MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsspw Structured version   Visualization version   GIF version

Theorem xpsspw 5646
Description: A Cartesian product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.)
Assertion
Ref Expression
xpsspw (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)

Proof of Theorem xpsspw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5537 . 2 Rel (𝐴 × 𝐵)
2 opelxp 5555 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
3 snssi 4701 . . . . . . . 8 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
4 ssun3 4101 . . . . . . . 8 ({𝑥} ⊆ 𝐴 → {𝑥} ⊆ (𝐴𝐵))
53, 4syl 17 . . . . . . 7 (𝑥𝐴 → {𝑥} ⊆ (𝐴𝐵))
6 snex 5297 . . . . . . . 8 {𝑥} ∈ V
76elpw 4501 . . . . . . 7 ({𝑥} ∈ 𝒫 (𝐴𝐵) ↔ {𝑥} ⊆ (𝐴𝐵))
85, 7sylibr 237 . . . . . 6 (𝑥𝐴 → {𝑥} ∈ 𝒫 (𝐴𝐵))
98adantr 484 . . . . 5 ((𝑥𝐴𝑦𝐵) → {𝑥} ∈ 𝒫 (𝐴𝐵))
10 df-pr 4528 . . . . . . 7 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
11 snssi 4701 . . . . . . . . . 10 (𝑦𝐵 → {𝑦} ⊆ 𝐵)
12 ssun4 4102 . . . . . . . . . 10 ({𝑦} ⊆ 𝐵 → {𝑦} ⊆ (𝐴𝐵))
1311, 12syl 17 . . . . . . . . 9 (𝑦𝐵 → {𝑦} ⊆ (𝐴𝐵))
145, 13anim12i 615 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → ({𝑥} ⊆ (𝐴𝐵) ∧ {𝑦} ⊆ (𝐴𝐵)))
15 unss 4111 . . . . . . . 8 (({𝑥} ⊆ (𝐴𝐵) ∧ {𝑦} ⊆ (𝐴𝐵)) ↔ ({𝑥} ∪ {𝑦}) ⊆ (𝐴𝐵))
1614, 15sylib 221 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → ({𝑥} ∪ {𝑦}) ⊆ (𝐴𝐵))
1710, 16eqsstrid 3963 . . . . . 6 ((𝑥𝐴𝑦𝐵) → {𝑥, 𝑦} ⊆ (𝐴𝐵))
18 zfpair2 5296 . . . . . . 7 {𝑥, 𝑦} ∈ V
1918elpw 4501 . . . . . 6 ({𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵) ↔ {𝑥, 𝑦} ⊆ (𝐴𝐵))
2017, 19sylibr 237 . . . . 5 ((𝑥𝐴𝑦𝐵) → {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵))
219, 20jca 515 . . . 4 ((𝑥𝐴𝑦𝐵) → ({𝑥} ∈ 𝒫 (𝐴𝐵) ∧ {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵)))
22 prex 5298 . . . . . 6 {{𝑥}, {𝑥, 𝑦}} ∈ V
2322elpw 4501 . . . . 5 ({{𝑥}, {𝑥, 𝑦}} ∈ 𝒫 𝒫 (𝐴𝐵) ↔ {{𝑥}, {𝑥, 𝑦}} ⊆ 𝒫 (𝐴𝐵))
24 vex 3444 . . . . . . 7 𝑥 ∈ V
25 vex 3444 . . . . . . 7 𝑦 ∈ V
2624, 25dfop 4762 . . . . . 6 𝑥, 𝑦⟩ = {{𝑥}, {𝑥, 𝑦}}
2726eleq1i 2880 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵) ↔ {{𝑥}, {𝑥, 𝑦}} ∈ 𝒫 𝒫 (𝐴𝐵))
286, 18prss 4713 . . . . 5 (({𝑥} ∈ 𝒫 (𝐴𝐵) ∧ {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵)) ↔ {{𝑥}, {𝑥, 𝑦}} ⊆ 𝒫 (𝐴𝐵))
2923, 27, 283bitr4ri 307 . . . 4 (({𝑥} ∈ 𝒫 (𝐴𝐵) ∧ {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵)) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵))
3021, 29sylib 221 . . 3 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵))
312, 30sylbi 220 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵))
321, 31relssi 5624 1 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 399  wcel 2111  cun 3879  wss 3881  𝒫 cpw 4497  {csn 4525  {cpr 4527  cop 4531   × cxp 5517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-opab 5093  df-xp 5525  df-rel 5526
This theorem is referenced by:  unixpss  5647  xpexg  7453  rankxpu  9289  wunxp  10135  gruxp  10218
  Copyright terms: Public domain W3C validator