| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniop | Structured version Visualization version GIF version | ||
| Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opthw.1 | ⊢ 𝐴 ∈ V |
| opthw.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| uniop | ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opthw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | opthw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | dfop 4819 | . . 3 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| 4 | 3 | unieqi 4866 | . 2 ⊢ ∪ 〈𝐴, 𝐵〉 = ∪ {{𝐴}, {𝐴, 𝐵}} |
| 5 | snex 5369 | . . 3 ⊢ {𝐴} ∈ V | |
| 6 | prex 5370 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
| 7 | 5, 6 | unipr 4871 | . 2 ⊢ ∪ {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∪ {𝐴, 𝐵}) |
| 8 | snsspr1 4761 | . . 3 ⊢ {𝐴} ⊆ {𝐴, 𝐵} | |
| 9 | ssequn1 4131 | . . 3 ⊢ ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵}) | |
| 10 | 8, 9 | mpbi 230 | . 2 ⊢ ({𝐴} ∪ {𝐴, 𝐵}) = {𝐴, 𝐵} |
| 11 | 4, 7, 10 | 3eqtri 2758 | 1 ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 {csn 4571 {cpr 4573 〈cop 4577 ∪ cuni 4854 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 |
| This theorem is referenced by: uniopel 5451 elvvuni 5688 dmrnssfld 5908 dffv2 6912 rankxplim 9767 |
| Copyright terms: Public domain | W3C validator |