![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op1stb | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 6258 to extract the second member, op1sta 6256 for an alternate version, and op1st 8038 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
op1stb.1 | ⊢ 𝐴 ∈ V |
op1stb.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1stb | ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op1stb.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
2 | op1stb.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | dfop 4896 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
4 | 3 | inteqi 4974 | . . . 4 ⊢ ∩ 〈𝐴, 𝐵〉 = ∩ {{𝐴}, {𝐴, 𝐵}} |
5 | snex 5451 | . . . . . 6 ⊢ {𝐴} ∈ V | |
6 | prex 5452 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ V | |
7 | 5, 6 | intpr 5006 | . . . . 5 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}) |
8 | snsspr1 4839 | . . . . . 6 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
9 | dfss2 3994 | . . . . . 6 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}) | |
10 | 8, 9 | mpbi 230 | . . . . 5 ⊢ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴} |
11 | 7, 10 | eqtri 2768 | . . . 4 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = {𝐴} |
12 | 4, 11 | eqtri 2768 | . . 3 ⊢ ∩ 〈𝐴, 𝐵〉 = {𝐴} |
13 | 12 | inteqi 4974 | . 2 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = ∩ {𝐴} |
14 | 1 | intsn 5008 | . 2 ⊢ ∩ {𝐴} = 𝐴 |
15 | 13, 14 | eqtri 2768 | 1 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 {csn 4648 {cpr 4650 〈cop 4654 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-int 4971 |
This theorem is referenced by: elreldm 5960 op2ndb 6258 elxp5 7963 1stval2 8047 fundmen 9096 xpsnen 9121 |
Copyright terms: Public domain | W3C validator |