Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniop | Structured version Visualization version GIF version |
Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opthw.1 | ⊢ 𝐴 ∈ V |
opthw.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
uniop | ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | opthw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | dfop 4803 | . . 3 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
4 | 3 | unieqi 4852 | . 2 ⊢ ∪ 〈𝐴, 𝐵〉 = ∪ {{𝐴}, {𝐴, 𝐵}} |
5 | snex 5354 | . . 3 ⊢ {𝐴} ∈ V | |
6 | prex 5355 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
7 | 5, 6 | unipr 4857 | . 2 ⊢ ∪ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∪ {𝐴, 𝐵}) |
8 | snsspr1 4747 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
9 | ssequn1 4114 | . . 3 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}) | |
10 | 8, 9 | mpbi 229 | . 2 ⊢ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵} |
11 | 4, 7, 10 | 3eqtri 2770 | 1 ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 {csn 4561 {cpr 4563 〈cop 4567 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 |
This theorem is referenced by: uniopel 5430 elvvuni 5663 dmrnssfld 5879 dffv2 6863 rankxplim 9637 |
Copyright terms: Public domain | W3C validator |