MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1stb Structured version   Visualization version   GIF version

Theorem op1stb 5491
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 6258 to extract the second member, op1sta 6256 for an alternate version, and op1st 8038 for the preferred version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1 𝐴 ∈ V
op1stb.2 𝐵 ∈ V
Assertion
Ref Expression
op1stb 𝐴, 𝐵⟩ = 𝐴

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6 𝐴 ∈ V
2 op1stb.2 . . . . . 6 𝐵 ∈ V
31, 2dfop 4896 . . . . 5 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43inteqi 4974 . . . 4 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
5 snex 5451 . . . . . 6 {𝐴} ∈ V
6 prex 5452 . . . . . 6 {𝐴, 𝐵} ∈ V
75, 6intpr 5006 . . . . 5 {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵})
8 snsspr1 4839 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
9 dfss2 3994 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
108, 9mpbi 230 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
117, 10eqtri 2768 . . . 4 {{𝐴}, {𝐴, 𝐵}} = {𝐴}
124, 11eqtri 2768 . . 3 𝐴, 𝐵⟩ = {𝐴}
1312inteqi 4974 . 2 𝐴, 𝐵⟩ = {𝐴}
141intsn 5008 . 2 {𝐴} = 𝐴
1513, 14eqtri 2768 1 𝐴, 𝐵⟩ = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  wss 3976  {csn 4648  {cpr 4650  cop 4654   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-int 4971
This theorem is referenced by:  elreldm  5960  op2ndb  6258  elxp5  7963  1stval2  8047  fundmen  9096  xpsnen  9121
  Copyright terms: Public domain W3C validator