| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfopg | Structured version Visualization version GIF version | ||
| Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| dfopg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | elex 3468 | . 2 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
| 3 | dfopif 4834 | . . 3 ⊢ 〈𝐴, 𝐵〉 = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) | |
| 4 | iftrue 4494 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) = {{𝐴}, {𝐴, 𝐵}}) | |
| 5 | 3, 4 | eqtrid 2776 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
| 6 | 1, 2, 5 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ifcif 4488 {csn 4589 {cpr 4591 〈cop 4595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-ss 3931 df-nul 4297 df-if 4489 df-op 4596 |
| This theorem is referenced by: dfop 4836 opidg 4856 elopg 5426 opnz 5433 opth1 5435 opth 5436 0nelop 5456 opeqsng 5463 opwf 9765 rankopb 9805 wunop 10675 tskop 10724 gruop 10758 |
| Copyright terms: Public domain | W3C validator |