MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1stb Structured version   Visualization version   GIF version

Theorem op1stb 5171
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 5874 to extract the second member, op1sta 5872 for an alternate version, and op1st 7453 for the preferred version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1 𝐴 ∈ V
op1stb.2 𝐵 ∈ V
Assertion
Ref Expression
op1stb 𝐴, 𝐵⟩ = 𝐴

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6 𝐴 ∈ V
2 op1stb.2 . . . . . 6 𝐵 ∈ V
31, 2dfop 4635 . . . . 5 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43inteqi 4714 . . . 4 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
5 snex 5140 . . . . . 6 {𝐴} ∈ V
6 prex 5141 . . . . . 6 {𝐴, 𝐵} ∈ V
75, 6intpr 4743 . . . . 5 {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵})
8 snsspr1 4576 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
9 df-ss 3805 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
108, 9mpbi 222 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
117, 10eqtri 2801 . . . 4 {{𝐴}, {𝐴, 𝐵}} = {𝐴}
124, 11eqtri 2801 . . 3 𝐴, 𝐵⟩ = {𝐴}
1312inteqi 4714 . 2 𝐴, 𝐵⟩ = {𝐴}
141intsn 4746 . 2 {𝐴} = 𝐴
1513, 14eqtri 2801 1 𝐴, 𝐵⟩ = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wcel 2106  Vcvv 3397  cin 3790  wss 3791  {csn 4397  {cpr 4399  cop 4403   cint 4710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-int 4711
This theorem is referenced by:  elreldm  5595  op2ndb  5874  elxp5  7390  1stval2  7462  fundmen  8315  xpsnen  8332
  Copyright terms: Public domain W3C validator