| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfop | Structured version Visualization version GIF version | ||
| Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| dfop.1 | ⊢ 𝐴 ∈ V |
| dfop.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| dfop | ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfop.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | dfop.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | dfopg 4822 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3436 {csn 4577 {cpr 4579 〈cop 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-ss 3920 df-nul 4285 df-if 4477 df-op 4584 |
| This theorem is referenced by: opi1 5411 opi2 5412 op1stb 5414 opeqpr 5448 propssopi 5451 uniop 5458 xpsspw 5752 relop 5793 funopg 6516 |
| Copyright terms: Public domain | W3C validator |