | W3C validator |