MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opi2 Structured version   Visualization version   GIF version

Theorem opi2 5489
Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
opi1.1 𝐴 ∈ V
opi1.2 𝐵 ∈ V
Assertion
Ref Expression
opi2 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵

Proof of Theorem opi2
StepHypRef Expression
1 prex 5452 . . 3 {𝐴, 𝐵} ∈ V
21prid2 4788 . 2 {𝐴, 𝐵} ∈ {{𝐴}, {𝐴, 𝐵}}
3 opi1.1 . . 3 𝐴 ∈ V
4 opi1.2 . . 3 𝐵 ∈ V
53, 4dfop 4896 . 2 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
62, 5eleqtrri 2843 1 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488  {csn 4648  {cpr 4650  cop 4654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655
This theorem is referenced by:  opeluu  5490  uniopel  5535  elvvuni  5776
  Copyright terms: Public domain W3C validator