MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeqpr Structured version   Visualization version   GIF version

Theorem opeqpr 5160
Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
opeqpr.1 𝐴 ∈ V
opeqpr.2 𝐵 ∈ V
opeqpr.3 𝐶 ∈ V
opeqpr.4 𝐷 ∈ V
Assertion
Ref Expression
opeqpr (⟨𝐴, 𝐵⟩ = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴})))

Proof of Theorem opeqpr
StepHypRef Expression
1 eqcom 2806 . 2 (⟨𝐴, 𝐵⟩ = {𝐶, 𝐷} ↔ {𝐶, 𝐷} = ⟨𝐴, 𝐵⟩)
2 opeqpr.1 . . . 4 𝐴 ∈ V
3 opeqpr.2 . . . 4 𝐵 ∈ V
42, 3dfop 4592 . . 3 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
54eqeq2i 2811 . 2 ({𝐶, 𝐷} = ⟨𝐴, 𝐵⟩ ↔ {𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}})
6 opeqpr.3 . . 3 𝐶 ∈ V
7 opeqpr.4 . . 3 𝐷 ∈ V
8 snex 5099 . . 3 {𝐴} ∈ V
9 prex 5100 . . 3 {𝐴, 𝐵} ∈ V
106, 7, 8, 9preq12b 4567 . 2 ({𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴})))
111, 5, 103bitri 289 1 (⟨𝐴, 𝐵⟩ = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 385  wo 874   = wceq 1653  wcel 2157  Vcvv 3385  {csn 4368  {cpr 4370  cop 4374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375
This theorem is referenced by:  propeqop  5163  relop  5476
  Copyright terms: Public domain W3C validator