MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniop Structured version   Visualization version   GIF version

Theorem uniop 5212
Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1 𝐴 ∈ V
opthw.2 𝐵 ∈ V
Assertion
Ref Expression
uniop 𝐴, 𝐵⟩ = {𝐴, 𝐵}

Proof of Theorem uniop
StepHypRef Expression
1 opthw.1 . . . 4 𝐴 ∈ V
2 opthw.2 . . . 4 𝐵 ∈ V
31, 2dfop 4635 . . 3 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43unieqi 4680 . 2 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
5 snex 5140 . . 3 {𝐴} ∈ V
6 prex 5141 . . 3 {𝐴, 𝐵} ∈ V
75, 6unipr 4684 . 2 {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∪ {𝐴, 𝐵})
8 snsspr1 4576 . . 3 {𝐴} ⊆ {𝐴, 𝐵}
9 ssequn1 4005 . . 3 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵})
108, 9mpbi 222 . 2 ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}
114, 7, 103eqtri 2805 1 𝐴, 𝐵⟩ = {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wcel 2106  Vcvv 3397  cun 3789  wss 3791  {csn 4397  {cpr 4399  cop 4403   cuni 4671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-rex 3095  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672
This theorem is referenced by:  uniopel  5213  elvvuni  5425  dmrnssfld  5630  dffv2  6531  rankxplim  9039
  Copyright terms: Public domain W3C validator