Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsggect Structured version   Visualization version   GIF version

Theorem carsggect 31951
Description: The outer measure is countably superadditive on Caratheodory measurable sets. (Contributed by Thierry Arnoux, 31-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsggect.0 (𝜑 → ¬ ∅ ∈ 𝐴)
carsggect.1 (𝜑𝐴 ≼ ω)
carsggect.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
carsggect.3 (𝜑Disj 𝑦𝐴 𝑦)
carsggect.4 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
Assertion
Ref Expression
carsggect (𝜑 → Σ*𝑧𝐴(𝑀𝑧) ≤ (𝑀 𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦   𝑧,𝐴   𝑧,𝑀   𝑧,𝑂,𝑥,𝑦   𝜑,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem carsggect
Dummy variables 𝑓 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 carsggect.1 . . 3 (𝜑𝐴 ≼ ω)
2 0ex 5185 . . . 4 ∅ ∈ V
32a1i 11 . . 3 (𝜑 → ∅ ∈ V)
4 carsggect.0 . . 3 (𝜑 → ¬ ∅ ∈ 𝐴)
5 padct 30728 . . 3 ((𝐴 ≼ ω ∧ ∅ ∈ V ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
61, 3, 4, 5syl3anc 1373 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
7 nfv 1922 . . . . 5 𝑧(𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
8 simpr1 1196 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑓:ℕ⟶(𝐴 ∪ {∅}))
98feqmptd 6758 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑓 = (𝑘 ∈ ℕ ↦ (𝑓𝑘)))
109rneqd 5792 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 = ran (𝑘 ∈ ℕ ↦ (𝑓𝑘)))
117, 10esumeq1d 31669 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) = Σ*𝑧 ∈ ran (𝑘 ∈ ℕ ↦ (𝑓𝑘))(𝑀𝑧))
12 fvex 6708 . . . . . . . . . 10 (toCaraSiga‘𝑀) ∈ V
1312a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (toCaraSiga‘𝑀) ∈ V)
14 carsggect.2 . . . . . . . . . . 11 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
1514adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ⊆ (toCaraSiga‘𝑀))
16 carsgval.1 . . . . . . . . . . . . 13 (𝜑𝑂𝑉)
1716adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑂𝑉)
18 carsgval.2 . . . . . . . . . . . . 13 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
1918adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
20 carsgsiga.1 . . . . . . . . . . . . 13 (𝜑 → (𝑀‘∅) = 0)
2120adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑀‘∅) = 0)
2217, 19, 210elcarsg 31940 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∅ ∈ (toCaraSiga‘𝑀))
2322snssd 4708 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → {∅} ⊆ (toCaraSiga‘𝑀))
2415, 23unssd 4086 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝐴 ∪ {∅}) ⊆ (toCaraSiga‘𝑀))
2513, 24ssexd 5202 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝐴 ∪ {∅}) ∈ V)
2619adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
2716, 18carsgcl 31937 . . . . . . . . . . . . 13 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂)
2814, 27sstrd 3897 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ 𝒫 𝑂)
2928adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ⊆ 𝒫 𝑂)
30 0elpw 5232 . . . . . . . . . . . . 13 ∅ ∈ 𝒫 𝑂
3130a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∅ ∈ 𝒫 𝑂)
3231snssd 4708 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → {∅} ⊆ 𝒫 𝑂)
3329, 32unssd 4086 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂)
3433sselda 3887 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → 𝑧 ∈ 𝒫 𝑂)
3526, 34ffvelrnd 6883 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → (𝑀𝑧) ∈ (0[,]+∞))
368frnd 6531 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 ⊆ (𝐴 ∪ {∅}))
377, 25, 35, 36esummono 31688 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧 ∈ (𝐴 ∪ {∅})(𝑀𝑧))
38 ctex 8621 . . . . . . . . . 10 (𝐴 ≼ ω → 𝐴 ∈ V)
391, 38syl 17 . . . . . . . . 9 (𝜑𝐴 ∈ V)
4039adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ∈ V)
4113, 23ssexd 5202 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → {∅} ∈ V)
4219adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
4329sselda 3887 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧𝐴) → 𝑧 ∈ 𝒫 𝑂)
4442, 43ffvelrnd 6883 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧𝐴) → (𝑀𝑧) ∈ (0[,]+∞))
45 elsni 4544 . . . . . . . . . . 11 (𝑧 ∈ {∅} → 𝑧 = ∅)
4645adantl 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ {∅}) → 𝑧 = ∅)
4746fveq2d 6699 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀𝑧) = (𝑀‘∅))
4821adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀‘∅) = 0)
4947, 48eqtrd 2771 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀𝑧) = 0)
5040, 41, 44, 49esumpad 31689 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ (𝐴 ∪ {∅})(𝑀𝑧) = Σ*𝑧𝐴(𝑀𝑧))
5137, 50breqtrd 5065 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧𝐴(𝑀𝑧))
5236, 24sstrd 3897 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 ⊆ (toCaraSiga‘𝑀))
53 ssexg 5201 . . . . . . . 8 ((ran 𝑓 ⊆ (toCaraSiga‘𝑀) ∧ (toCaraSiga‘𝑀) ∈ V) → ran 𝑓 ∈ V)
5452, 12, 53sylancl 589 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 ∈ V)
5519adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ ran 𝑓) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
5636, 33sstrd 3897 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 ⊆ 𝒫 𝑂)
5756sselda 3887 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 ∈ 𝒫 𝑂)
5855, 57ffvelrnd 6883 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ ran 𝑓) → (𝑀𝑧) ∈ (0[,]+∞))
59 simpr2 1197 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ⊆ ran 𝑓)
607, 54, 58, 59esummono 31688 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧𝐴(𝑀𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀𝑧))
6151, 60jca 515 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧𝐴(𝑀𝑧) ∧ Σ*𝑧𝐴(𝑀𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀𝑧)))
62 iccssxr 12983 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
6358ralrimiva 3095 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∀𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ (0[,]+∞))
64 nfcv 2897 . . . . . . . . 9 𝑧ran 𝑓
6564esumcl 31664 . . . . . . . 8 ((ran 𝑓 ∈ V ∧ ∀𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ (0[,]+∞)) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ (0[,]+∞))
6654, 63, 65syl2anc 587 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ (0[,]+∞))
6762, 66sseldi 3885 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ ℝ*)
6844ralrimiva 3095 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∀𝑧𝐴 (𝑀𝑧) ∈ (0[,]+∞))
69 nfcv 2897 . . . . . . . . 9 𝑧𝐴
7069esumcl 31664 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑧𝐴 (𝑀𝑧) ∈ (0[,]+∞)) → Σ*𝑧𝐴(𝑀𝑧) ∈ (0[,]+∞))
7140, 68, 70syl2anc 587 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧𝐴(𝑀𝑧) ∈ (0[,]+∞))
7262, 71sseldi 3885 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧𝐴(𝑀𝑧) ∈ ℝ*)
73 xrletri3 12709 . . . . . 6 ((Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ ℝ* ∧ Σ*𝑧𝐴(𝑀𝑧) ∈ ℝ*) → (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) = Σ*𝑧𝐴(𝑀𝑧) ↔ (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧𝐴(𝑀𝑧) ∧ Σ*𝑧𝐴(𝑀𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀𝑧))))
7467, 72, 73syl2anc 587 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) = Σ*𝑧𝐴(𝑀𝑧) ↔ (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧𝐴(𝑀𝑧) ∧ Σ*𝑧𝐴(𝑀𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀𝑧))))
7561, 74mpbird 260 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) = Σ*𝑧𝐴(𝑀𝑧))
76 fveq2 6695 . . . . 5 (𝑧 = (𝑓𝑘) → (𝑀𝑧) = (𝑀‘(𝑓𝑘)))
77 nnex 11801 . . . . . 6 ℕ ∈ V
7877a1i 11 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ℕ ∈ V)
7919adantr 484 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
8033adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂)
818adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑓:ℕ⟶(𝐴 ∪ {∅}))
82 simpr 488 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
8381, 82ffvelrnd 6883 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ (𝐴 ∪ {∅}))
8480, 83sseldd 3888 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝒫 𝑂)
8579, 84ffvelrnd 6883 . . . . 5 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑀‘(𝑓𝑘)) ∈ (0[,]+∞))
86 simpr 488 . . . . . . 7 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓𝑘) = ∅) → (𝑓𝑘) = ∅)
8786fveq2d 6699 . . . . . 6 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓𝑘) = ∅) → (𝑀‘(𝑓𝑘)) = (𝑀‘∅))
8821ad2antrr 726 . . . . . 6 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓𝑘) = ∅) → (𝑀‘∅) = 0)
8987, 88eqtrd 2771 . . . . 5 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓𝑘) = ∅) → (𝑀‘(𝑓𝑘)) = 0)
90 cnvimass 5934 . . . . . . 7 (𝑓𝐴) ⊆ dom 𝑓
9190, 8fssdm 6543 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓𝐴) ⊆ ℕ)
92 ffun 6526 . . . . . . . . . . 11 (𝑓:ℕ⟶(𝐴 ∪ {∅}) → Fun 𝑓)
938, 92syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Fun 𝑓)
9493adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (𝑓𝐴))) → Fun 𝑓)
95 difpreima 6863 . . . . . . . . . . . . 13 (Fun 𝑓 → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = ((𝑓 “ (𝐴 ∪ {∅})) ∖ (𝑓𝐴)))
968, 92, 953syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = ((𝑓 “ (𝐴 ∪ {∅})) ∖ (𝑓𝐴)))
97 fimacnv 6545 . . . . . . . . . . . . . 14 (𝑓:ℕ⟶(𝐴 ∪ {∅}) → (𝑓 “ (𝐴 ∪ {∅})) = ℕ)
988, 97syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 “ (𝐴 ∪ {∅})) = ℕ)
9998difeq1d 4022 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ((𝑓 “ (𝐴 ∪ {∅})) ∖ (𝑓𝐴)) = (ℕ ∖ (𝑓𝐴)))
10096, 99eqtrd 2771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = (ℕ ∖ (𝑓𝐴)))
101 uncom 4053 . . . . . . . . . . . . . . . 16 ({∅} ∪ 𝐴) = (𝐴 ∪ {∅})
102101difeq1i 4019 . . . . . . . . . . . . . . 15 (({∅} ∪ 𝐴) ∖ 𝐴) = ((𝐴 ∪ {∅}) ∖ 𝐴)
103 difun2 4381 . . . . . . . . . . . . . . 15 (({∅} ∪ 𝐴) ∖ 𝐴) = ({∅} ∖ 𝐴)
104102, 103eqtr3i 2761 . . . . . . . . . . . . . 14 ((𝐴 ∪ {∅}) ∖ 𝐴) = ({∅} ∖ 𝐴)
105 difss 4032 . . . . . . . . . . . . . 14 ({∅} ∖ 𝐴) ⊆ {∅}
106104, 105eqsstri 3921 . . . . . . . . . . . . 13 ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆ {∅}
107106a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆ {∅})
108 sspreima 6866 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆ {∅}) → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) ⊆ (𝑓 “ {∅}))
10993, 107, 108syl2anc 587 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) ⊆ (𝑓 “ {∅}))
110100, 109eqsstrrd 3926 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (ℕ ∖ (𝑓𝐴)) ⊆ (𝑓 “ {∅}))
111110sselda 3887 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (𝑓𝐴))) → 𝑘 ∈ (𝑓 “ {∅}))
112 fvimacnvi 6850 . . . . . . . . 9 ((Fun 𝑓𝑘 ∈ (𝑓 “ {∅})) → (𝑓𝑘) ∈ {∅})
11394, 111, 112syl2anc 587 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (𝑓𝐴))) → (𝑓𝑘) ∈ {∅})
114 elsni 4544 . . . . . . . 8 ((𝑓𝑘) ∈ {∅} → (𝑓𝑘) = ∅)
115113, 114syl 17 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (𝑓𝐴))) → (𝑓𝑘) = ∅)
116115ralrimiva 3095 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∀𝑘 ∈ (ℕ ∖ (𝑓𝐴))(𝑓𝑘) = ∅)
117 carsggect.3 . . . . . . . 8 (𝜑Disj 𝑦𝐴 𝑦)
118117adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑦𝐴 𝑦)
119 simpr3 1198 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Fun (𝑓𝐴))
120 fresf1o 30639 . . . . . . . . . 10 ((Fun 𝑓𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴)
12193, 59, 119, 120syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴)
122 simpr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑦 = ((𝑓 ↾ (𝑓𝐴))‘𝑘)) → 𝑦 = ((𝑓 ↾ (𝑓𝐴))‘𝑘))
123121, 122disjrdx 30603 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Disj 𝑘 ∈ (𝑓𝐴)((𝑓 ↾ (𝑓𝐴))‘𝑘) ↔ Disj 𝑦𝐴 𝑦))
124 fvres 6714 . . . . . . . . . 10 (𝑘 ∈ (𝑓𝐴) → ((𝑓 ↾ (𝑓𝐴))‘𝑘) = (𝑓𝑘))
125124adantl 485 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (𝑓𝐴)) → ((𝑓 ↾ (𝑓𝐴))‘𝑘) = (𝑓𝑘))
126125disjeq2dv 5009 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Disj 𝑘 ∈ (𝑓𝐴)((𝑓 ↾ (𝑓𝐴))‘𝑘) ↔ Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘)))
127123, 126bitr3d 284 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Disj 𝑦𝐴 𝑦Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘)))
128118, 127mpbid 235 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘))
129 disjss3 5038 . . . . . . 7 (((𝑓𝐴) ⊆ ℕ ∧ ∀𝑘 ∈ (ℕ ∖ (𝑓𝐴))(𝑓𝑘) = ∅) → (Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘) ↔ Disj 𝑘 ∈ ℕ (𝑓𝑘)))
130129biimpa 480 . . . . . 6 ((((𝑓𝐴) ⊆ ℕ ∧ ∀𝑘 ∈ (ℕ ∖ (𝑓𝐴))(𝑓𝑘) = ∅) ∧ Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘)) → Disj 𝑘 ∈ ℕ (𝑓𝑘))
13191, 116, 128, 130syl21anc 838 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑘 ∈ ℕ (𝑓𝑘))
13276, 78, 85, 84, 89, 131esumrnmpt2 31702 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran (𝑘 ∈ ℕ ↦ (𝑓𝑘))(𝑀𝑧) = Σ*𝑘 ∈ ℕ(𝑀‘(𝑓𝑘)))
13311, 75, 1323eqtr3rd 2780 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑘 ∈ ℕ(𝑀‘(𝑓𝑘)) = Σ*𝑧𝐴(𝑀𝑧))
134 uniiun 4953 . . . . . . 7 𝐴 = 𝑥𝐴 𝑥
13528sselda 3887 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 ∈ 𝒫 𝑂)
13639, 135elpwiuncl 30549 . . . . . . 7 (𝜑 𝑥𝐴 𝑥 ∈ 𝒫 𝑂)
137134, 136eqeltrid 2835 . . . . . 6 (𝜑 𝐴 ∈ 𝒫 𝑂)
138137adantr 484 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ∈ 𝒫 𝑂)
13919, 138ffvelrnd 6883 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑀 𝐴) ∈ (0[,]+∞))
140 carsgsiga.2 . . . . . . . . . 10 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
1411403adant1r 1179 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
142 fveq2 6695 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑀𝑦) = (𝑀𝑧))
143 nfcv 2897 . . . . . . . . . 10 𝑧𝑥
144 nfcv 2897 . . . . . . . . . 10 𝑦𝑥
145 nfcv 2897 . . . . . . . . . 10 𝑧(𝑀𝑦)
146 nfcv 2897 . . . . . . . . . 10 𝑦(𝑀𝑧)
147142, 143, 144, 145, 146cbvesum 31676 . . . . . . . . 9 Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑧𝑥(𝑀𝑧)
148141, 147breqtrdi 5080 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑧𝑥(𝑀𝑧))
149 ffn 6523 . . . . . . . . . 10 (𝑓:ℕ⟶(𝐴 ∪ {∅}) → 𝑓 Fn ℕ)
150 fz1ssnn 13108 . . . . . . . . . . 11 (1...𝑛) ⊆ ℕ
151 fnssres 6478 . . . . . . . . . . 11 ((𝑓 Fn ℕ ∧ (1...𝑛) ⊆ ℕ) → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛))
152150, 151mpan2 691 . . . . . . . . . 10 (𝑓 Fn ℕ → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛))
1538, 149, 1523syl 18 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛))
154 fzfi 13510 . . . . . . . . . 10 (1...𝑛) ∈ Fin
155 fnfi 8835 . . . . . . . . . 10 (((𝑓 ↾ (1...𝑛)) Fn (1...𝑛) ∧ (1...𝑛) ∈ Fin) → (𝑓 ↾ (1...𝑛)) ∈ Fin)
156154, 155mpan2 691 . . . . . . . . 9 ((𝑓 ↾ (1...𝑛)) Fn (1...𝑛) → (𝑓 ↾ (1...𝑛)) ∈ Fin)
157 rnfi 8937 . . . . . . . . 9 ((𝑓 ↾ (1...𝑛)) ∈ Fin → ran (𝑓 ↾ (1...𝑛)) ∈ Fin)
158153, 156, 1573syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ∈ Fin)
159 resss 5861 . . . . . . . . . . 11 (𝑓 ↾ (1...𝑛)) ⊆ 𝑓
160 rnss 5793 . . . . . . . . . . 11 ((𝑓 ↾ (1...𝑛)) ⊆ 𝑓 → ran (𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓)
161159, 160ax-mp 5 . . . . . . . . . 10 ran (𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓
162161a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓)
163162, 52sstrd 3897 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ (toCaraSiga‘𝑀))
164162, 36sstrd 3897 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅}))
165 nfcv 2897 . . . . . . . . . . . . 13 𝑧𝑦
166 nfcv 2897 . . . . . . . . . . . . 13 𝑦𝑧
167 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝑧𝑦 = 𝑧)
168165, 166, 167cbvdisj 5014 . . . . . . . . . . . 12 (Disj 𝑦𝐴 𝑦Disj 𝑧𝐴 𝑧)
169 disjun0 30607 . . . . . . . . . . . 12 (Disj 𝑧𝐴 𝑧Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧)
170168, 169sylbi 220 . . . . . . . . . . 11 (Disj 𝑦𝐴 𝑦Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧)
171117, 170syl 17 . . . . . . . . . 10 (𝜑Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧)
172171adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧)
173 disjss1 5010 . . . . . . . . 9 (ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅}) → (Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧Disj 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))𝑧))
174164, 172, 173sylc 65 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))𝑧)
175 pwidg 4521 . . . . . . . . 9 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
17617, 175syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑂 ∈ 𝒫 𝑂)
17717, 19, 21, 148, 158, 163, 174, 176carsgclctunlem1 31950 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑀‘(𝑂 ran (𝑓 ↾ (1...𝑛)))) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)))
178177adantr 484 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝑂 ran (𝑓 ↾ (1...𝑛)))) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)))
179164unissd 4815 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅}))
180 uniun 4830 . . . . . . . . . . . 12 (𝐴 ∪ {∅}) = ( 𝐴 {∅})
1812unisn 4827 . . . . . . . . . . . . 13 {∅} = ∅
182181uneq2i 4060 . . . . . . . . . . . 12 ( 𝐴 {∅}) = ( 𝐴 ∪ ∅)
183 un0 4291 . . . . . . . . . . . 12 ( 𝐴 ∪ ∅) = 𝐴
184180, 182, 1833eqtri 2763 . . . . . . . . . . 11 (𝐴 ∪ {∅}) = 𝐴
185179, 184sseqtrdi 3937 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ 𝐴)
186185adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ 𝐴)
187 uniss 4813 . . . . . . . . . . . 12 (𝐴 ⊆ 𝒫 𝑂 𝐴 𝒫 𝑂)
188 unipw 5320 . . . . . . . . . . . 12 𝒫 𝑂 = 𝑂
189187, 188sseqtrdi 3937 . . . . . . . . . . 11 (𝐴 ⊆ 𝒫 𝑂 𝐴𝑂)
19028, 189syl 17 . . . . . . . . . 10 (𝜑 𝐴𝑂)
191190ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴𝑂)
192186, 191sstrd 3897 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ 𝑂)
193 sseqin2 4116 . . . . . . . 8 ( ran (𝑓 ↾ (1...𝑛)) ⊆ 𝑂 ↔ (𝑂 ran (𝑓 ↾ (1...𝑛))) = ran (𝑓 ↾ (1...𝑛)))
194192, 193sylib 221 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑂 ran (𝑓 ↾ (1...𝑛))) = ran (𝑓 ↾ (1...𝑛)))
195194fveq2d 6699 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝑂 ran (𝑓 ↾ (1...𝑛)))) = (𝑀 ran (𝑓 ↾ (1...𝑛))))
196 nfv 1922 . . . . . . . 8 𝑧((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ)
197164adantr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅}))
19828ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ 𝒫 𝑂)
19930a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ∅ ∈ 𝒫 𝑂)
200199snssd 4708 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → {∅} ⊆ 𝒫 𝑂)
201198, 200unssd 4086 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂)
202197, 201sstrd 3897 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ 𝒫 𝑂)
203202sselda 3887 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → 𝑧 ∈ 𝒫 𝑂)
204203elpwid 4510 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → 𝑧𝑂)
205 sseqin2 4116 . . . . . . . . . . 11 (𝑧𝑂 ↔ (𝑂𝑧) = 𝑧)
206204, 205sylib 221 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → (𝑂𝑧) = 𝑧)
207206fveq2d 6699 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → (𝑀‘(𝑂𝑧)) = (𝑀𝑧))
208207ralrimiva 3095 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ∀𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)) = (𝑀𝑧))
209196, 208esumeq2d 31671 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀𝑧))
2109reseq1d 5835 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 ↾ (1...𝑛)) = ((𝑘 ∈ ℕ ↦ (𝑓𝑘)) ↾ (1...𝑛)))
211210adantr 484 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑓 ↾ (1...𝑛)) = ((𝑘 ∈ ℕ ↦ (𝑓𝑘)) ↾ (1...𝑛)))
212 resmpt 5890 . . . . . . . . . . . 12 ((1...𝑛) ⊆ ℕ → ((𝑘 ∈ ℕ ↦ (𝑓𝑘)) ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘)))
213150, 212ax-mp 5 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ↦ (𝑓𝑘)) ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘))
214211, 213eqtrdi 2787 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑓 ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘)))
215214eqcomd 2742 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘)) = (𝑓 ↾ (1...𝑛)))
216215rneqd 5792 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘)) = ran (𝑓 ↾ (1...𝑛)))
217196, 216esumeq1d 31669 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑧 ∈ ran (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘))(𝑀𝑧) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀𝑧))
218154a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
21919ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
220150a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
221220sselda 3887 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
22284adantlr 715 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝒫 𝑂)
223221, 222syldan 594 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑓𝑘) ∈ 𝒫 𝑂)
224219, 223ffvelrnd 6883 . . . . . . . 8 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑀‘(𝑓𝑘)) ∈ (0[,]+∞))
225 simpr 488 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓𝑘) = ∅) → (𝑓𝑘) = ∅)
226225fveq2d 6699 . . . . . . . . 9 (((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓𝑘) = ∅) → (𝑀‘(𝑓𝑘)) = (𝑀‘∅))
22721ad3antrrr 730 . . . . . . . . 9 (((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓𝑘) = ∅) → (𝑀‘∅) = 0)
228226, 227eqtrd 2771 . . . . . . . 8 (((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓𝑘) = ∅) → (𝑀‘(𝑓𝑘)) = 0)
229 disjss1 5010 . . . . . . . . . . 11 ((1...𝑛) ⊆ ℕ → (Disj 𝑘 ∈ ℕ (𝑓𝑘) → Disj 𝑘 ∈ (1...𝑛)(𝑓𝑘)))
230150, 229ax-mp 5 . . . . . . . . . 10 (Disj 𝑘 ∈ ℕ (𝑓𝑘) → Disj 𝑘 ∈ (1...𝑛)(𝑓𝑘))
231131, 230syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑘 ∈ (1...𝑛)(𝑓𝑘))
232231adantr 484 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Disj 𝑘 ∈ (1...𝑛)(𝑓𝑘))
23376, 218, 224, 223, 228, 232esumrnmpt2 31702 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑧 ∈ ran (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘))(𝑀𝑧) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓𝑘)))
234209, 217, 2333eqtr2d 2777 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓𝑘)))
235178, 195, 2343eqtr3d 2779 . . . . 5 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀 ran (𝑓 ↾ (1...𝑛))) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓𝑘)))
236 carsggect.4 . . . . . . . 8 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
2372363adant1r 1179 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
23817, 19, 185, 138, 237carsgmon 31947 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑀 ran (𝑓 ↾ (1...𝑛))) ≤ (𝑀 𝐴))
239238adantr 484 . . . . 5 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀 ran (𝑓 ↾ (1...𝑛))) ≤ (𝑀 𝐴))
240235, 239eqbrtrrd 5063 . . . 4 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓𝑘)) ≤ (𝑀 𝐴))
241139, 85, 240esumgect 31724 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑘 ∈ ℕ(𝑀‘(𝑓𝑘)) ≤ (𝑀 𝐴))
242133, 241eqbrtrrd 5063 . 2 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧𝐴(𝑀𝑧) ≤ (𝑀 𝐴))
2436, 242exlimddv 1943 1 (𝜑 → Σ*𝑧𝐴(𝑀𝑧) ≤ (𝑀 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2112  wral 3051  Vcvv 3398  cdif 3850  cun 3851  cin 3852  wss 3853  c0 4223  𝒫 cpw 4499  {csn 4527   cuni 4805   ciun 4890  Disj wdisj 5004   class class class wbr 5039  cmpt 5120  ccnv 5535  ran crn 5537  cres 5538  cima 5539  Fun wfun 6352   Fn wfn 6353  wf 6354  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7191  ωcom 7622  cdom 8602  Fincfn 8604  0cc0 10694  1c1 10695  +∞cpnf 10829  *cxr 10831  cle 10833  cn 11795  [,]cicc 12903  ...cfz 13060  Σ*cesum 31661  toCaraSigaccarsg 31934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-dju 9482  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ioc 12905  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-fac 13805  df-bc 13834  df-hash 13862  df-shft 14595  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-limsup 14997  df-clim 15014  df-rlim 15015  df-sum 15215  df-ef 15592  df-sin 15594  df-cos 15595  df-pi 15597  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-ordt 16960  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-ps 18026  df-tsr 18027  df-plusf 18067  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-submnd 18173  df-grp 18322  df-minusg 18323  df-sbg 18324  df-mulg 18443  df-subg 18494  df-cntz 18665  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-subrg 19752  df-abv 19807  df-lmod 19855  df-scaf 19856  df-sra 20163  df-rgmod 20164  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-lp 21987  df-perf 21988  df-cn 22078  df-cnp 22079  df-haus 22166  df-tx 22413  df-hmeo 22606  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-tmd 22923  df-tgp 22924  df-tsms 22978  df-trg 23011  df-xms 23172  df-ms 23173  df-tms 23174  df-nm 23434  df-ngp 23435  df-nrg 23437  df-nlm 23438  df-ii 23728  df-cncf 23729  df-limc 24717  df-dv 24718  df-log 25399  df-esum 31662  df-carsg 31935
This theorem is referenced by:  omsmeas  31956
  Copyright terms: Public domain W3C validator