MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfop Structured version   Visualization version   GIF version

Theorem dfop 4872
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
dfop.1 𝐴 ∈ V
dfop.2 𝐵 ∈ V
Assertion
Ref Expression
dfop 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}

Proof of Theorem dfop
StepHypRef Expression
1 dfop.1 . 2 𝐴 ∈ V
2 dfop.2 . 2 𝐵 ∈ V
3 dfopg 4871 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
41, 2, 3mp2an 689 1 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  Vcvv 3473  {csn 4628  {cpr 4630  cop 4634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-op 4635
This theorem is referenced by:  opi1  5468  opi2  5469  op1stb  5471  opeqpr  5505  propssopi  5508  uniop  5515  xpsspw  5809  relop  5850  funopg  6582
  Copyright terms: Public domain W3C validator