| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfop | Structured version Visualization version GIF version | ||
| Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| dfop.1 | ⊢ 𝐴 ∈ V |
| dfop.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| dfop | ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfop.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | dfop.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | dfopg 4820 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4573 {cpr 4575 〈cop 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-ss 3914 df-nul 4281 df-if 4473 df-op 4580 |
| This theorem is referenced by: opi1 5406 opi2 5407 op1stb 5409 opeqpr 5443 propssopi 5446 uniop 5453 xpsspw 5748 relop 5789 funopg 6515 |
| Copyright terms: Public domain | W3C validator |