MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difrab Structured version   Visualization version   GIF version

Theorem difrab 4263
Description: Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
difrab ({𝑥𝐴𝜑} ∖ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜓)}

Proof of Theorem difrab
StepHypRef Expression
1 df-rab 3396 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 df-rab 3396 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
31, 2difeq12i 4069 . 2 ({𝑥𝐴𝜑} ∖ {𝑥𝐴𝜓}) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∖ {𝑥 ∣ (𝑥𝐴𝜓)})
4 df-rab 3396 . . 3 {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜓)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓))}
5 difab 4255 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∖ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓))}
6 anass 468 . . . . . 6 (((𝑥𝐴𝜑) ∧ ¬ 𝜓) ↔ (𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓)))
7 simpr 484 . . . . . . . . 9 ((𝑥𝐴𝜓) → 𝜓)
87con3i 154 . . . . . . . 8 𝜓 → ¬ (𝑥𝐴𝜓))
98anim2i 617 . . . . . . 7 (((𝑥𝐴𝜑) ∧ ¬ 𝜓) → ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓)))
10 pm3.2 469 . . . . . . . . . 10 (𝑥𝐴 → (𝜓 → (𝑥𝐴𝜓)))
1110adantr 480 . . . . . . . . 9 ((𝑥𝐴𝜑) → (𝜓 → (𝑥𝐴𝜓)))
1211con3d 152 . . . . . . . 8 ((𝑥𝐴𝜑) → (¬ (𝑥𝐴𝜓) → ¬ 𝜓))
1312imdistani 568 . . . . . . 7 (((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓)) → ((𝑥𝐴𝜑) ∧ ¬ 𝜓))
149, 13impbii 209 . . . . . 6 (((𝑥𝐴𝜑) ∧ ¬ 𝜓) ↔ ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓)))
156, 14bitr3i 277 . . . . 5 ((𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓)) ↔ ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓)))
1615abbii 2798 . . . 4 {𝑥 ∣ (𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓))} = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓))}
175, 16eqtr4i 2757 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ∖ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓))}
184, 17eqtr4i 2757 . 2 {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜓)} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∖ {𝑥 ∣ (𝑥𝐴𝜓)})
193, 18eqtr4i 2757 1 ({𝑥𝐴𝜑} ∖ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜓)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  {crab 3395  cdif 3894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900
This theorem is referenced by:  alephsuc3  10466  psdmul  22076  shftmbl  25461  musum  27123  clwwlknclwwlkdif  29951  aciunf1  32637  poimirlem26  37686  poimirlem27  37687
  Copyright terms: Public domain W3C validator