| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opi2 | Structured version Visualization version GIF version | ||
| Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| opi1.1 | ⊢ 𝐴 ∈ V |
| opi1.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opi2 | ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex 5412 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
| 2 | 1 | prid2 4744 | . 2 ⊢ {𝐴, 𝐵} ∈ {{𝐴}, {𝐴, 𝐵}} |
| 3 | opi1.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | opi1.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 5 | 3, 4 | dfop 4853 | . 2 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| 6 | 2, 5 | eleqtrri 2834 | 1 ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 {csn 4606 {cpr 4608 〈cop 4612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 |
| This theorem is referenced by: opeluu 5450 uniopel 5496 elvvuni 5736 |
| Copyright terms: Public domain | W3C validator |