| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1stb | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 6216 to extract the second member, op1sta 6214 for an alternate version, and op1st 7996 for the preferred version.) (Contributed by NM, 25-Nov-2003.) |
| Ref | Expression |
|---|---|
| op1stb.1 | ⊢ 𝐴 ∈ V |
| op1stb.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op1stb | ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | op1stb.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
| 2 | op1stb.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | dfop 4848 | . . . . 5 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| 4 | 3 | inteqi 4926 | . . . 4 ⊢ ∩ 〈𝐴, 𝐵〉 = ∩ {{𝐴}, {𝐴, 𝐵}} |
| 5 | snex 5406 | . . . . . 6 ⊢ {𝐴} ∈ V | |
| 6 | prex 5407 | . . . . . 6 ⊢ {𝐴, 𝐵} ∈ V | |
| 7 | 5, 6 | intpr 4958 | . . . . 5 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}) |
| 8 | snsspr1 4790 | . . . . . 6 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
| 9 | dfss2 3944 | . . . . . 6 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}) | |
| 10 | 8, 9 | mpbi 230 | . . . . 5 ⊢ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴} |
| 11 | 7, 10 | eqtri 2758 | . . . 4 ⊢ ∩ {{𝐴}, {𝐴, 𝐵}} = {𝐴} |
| 12 | 4, 11 | eqtri 2758 | . . 3 ⊢ ∩ 〈𝐴, 𝐵〉 = {𝐴} |
| 13 | 12 | inteqi 4926 | . 2 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = ∩ {𝐴} |
| 14 | 1 | intsn 4960 | . 2 ⊢ ∩ {𝐴} = 𝐴 |
| 15 | 13, 14 | eqtri 2758 | 1 ⊢ ∩ ∩ 〈𝐴, 𝐵〉 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 {csn 4601 {cpr 4603 〈cop 4607 ∩ cint 4922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-int 4923 |
| This theorem is referenced by: elreldm 5915 op2ndb 6216 elxp5 7919 1stval2 8005 fundmen 9045 xpsnen 9069 |
| Copyright terms: Public domain | W3C validator |