| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniop | Structured version Visualization version GIF version | ||
| Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opthw.1 | ⊢ 𝐴 ∈ V |
| opthw.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| uniop | ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | opthw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | dfop 4839 | . . 3 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| 4 | 3 | unieqi 4886 | . 2 ⊢ ∪ 〈𝐴, 𝐵〉 = ∪ {{𝐴}, {𝐴, 𝐵}} |
| 5 | snex 5394 | . . 3 ⊢ {𝐴} ∈ V | |
| 6 | prex 5395 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
| 7 | 5, 6 | unipr 4891 | . 2 ⊢ ∪ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∪ {𝐴, 𝐵}) |
| 8 | snsspr1 4781 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
| 9 | ssequn1 4152 | . . 3 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}) | |
| 10 | 8, 9 | mpbi 230 | . 2 ⊢ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵} |
| 11 | 4, 7, 10 | 3eqtri 2757 | 1 ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 {csn 4592 {cpr 4594 〈cop 4598 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 |
| This theorem is referenced by: uniopel 5479 elvvuni 5718 dmrnssfld 5940 dffv2 6959 rankxplim 9839 |
| Copyright terms: Public domain | W3C validator |