Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inab | Structured version Visualization version GIF version |
Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
inab | ⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sban 2084 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | |
2 | df-clab 2716 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ 𝜓)} ↔ [𝑦 / 𝑥](𝜑 ∧ 𝜓)) | |
3 | df-clab 2716 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
4 | df-clab 2716 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
5 | 3, 4 | anbi12i 626 | . . 3 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
6 | 1, 2, 5 | 3bitr4ri 303 | . 2 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ 𝑦 ∈ {𝑥 ∣ (𝜑 ∧ 𝜓)}) |
7 | 6 | ineqri 4135 | 1 ⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 [wsb 2068 ∈ wcel 2108 {cab 2715 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 |
This theorem is referenced by: inrab 4237 inrab2 4238 dfrab3 4240 orduniss2 7655 ssenen 8887 hashf1lem2 14098 symgsubmefmnd 18921 ballotlem2 32355 fmla0disjsuc 33260 dfiota3 34152 bj-inrab 35042 ptrest 35703 sticksstones22 40052 diophin 40510 |
Copyright terms: Public domain | W3C validator |