MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1stb Structured version   Visualization version   GIF version

Theorem op1stb 5446
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (See op2ndb 6216 to extract the second member, op1sta 6214 for an alternate version, and op1st 7996 for the preferred version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1 𝐴 ∈ V
op1stb.2 𝐵 ∈ V
Assertion
Ref Expression
op1stb 𝐴, 𝐵⟩ = 𝐴

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6 𝐴 ∈ V
2 op1stb.2 . . . . . 6 𝐵 ∈ V
31, 2dfop 4848 . . . . 5 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43inteqi 4926 . . . 4 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
5 snex 5406 . . . . . 6 {𝐴} ∈ V
6 prex 5407 . . . . . 6 {𝐴, 𝐵} ∈ V
75, 6intpr 4958 . . . . 5 {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵})
8 snsspr1 4790 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
9 dfss2 3944 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
108, 9mpbi 230 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
117, 10eqtri 2758 . . . 4 {{𝐴}, {𝐴, 𝐵}} = {𝐴}
124, 11eqtri 2758 . . 3 𝐴, 𝐵⟩ = {𝐴}
1312inteqi 4926 . 2 𝐴, 𝐵⟩ = {𝐴}
141intsn 4960 . 2 {𝐴} = 𝐴
1513, 14eqtri 2758 1 𝐴, 𝐵⟩ = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925  wss 3926  {csn 4601  {cpr 4603  cop 4607   cint 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-int 4923
This theorem is referenced by:  elreldm  5915  op2ndb  6216  elxp5  7919  1stval2  8005  fundmen  9045  xpsnen  9069
  Copyright terms: Public domain W3C validator