Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opi2 | Structured version Visualization version GIF version |
Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opi1.1 | ⊢ 𝐴 ∈ V |
opi1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opi2 | ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5355 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
2 | 1 | prid2 4699 | . 2 ⊢ {𝐴, 𝐵} ∈ {{𝐴}, {𝐴, 𝐵}} |
3 | opi1.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | opi1.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 3, 4 | dfop 4803 | . 2 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
6 | 2, 5 | eleqtrri 2838 | 1 ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 {csn 4561 {cpr 4563 〈cop 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 |
This theorem is referenced by: opeluu 5385 uniopel 5430 elvvuni 5663 |
Copyright terms: Public domain | W3C validator |