MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1stb Structured version   Visualization version   GIF version

Theorem op1stb 5409
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 6174 to extract the second member, op1sta 6172 for an alternate version, and op1st 7929 for the preferred version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1 𝐴 ∈ V
op1stb.2 𝐵 ∈ V
Assertion
Ref Expression
op1stb 𝐴, 𝐵⟩ = 𝐴

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6 𝐴 ∈ V
2 op1stb.2 . . . . . 6 𝐵 ∈ V
31, 2dfop 4821 . . . . 5 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43inteqi 4899 . . . 4 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
5 snex 5372 . . . . . 6 {𝐴} ∈ V
6 prex 5373 . . . . . 6 {𝐴, 𝐵} ∈ V
75, 6intpr 4930 . . . . 5 {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵})
8 snsspr1 4763 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
9 dfss2 3915 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
108, 9mpbi 230 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
117, 10eqtri 2754 . . . 4 {{𝐴}, {𝐴, 𝐵}} = {𝐴}
124, 11eqtri 2754 . . 3 𝐴, 𝐵⟩ = {𝐴}
1312inteqi 4899 . 2 𝐴, 𝐵⟩ = {𝐴}
141intsn 4932 . 2 {𝐴} = 𝐴
1513, 14eqtri 2754 1 𝐴, 𝐵⟩ = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896  wss 3897  {csn 4573  {cpr 4575  cop 4579   cint 4895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-int 4896
This theorem is referenced by:  elreldm  5874  op2ndb  6174  elxp5  7853  1stval2  7938  fundmen  8953  xpsnen  8974
  Copyright terms: Public domain W3C validator