![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op1stb | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 5874 to extract the second member, op1sta 5872 for an alternate version, and op1st 7453 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
op1stb.1 | ⊢ 𝐴 ∈ V |
op1stb.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1stb | ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op1stb.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | op1stb.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | dfop 4635 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
4 | 3 | inteqi 4714 | . . . 4 ⊢ ∩ 〈𝐴, 𝐵〉 = ∩ {{𝐴}, {𝐴, 𝐵}} |
5 | snex 5140 | . . . . . 6 ⊢ {𝐴} ∈ V | |
6 | prex 5141 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ V | |
7 | 5, 6 | intpr 4743 | . . . . 5 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}) |
8 | snsspr1 4576 | . . . . . 6 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
9 | df-ss 3805 | . . . . . 6 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}) | |
10 | 8, 9 | mpbi 222 | . . . . 5 ⊢ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴} |
11 | 7, 10 | eqtri 2801 | . . . 4 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = {𝐴} |
12 | 4, 11 | eqtri 2801 | . . 3 ⊢ ∩ 〈𝐴, 𝐵〉 = {𝐴} |
13 | 12 | inteqi 4714 | . 2 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = ∩ {𝐴} |
14 | 1 | intsn 4746 | . 2 ⊢ ∩ {𝐴} = 𝐴 |
15 | 13, 14 | eqtri 2801 | 1 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2106 Vcvv 3397 ∩ cin 3790 ⊆ wss 3791 {csn 4397 {cpr 4399 〈cop 4403 ∩ cint 4710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-int 4711 |
This theorem is referenced by: elreldm 5595 op2ndb 5874 elxp5 7390 1stval2 7462 fundmen 8315 xpsnen 8332 |
Copyright terms: Public domain | W3C validator |