![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfop | Structured version Visualization version GIF version |
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
dfop.1 | ⊢ 𝐴 ∈ V |
dfop.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dfop | ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfop.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | dfop.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | dfopg 4895 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 {cpr 4650 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-if 4549 df-op 4655 |
This theorem is referenced by: opi1 5488 opi2 5489 op1stb 5491 opeqpr 5524 propssopi 5527 uniop 5534 xpsspw 5833 relop 5875 funopg 6612 |
Copyright terms: Public domain | W3C validator |