MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniop Structured version   Visualization version   GIF version

Theorem uniop 5478
Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1 𝐴 ∈ V
opthw.2 𝐵 ∈ V
Assertion
Ref Expression
uniop 𝐴, 𝐵⟩ = {𝐴, 𝐵}

Proof of Theorem uniop
StepHypRef Expression
1 opthw.1 . . . 4 𝐴 ∈ V
2 opthw.2 . . . 4 𝐵 ∈ V
31, 2dfop 4839 . . 3 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
43unieqi 4886 . 2 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
5 snex 5394 . . 3 {𝐴} ∈ V
6 prex 5395 . . 3 {𝐴, 𝐵} ∈ V
75, 6unipr 4891 . 2 {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∪ {𝐴, 𝐵})
8 snsspr1 4781 . . 3 {𝐴} ⊆ {𝐴, 𝐵}
9 ssequn1 4152 . . 3 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵})
108, 9mpbi 230 . 2 ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}
114, 7, 103eqtri 2757 1 𝐴, 𝐵⟩ = {𝐴, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  wss 3917  {csn 4592  {cpr 4594  cop 4598   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875
This theorem is referenced by:  uniopel  5479  elvvuni  5718  dmrnssfld  5940  dffv2  6959  rankxplim  9839
  Copyright terms: Public domain W3C validator