Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfop | Structured version Visualization version GIF version |
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
dfop.1 | ⊢ 𝐴 ∈ V |
dfop.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dfop | ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfop.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | dfop.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | dfopg 4802 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 {cpr 4563 〈cop 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-nul 4257 df-if 4460 df-op 4568 |
This theorem is referenced by: opi1 5383 opi2 5384 op1stb 5386 opeqpr 5419 propssopi 5422 uniop 5429 xpsspw 5719 relop 5759 funopg 6468 |
Copyright terms: Public domain | W3C validator |