MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsspw Structured version   Visualization version   GIF version

Theorem xpsspw 5763
Description: A Cartesian product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.)
Assertion
Ref Expression
xpsspw (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)

Proof of Theorem xpsspw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5649 . 2 Rel (𝐴 × 𝐵)
2 opelxp 5667 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
3 snssi 4768 . . . . . . . 8 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
4 ssun3 4139 . . . . . . . 8 ({𝑥} ⊆ 𝐴 → {𝑥} ⊆ (𝐴𝐵))
53, 4syl 17 . . . . . . 7 (𝑥𝐴 → {𝑥} ⊆ (𝐴𝐵))
6 vsnex 5384 . . . . . . . 8 {𝑥} ∈ V
76elpw 4563 . . . . . . 7 ({𝑥} ∈ 𝒫 (𝐴𝐵) ↔ {𝑥} ⊆ (𝐴𝐵))
85, 7sylibr 234 . . . . . 6 (𝑥𝐴 → {𝑥} ∈ 𝒫 (𝐴𝐵))
98adantr 480 . . . . 5 ((𝑥𝐴𝑦𝐵) → {𝑥} ∈ 𝒫 (𝐴𝐵))
10 df-pr 4588 . . . . . . 7 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
11 snssi 4768 . . . . . . . . . 10 (𝑦𝐵 → {𝑦} ⊆ 𝐵)
12 ssun4 4140 . . . . . . . . . 10 ({𝑦} ⊆ 𝐵 → {𝑦} ⊆ (𝐴𝐵))
1311, 12syl 17 . . . . . . . . 9 (𝑦𝐵 → {𝑦} ⊆ (𝐴𝐵))
145, 13anim12i 613 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → ({𝑥} ⊆ (𝐴𝐵) ∧ {𝑦} ⊆ (𝐴𝐵)))
15 unss 4149 . . . . . . . 8 (({𝑥} ⊆ (𝐴𝐵) ∧ {𝑦} ⊆ (𝐴𝐵)) ↔ ({𝑥} ∪ {𝑦}) ⊆ (𝐴𝐵))
1614, 15sylib 218 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → ({𝑥} ∪ {𝑦}) ⊆ (𝐴𝐵))
1710, 16eqsstrid 3982 . . . . . 6 ((𝑥𝐴𝑦𝐵) → {𝑥, 𝑦} ⊆ (𝐴𝐵))
18 zfpair2 5383 . . . . . . 7 {𝑥, 𝑦} ∈ V
1918elpw 4563 . . . . . 6 ({𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵) ↔ {𝑥, 𝑦} ⊆ (𝐴𝐵))
2017, 19sylibr 234 . . . . 5 ((𝑥𝐴𝑦𝐵) → {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵))
219, 20jca 511 . . . 4 ((𝑥𝐴𝑦𝐵) → ({𝑥} ∈ 𝒫 (𝐴𝐵) ∧ {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵)))
22 prex 5387 . . . . . 6 {{𝑥}, {𝑥, 𝑦}} ∈ V
2322elpw 4563 . . . . 5 ({{𝑥}, {𝑥, 𝑦}} ∈ 𝒫 𝒫 (𝐴𝐵) ↔ {{𝑥}, {𝑥, 𝑦}} ⊆ 𝒫 (𝐴𝐵))
24 vex 3448 . . . . . . 7 𝑥 ∈ V
25 vex 3448 . . . . . . 7 𝑦 ∈ V
2624, 25dfop 4832 . . . . . 6 𝑥, 𝑦⟩ = {{𝑥}, {𝑥, 𝑦}}
2726eleq1i 2819 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵) ↔ {{𝑥}, {𝑥, 𝑦}} ∈ 𝒫 𝒫 (𝐴𝐵))
286, 18prss 4780 . . . . 5 (({𝑥} ∈ 𝒫 (𝐴𝐵) ∧ {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵)) ↔ {{𝑥}, {𝑥, 𝑦}} ⊆ 𝒫 (𝐴𝐵))
2923, 27, 283bitr4ri 304 . . . 4 (({𝑥} ∈ 𝒫 (𝐴𝐵) ∧ {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵)) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵))
3021, 29sylib 218 . . 3 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵))
312, 30sylbi 217 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵))
321, 31relssi 5741 1 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  cun 3909  wss 3911  𝒫 cpw 4559  {csn 4585  {cpr 4587  cop 4591   × cxp 5629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-opab 5165  df-xp 5637  df-rel 5638
This theorem is referenced by:  unixpss  5764  xpexg  7706  xpfi  9245  rankxpu  9805  wunxp  10653  gruxp  10736  xpwf  44927
  Copyright terms: Public domain W3C validator