MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeqpr Structured version   Visualization version   GIF version

Theorem opeqpr 5468
Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
opeqpr.1 𝐴 ∈ V
opeqpr.2 𝐵 ∈ V
opeqpr.3 𝐶 ∈ V
opeqpr.4 𝐷 ∈ V
Assertion
Ref Expression
opeqpr (⟨𝐴, 𝐵⟩ = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴})))

Proof of Theorem opeqpr
StepHypRef Expression
1 eqcom 2737 . 2 (⟨𝐴, 𝐵⟩ = {𝐶, 𝐷} ↔ {𝐶, 𝐷} = ⟨𝐴, 𝐵⟩)
2 opeqpr.1 . . . 4 𝐴 ∈ V
3 opeqpr.2 . . . 4 𝐵 ∈ V
42, 3dfop 4839 . . 3 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
54eqeq2i 2743 . 2 ({𝐶, 𝐷} = ⟨𝐴, 𝐵⟩ ↔ {𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}})
6 opeqpr.3 . . 3 𝐶 ∈ V
7 opeqpr.4 . . 3 𝐷 ∈ V
8 snex 5394 . . 3 {𝐴} ∈ V
9 prex 5395 . . 3 {𝐴, 𝐵} ∈ V
106, 7, 8, 9preq12b 4817 . 2 ({𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴})))
111, 5, 103bitri 297 1 (⟨𝐴, 𝐵⟩ = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  {cpr 4594  cop 4598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599
This theorem is referenced by:  propeqop  5470  relop  5817
  Copyright terms: Public domain W3C validator