MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opi2 Structured version   Visualization version   GIF version

Theorem opi2 5449
Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
opi1.1 𝐴 ∈ V
opi1.2 𝐵 ∈ V
Assertion
Ref Expression
opi2 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵

Proof of Theorem opi2
StepHypRef Expression
1 prex 5412 . . 3 {𝐴, 𝐵} ∈ V
21prid2 4744 . 2 {𝐴, 𝐵} ∈ {{𝐴}, {𝐴, 𝐵}}
3 opi1.1 . . 3 𝐴 ∈ V
4 opi1.2 . . 3 𝐵 ∈ V
53, 4dfop 4853 . 2 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
62, 5eleqtrri 2834 1 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3464  {csn 4606  {cpr 4608  cop 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613
This theorem is referenced by:  opeluu  5450  uniopel  5496  elvvuni  5736
  Copyright terms: Public domain W3C validator