![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inab | Structured version Visualization version GIF version |
Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
inab | ⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sban 2084 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | |
2 | df-clab 2711 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ 𝜓)} ↔ [𝑦 / 𝑥](𝜑 ∧ 𝜓)) | |
3 | df-clab 2711 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
4 | df-clab 2711 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
5 | 3, 4 | anbi12i 628 | . . 3 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
6 | 1, 2, 5 | 3bitr4ri 304 | . 2 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 ∧ 𝜓)}) |
7 | 6 | ineqri 4205 | 1 ⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 [wsb 2068 ∈ wcel 2107 {cab 2710 ∩ cin 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 |
This theorem is referenced by: inrab 4307 inrab2 4308 dfrab3 4310 orduniss2 7821 ssenen 9151 hashf1lem2 14417 symgsubmefmnd 19266 ballotlem2 33487 fmla0disjsuc 34389 dfiota3 34895 bj-inrab 35807 ptrest 36487 sticksstones22 40984 diophin 41510 |
Copyright terms: Public domain | W3C validator |