MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inab Structured version   Visualization version   GIF version

Theorem inab 4309
Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
inab ({𝑥𝜑} ∩ {𝑥𝜓}) = {𝑥 ∣ (𝜑𝜓)}

Proof of Theorem inab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sban 2080 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
2 df-clab 2715 . . 3 (𝑦 ∈ {𝑥 ∣ (𝜑𝜓)} ↔ [𝑦 / 𝑥](𝜑𝜓))
3 df-clab 2715 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
4 df-clab 2715 . . . 4 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
53, 4anbi12i 628 . . 3 ((𝑦 ∈ {𝑥𝜑} ∧ 𝑦 ∈ {𝑥𝜓}) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
61, 2, 53bitr4ri 304 . 2 ((𝑦 ∈ {𝑥𝜑} ∧ 𝑦 ∈ {𝑥𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑𝜓)})
76ineqri 4212 1 ({𝑥𝜑} ∩ {𝑥𝜓}) = {𝑥 ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  [wsb 2064  wcel 2108  {cab 2714  cin 3950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-in 3958
This theorem is referenced by:  inrab  4316  inrab2  4317  dfrab3  4319  orduniss2  7853  ssenen  9191  hashf1lem2  14495  symgsubmefmnd  19416  ballotlem2  34491  fmla0disjsuc  35403  dfiota3  35924  bj-inrab  36928  ptrest  37626  sticksstones22  42169  diophin  42783
  Copyright terms: Public domain W3C validator