| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfopg | Structured version Visualization version GIF version | ||
| Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| dfopg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | elex 3457 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 3 | dfopif 4819 | . . 3 ⊢ 〈𝐴, 𝐵〉 = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) | |
| 4 | iftrue 4478 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) = {{𝐴}, {𝐴, 𝐵}}) | |
| 5 | 3, 4 | eqtrid 2778 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
| 6 | 1, 2, 5 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 ifcif 4472 {csn 4573 {cpr 4575 〈cop 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-ss 3914 df-nul 4281 df-if 4473 df-op 4580 |
| This theorem is referenced by: dfop 4821 opidg 4841 elopg 5404 opnz 5411 opth1 5413 opth 5414 0nelop 5434 opeqsng 5441 opwf 9705 rankopb 9745 wunop 10613 tskop 10662 gruop 10696 |
| Copyright terms: Public domain | W3C validator |