MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsspw Structured version   Visualization version   GIF version

Theorem xpsspw 5684
Description: A Cartesian product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006.)
Assertion
Ref Expression
xpsspw (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)

Proof of Theorem xpsspw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5575 . 2 Rel (𝐴 × 𝐵)
2 opelxp 5593 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
3 snssi 4743 . . . . . . . 8 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
4 ssun3 4152 . . . . . . . 8 ({𝑥} ⊆ 𝐴 → {𝑥} ⊆ (𝐴𝐵))
53, 4syl 17 . . . . . . 7 (𝑥𝐴 → {𝑥} ⊆ (𝐴𝐵))
6 snex 5334 . . . . . . . 8 {𝑥} ∈ V
76elpw 4545 . . . . . . 7 ({𝑥} ∈ 𝒫 (𝐴𝐵) ↔ {𝑥} ⊆ (𝐴𝐵))
85, 7sylibr 236 . . . . . 6 (𝑥𝐴 → {𝑥} ∈ 𝒫 (𝐴𝐵))
98adantr 483 . . . . 5 ((𝑥𝐴𝑦𝐵) → {𝑥} ∈ 𝒫 (𝐴𝐵))
10 df-pr 4572 . . . . . . 7 {𝑥, 𝑦} = ({𝑥} ∪ {𝑦})
11 snssi 4743 . . . . . . . . . 10 (𝑦𝐵 → {𝑦} ⊆ 𝐵)
12 ssun4 4153 . . . . . . . . . 10 ({𝑦} ⊆ 𝐵 → {𝑦} ⊆ (𝐴𝐵))
1311, 12syl 17 . . . . . . . . 9 (𝑦𝐵 → {𝑦} ⊆ (𝐴𝐵))
145, 13anim12i 614 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → ({𝑥} ⊆ (𝐴𝐵) ∧ {𝑦} ⊆ (𝐴𝐵)))
15 unss 4162 . . . . . . . 8 (({𝑥} ⊆ (𝐴𝐵) ∧ {𝑦} ⊆ (𝐴𝐵)) ↔ ({𝑥} ∪ {𝑦}) ⊆ (𝐴𝐵))
1614, 15sylib 220 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → ({𝑥} ∪ {𝑦}) ⊆ (𝐴𝐵))
1710, 16eqsstrid 4017 . . . . . 6 ((𝑥𝐴𝑦𝐵) → {𝑥, 𝑦} ⊆ (𝐴𝐵))
18 zfpair2 5333 . . . . . . 7 {𝑥, 𝑦} ∈ V
1918elpw 4545 . . . . . 6 ({𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵) ↔ {𝑥, 𝑦} ⊆ (𝐴𝐵))
2017, 19sylibr 236 . . . . 5 ((𝑥𝐴𝑦𝐵) → {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵))
219, 20jca 514 . . . 4 ((𝑥𝐴𝑦𝐵) → ({𝑥} ∈ 𝒫 (𝐴𝐵) ∧ {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵)))
22 prex 5335 . . . . . 6 {{𝑥}, {𝑥, 𝑦}} ∈ V
2322elpw 4545 . . . . 5 ({{𝑥}, {𝑥, 𝑦}} ∈ 𝒫 𝒫 (𝐴𝐵) ↔ {{𝑥}, {𝑥, 𝑦}} ⊆ 𝒫 (𝐴𝐵))
24 vex 3499 . . . . . . 7 𝑥 ∈ V
25 vex 3499 . . . . . . 7 𝑦 ∈ V
2624, 25dfop 4804 . . . . . 6 𝑥, 𝑦⟩ = {{𝑥}, {𝑥, 𝑦}}
2726eleq1i 2905 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵) ↔ {{𝑥}, {𝑥, 𝑦}} ∈ 𝒫 𝒫 (𝐴𝐵))
286, 18prss 4755 . . . . 5 (({𝑥} ∈ 𝒫 (𝐴𝐵) ∧ {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵)) ↔ {{𝑥}, {𝑥, 𝑦}} ⊆ 𝒫 (𝐴𝐵))
2923, 27, 283bitr4ri 306 . . . 4 (({𝑥} ∈ 𝒫 (𝐴𝐵) ∧ {𝑥, 𝑦} ∈ 𝒫 (𝐴𝐵)) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵))
3021, 29sylib 220 . . 3 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵))
312, 30sylbi 219 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝒫 𝒫 (𝐴𝐵))
321, 31relssi 5662 1 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 398  wcel 2114  cun 3936  wss 3938  𝒫 cpw 4541  {csn 4569  {cpr 4571  cop 4575   × cxp 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-opab 5131  df-xp 5563  df-rel 5564
This theorem is referenced by:  unixpss  5685  xpexg  7475  rankxpu  9307  wunxp  10148  gruxp  10231
  Copyright terms: Public domain W3C validator