![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opi2 | Structured version Visualization version GIF version |
Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opi1.1 | ⊢ 𝐴 ∈ V |
opi1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opi2 | ⊢ {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prex 5431 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
2 | 1 | prid2 4766 | . 2 ⊢ {𝐴, 𝐵} ∈ {{𝐴}, {𝐴, 𝐵}} |
3 | opi1.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | opi1.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 3, 4 | dfop 4871 | . 2 ⊢ ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} |
6 | 2, 5 | eleqtrri 2832 | 1 ⊢ {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵⟩ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3474 {csn 4627 {cpr 4629 ⟨cop 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 |
This theorem is referenced by: opeluu 5469 uniopel 5515 elvvuni 5750 |
Copyright terms: Public domain | W3C validator |