MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfopg Structured version   Visualization version   GIF version

Theorem dfopg 4835
Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)
Assertion
Ref Expression
dfopg ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})

Proof of Theorem dfopg
StepHypRef Expression
1 elex 3468 . 2 (𝐴𝑉𝐴 ∈ V)
2 elex 3468 . 2 (𝐵𝑊𝐵 ∈ V)
3 dfopif 4834 . . 3 𝐴, 𝐵⟩ = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅)
4 iftrue 4494 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) = {{𝐴}, {𝐴, 𝐵}})
53, 4eqtrid 2776 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
61, 2, 5syl2an 596 1 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  ifcif 4488  {csn 4589  {cpr 4591  cop 4595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-dif 3917  df-ss 3931  df-nul 4297  df-if 4489  df-op 4596
This theorem is referenced by:  dfop  4836  opidg  4856  elopg  5426  opnz  5433  opth1  5435  opth  5436  0nelop  5456  opeqsng  5463  opwf  9765  rankopb  9805  wunop  10675  tskop  10724  gruop  10758
  Copyright terms: Public domain W3C validator