MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inab Structured version   Visualization version   GIF version

Theorem inab 4258
Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
inab ({𝑥𝜑} ∩ {𝑥𝜓}) = {𝑥 ∣ (𝜑𝜓)}

Proof of Theorem inab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sban 2085 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
2 df-clab 2712 . . 3 (𝑦 ∈ {𝑥 ∣ (𝜑𝜓)} ↔ [𝑦 / 𝑥](𝜑𝜓))
3 df-clab 2712 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
4 df-clab 2712 . . . 4 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
53, 4anbi12i 628 . . 3 ((𝑦 ∈ {𝑥𝜑} ∧ 𝑦 ∈ {𝑥𝜓}) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
61, 2, 53bitr4ri 304 . 2 ((𝑦 ∈ {𝑥𝜑} ∧ 𝑦 ∈ {𝑥𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑𝜓)})
76ineqri 4161 1 ({𝑥𝜑} ∩ {𝑥𝜓}) = {𝑥 ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  [wsb 2067  wcel 2113  {cab 2711  cin 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-in 3905
This theorem is referenced by:  inrab  4265  inrab2  4266  dfrab3  4268  orduniss2  7769  ssenen  9071  hashf1lem2  14365  symgsubmefmnd  19312  ballotlem2  34523  fmla0disjsuc  35463  dfiota3  35986  bj-inrab  36992  ptrest  37679  dmxrn  38431  sticksstones22  42281  diophin  42889
  Copyright terms: Public domain W3C validator