![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeqpr | Structured version Visualization version GIF version |
Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opeqpr.1 | ⊢ 𝐴 ∈ V |
opeqpr.2 | ⊢ 𝐵 ∈ V |
opeqpr.3 | ⊢ 𝐶 ∈ V |
opeqpr.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
opeqpr | ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2806 | . 2 ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ {𝐶, 𝐷} = 〈𝐴, 𝐵〉) | |
2 | opeqpr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | opeqpr.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | dfop 4592 | . . 3 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
5 | 4 | eqeq2i 2811 | . 2 ⊢ ({𝐶, 𝐷} = 〈𝐴, 𝐵〉 ↔ {𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}}) |
6 | opeqpr.3 | . . 3 ⊢ 𝐶 ∈ V | |
7 | opeqpr.4 | . . 3 ⊢ 𝐷 ∈ V | |
8 | snex 5099 | . . 3 ⊢ {𝐴} ∈ V | |
9 | prex 5100 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
10 | 6, 7, 8, 9 | preq12b 4567 | . 2 ⊢ ({𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
11 | 1, 5, 10 | 3bitri 289 | 1 ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 ∨ wo 874 = wceq 1653 ∈ wcel 2157 Vcvv 3385 {csn 4368 {cpr 4370 〈cop 4374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 |
This theorem is referenced by: propeqop 5163 relop 5476 |
Copyright terms: Public domain | W3C validator |