![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inab | Structured version Visualization version GIF version |
Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
inab | ⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sban 2080 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | |
2 | df-clab 2718 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ 𝜓)} ↔ [𝑦 / 𝑥](𝜑 ∧ 𝜓)) | |
3 | df-clab 2718 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
4 | df-clab 2718 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
5 | 3, 4 | anbi12i 627 | . . 3 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
6 | 1, 2, 5 | 3bitr4ri 304 | . 2 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 ∧ 𝜓)}) |
7 | 6 | ineqri 4233 | 1 ⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 [wsb 2064 ∈ wcel 2108 {cab 2717 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 |
This theorem is referenced by: inrab 4335 inrab2 4336 dfrab3 4338 orduniss2 7869 ssenen 9217 hashf1lem2 14505 symgsubmefmnd 19440 ballotlem2 34453 fmla0disjsuc 35366 dfiota3 35887 bj-inrab 36893 ptrest 37579 sticksstones22 42125 diophin 42728 |
Copyright terms: Public domain | W3C validator |