MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniop Structured version   Visualization version   GIF version

Theorem uniop 5517
Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1 𝐴 ∈ V
opthw.2 𝐵 ∈ V
Assertion
Ref Expression
uniop 𝐴, 𝐵⟩ = {𝐴, 𝐵}

Proof of Theorem uniop
StepHypRef Expression
1 opthw.1 . . . 4 𝐴 ∈ V
2 opthw.2 . . . 4 𝐵 ∈ V
31, 2dfop 4873 . . 3 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43unieqi 4920 . 2 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
5 snex 5433 . . 3 {𝐴} ∈ V
6 prex 5434 . . 3 {𝐴, 𝐵} ∈ V
75, 6unipr 4925 . 2 {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∪ {𝐴, 𝐵})
8 snsspr1 4818 . . 3 {𝐴} ⊆ {𝐴, 𝐵}
9 ssequn1 4180 . . 3 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵})
108, 9mpbi 229 . 2 ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}
114, 7, 103eqtri 2760 1 𝐴, 𝐵⟩ = {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3471  cun 3945  wss 3947  {csn 4629  {cpr 4631  cop 4635   cuni 4908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909
This theorem is referenced by:  uniopel  5518  elvvuni  5754  dmrnssfld  5973  dffv2  6993  rankxplim  9902
  Copyright terms: Public domain W3C validator