Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeqpr | Structured version Visualization version GIF version |
Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opeqpr.1 | ⊢ 𝐴 ∈ V |
opeqpr.2 | ⊢ 𝐵 ∈ V |
opeqpr.3 | ⊢ 𝐶 ∈ V |
opeqpr.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
opeqpr | ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2745 | . 2 ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ {𝐶, 𝐷} = 〈𝐴, 𝐵〉) | |
2 | opeqpr.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | opeqpr.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | dfop 4803 | . . 3 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
5 | 4 | eqeq2i 2751 | . 2 ⊢ ({𝐶, 𝐷} = 〈𝐴, 𝐵〉 ↔ {𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}}) |
6 | opeqpr.3 | . . 3 ⊢ 𝐶 ∈ V | |
7 | opeqpr.4 | . . 3 ⊢ 𝐷 ∈ V | |
8 | snex 5354 | . . 3 ⊢ {𝐴} ∈ V | |
9 | prex 5355 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
10 | 6, 7, 8, 9 | preq12b 4781 | . 2 ⊢ ({𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
11 | 1, 5, 10 | 3bitri 297 | 1 ⊢ (〈𝐴, 𝐵〉 = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 {cpr 4563 〈cop 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 |
This theorem is referenced by: propeqop 5421 relop 5759 |
Copyright terms: Public domain | W3C validator |