| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1stb | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 6203 to extract the second member, op1sta 6201 for an alternate version, and op1st 7979 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
| Ref | Expression |
|---|---|
| op1stb.1 | ⊢ 𝐴 ∈ V |
| op1stb.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op1stb | ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op1stb.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 2 | op1stb.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | dfop 4839 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| 4 | 3 | inteqi 4917 | . . . 4 ⊢ ∩ 〈𝐴, 𝐵〉 = ∩ {{𝐴}, {𝐴, 𝐵}} |
| 5 | snex 5394 | . . . . . 6 ⊢ {𝐴} ∈ V | |
| 6 | prex 5395 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ V | |
| 7 | 5, 6 | intpr 4949 | . . . . 5 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}) |
| 8 | snsspr1 4781 | . . . . . 6 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
| 9 | dfss2 3935 | . . . . . 6 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}) | |
| 10 | 8, 9 | mpbi 230 | . . . . 5 ⊢ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴} |
| 11 | 7, 10 | eqtri 2753 | . . . 4 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = {𝐴} |
| 12 | 4, 11 | eqtri 2753 | . . 3 ⊢ ∩ 〈𝐴, 𝐵〉 = {𝐴} |
| 13 | 12 | inteqi 4917 | . 2 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = ∩ {𝐴} |
| 14 | 1 | intsn 4951 | . 2 ⊢ ∩ {𝐴} = 𝐴 |
| 15 | 13, 14 | eqtri 2753 | 1 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 {csn 4592 {cpr 4594 〈cop 4598 ∩ cint 4913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-int 4914 |
| This theorem is referenced by: elreldm 5902 op2ndb 6203 elxp5 7902 1stval2 7988 fundmen 9005 xpsnen 9029 |
| Copyright terms: Public domain | W3C validator |