MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfop Structured version   Visualization version   GIF version

Theorem dfop 4848
Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
dfop.1 𝐴 ∈ V
dfop.2 𝐵 ∈ V
Assertion
Ref Expression
dfop 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}

Proof of Theorem dfop
StepHypRef Expression
1 dfop.1 . 2 𝐴 ∈ V
2 dfop.2 . 2 𝐵 ∈ V
3 dfopg 4847 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
41, 2, 3mp2an 692 1 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3459  {csn 4601  {cpr 4603  cop 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-dif 3929  df-ss 3943  df-nul 4309  df-if 4501  df-op 4608
This theorem is referenced by:  opi1  5443  opi2  5444  op1stb  5446  opeqpr  5480  propssopi  5483  uniop  5490  xpsspw  5788  relop  5830  funopg  6570
  Copyright terms: Public domain W3C validator