Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeqpr Structured version   Visualization version   GIF version

Theorem opeqpr 5361
 Description: Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
opeqpr.1 𝐴 ∈ V
opeqpr.2 𝐵 ∈ V
opeqpr.3 𝐶 ∈ V
opeqpr.4 𝐷 ∈ V
Assertion
Ref Expression
opeqpr (⟨𝐴, 𝐵⟩ = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴})))

Proof of Theorem opeqpr
StepHypRef Expression
1 eqcom 2805 . 2 (⟨𝐴, 𝐵⟩ = {𝐶, 𝐷} ↔ {𝐶, 𝐷} = ⟨𝐴, 𝐵⟩)
2 opeqpr.1 . . . 4 𝐴 ∈ V
3 opeqpr.2 . . . 4 𝐵 ∈ V
42, 3dfop 4763 . . 3 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
54eqeq2i 2811 . 2 ({𝐶, 𝐷} = ⟨𝐴, 𝐵⟩ ↔ {𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}})
6 opeqpr.3 . . 3 𝐶 ∈ V
7 opeqpr.4 . . 3 𝐷 ∈ V
8 snex 5298 . . 3 {𝐴} ∈ V
9 prex 5299 . . 3 {𝐴, 𝐵} ∈ V
106, 7, 8, 9preq12b 4741 . 2 ({𝐶, 𝐷} = {{𝐴}, {𝐴, 𝐵}} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴})))
111, 5, 103bitri 300 1 (⟨𝐴, 𝐵⟩ = {𝐶, 𝐷} ↔ ((𝐶 = {𝐴} ∧ 𝐷 = {𝐴, 𝐵}) ∨ (𝐶 = {𝐴, 𝐵} ∧ 𝐷 = {𝐴})))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111  Vcvv 3441  {csn 4525  {cpr 4527  ⟨cop 4531 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-v 3443  df-dif 3884  df-un 3886  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532 This theorem is referenced by:  propeqop  5363  relop  5686
 Copyright terms: Public domain W3C validator