Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsggect Structured version   Visualization version   GIF version

Theorem carsggect 32185
Description: The outer measure is countably superadditive on Caratheodory measurable sets. (Contributed by Thierry Arnoux, 31-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsggect.0 (𝜑 → ¬ ∅ ∈ 𝐴)
carsggect.1 (𝜑𝐴 ≼ ω)
carsggect.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
carsggect.3 (𝜑Disj 𝑦𝐴 𝑦)
carsggect.4 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
Assertion
Ref Expression
carsggect (𝜑 → Σ*𝑧𝐴(𝑀𝑧) ≤ (𝑀 𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦   𝑧,𝐴   𝑧,𝑀   𝑧,𝑂,𝑥,𝑦   𝜑,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem carsggect
Dummy variables 𝑓 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 carsggect.1 . . 3 (𝜑𝐴 ≼ ω)
2 0ex 5226 . . . 4 ∅ ∈ V
32a1i 11 . . 3 (𝜑 → ∅ ∈ V)
4 carsggect.0 . . 3 (𝜑 → ¬ ∅ ∈ 𝐴)
5 padct 30956 . . 3 ((𝐴 ≼ ω ∧ ∅ ∈ V ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
61, 3, 4, 5syl3anc 1369 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
7 nfv 1918 . . . . 5 𝑧(𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
8 simpr1 1192 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑓:ℕ⟶(𝐴 ∪ {∅}))
98feqmptd 6819 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑓 = (𝑘 ∈ ℕ ↦ (𝑓𝑘)))
109rneqd 5836 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 = ran (𝑘 ∈ ℕ ↦ (𝑓𝑘)))
117, 10esumeq1d 31903 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) = Σ*𝑧 ∈ ran (𝑘 ∈ ℕ ↦ (𝑓𝑘))(𝑀𝑧))
12 fvex 6769 . . . . . . . . . 10 (toCaraSiga‘𝑀) ∈ V
1312a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (toCaraSiga‘𝑀) ∈ V)
14 carsggect.2 . . . . . . . . . . 11 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
1514adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ⊆ (toCaraSiga‘𝑀))
16 carsgval.1 . . . . . . . . . . . . 13 (𝜑𝑂𝑉)
1716adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑂𝑉)
18 carsgval.2 . . . . . . . . . . . . 13 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
1918adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
20 carsgsiga.1 . . . . . . . . . . . . 13 (𝜑 → (𝑀‘∅) = 0)
2120adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑀‘∅) = 0)
2217, 19, 210elcarsg 32174 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∅ ∈ (toCaraSiga‘𝑀))
2322snssd 4739 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → {∅} ⊆ (toCaraSiga‘𝑀))
2415, 23unssd 4116 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝐴 ∪ {∅}) ⊆ (toCaraSiga‘𝑀))
2513, 24ssexd 5243 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝐴 ∪ {∅}) ∈ V)
2619adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
2716, 18carsgcl 32171 . . . . . . . . . . . . 13 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂)
2814, 27sstrd 3927 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ 𝒫 𝑂)
2928adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ⊆ 𝒫 𝑂)
30 0elpw 5273 . . . . . . . . . . . . 13 ∅ ∈ 𝒫 𝑂
3130a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∅ ∈ 𝒫 𝑂)
3231snssd 4739 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → {∅} ⊆ 𝒫 𝑂)
3329, 32unssd 4116 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂)
3433sselda 3917 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → 𝑧 ∈ 𝒫 𝑂)
3526, 34ffvelrnd 6944 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → (𝑀𝑧) ∈ (0[,]+∞))
368frnd 6592 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 ⊆ (𝐴 ∪ {∅}))
377, 25, 35, 36esummono 31922 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧 ∈ (𝐴 ∪ {∅})(𝑀𝑧))
38 ctex 8708 . . . . . . . . . 10 (𝐴 ≼ ω → 𝐴 ∈ V)
391, 38syl 17 . . . . . . . . 9 (𝜑𝐴 ∈ V)
4039adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ∈ V)
4113, 23ssexd 5243 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → {∅} ∈ V)
4219adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
4329sselda 3917 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧𝐴) → 𝑧 ∈ 𝒫 𝑂)
4442, 43ffvelrnd 6944 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧𝐴) → (𝑀𝑧) ∈ (0[,]+∞))
45 elsni 4575 . . . . . . . . . . 11 (𝑧 ∈ {∅} → 𝑧 = ∅)
4645adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ {∅}) → 𝑧 = ∅)
4746fveq2d 6760 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀𝑧) = (𝑀‘∅))
4821adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀‘∅) = 0)
4947, 48eqtrd 2778 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀𝑧) = 0)
5040, 41, 44, 49esumpad 31923 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ (𝐴 ∪ {∅})(𝑀𝑧) = Σ*𝑧𝐴(𝑀𝑧))
5137, 50breqtrd 5096 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧𝐴(𝑀𝑧))
5236, 24sstrd 3927 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 ⊆ (toCaraSiga‘𝑀))
53 ssexg 5242 . . . . . . . 8 ((ran 𝑓 ⊆ (toCaraSiga‘𝑀) ∧ (toCaraSiga‘𝑀) ∈ V) → ran 𝑓 ∈ V)
5452, 12, 53sylancl 585 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 ∈ V)
5519adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ ran 𝑓) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
5636, 33sstrd 3927 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 ⊆ 𝒫 𝑂)
5756sselda 3917 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 ∈ 𝒫 𝑂)
5855, 57ffvelrnd 6944 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ ran 𝑓) → (𝑀𝑧) ∈ (0[,]+∞))
59 simpr2 1193 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ⊆ ran 𝑓)
607, 54, 58, 59esummono 31922 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧𝐴(𝑀𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀𝑧))
6151, 60jca 511 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧𝐴(𝑀𝑧) ∧ Σ*𝑧𝐴(𝑀𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀𝑧)))
62 iccssxr 13091 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
6358ralrimiva 3107 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∀𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ (0[,]+∞))
64 nfcv 2906 . . . . . . . . 9 𝑧ran 𝑓
6564esumcl 31898 . . . . . . . 8 ((ran 𝑓 ∈ V ∧ ∀𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ (0[,]+∞)) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ (0[,]+∞))
6654, 63, 65syl2anc 583 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ (0[,]+∞))
6762, 66sselid 3915 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ ℝ*)
6844ralrimiva 3107 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∀𝑧𝐴 (𝑀𝑧) ∈ (0[,]+∞))
69 nfcv 2906 . . . . . . . . 9 𝑧𝐴
7069esumcl 31898 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑧𝐴 (𝑀𝑧) ∈ (0[,]+∞)) → Σ*𝑧𝐴(𝑀𝑧) ∈ (0[,]+∞))
7140, 68, 70syl2anc 583 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧𝐴(𝑀𝑧) ∈ (0[,]+∞))
7262, 71sselid 3915 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧𝐴(𝑀𝑧) ∈ ℝ*)
73 xrletri3 12817 . . . . . 6 ((Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ ℝ* ∧ Σ*𝑧𝐴(𝑀𝑧) ∈ ℝ*) → (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) = Σ*𝑧𝐴(𝑀𝑧) ↔ (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧𝐴(𝑀𝑧) ∧ Σ*𝑧𝐴(𝑀𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀𝑧))))
7467, 72, 73syl2anc 583 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) = Σ*𝑧𝐴(𝑀𝑧) ↔ (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧𝐴(𝑀𝑧) ∧ Σ*𝑧𝐴(𝑀𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀𝑧))))
7561, 74mpbird 256 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) = Σ*𝑧𝐴(𝑀𝑧))
76 fveq2 6756 . . . . 5 (𝑧 = (𝑓𝑘) → (𝑀𝑧) = (𝑀‘(𝑓𝑘)))
77 nnex 11909 . . . . . 6 ℕ ∈ V
7877a1i 11 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ℕ ∈ V)
7919adantr 480 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
8033adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂)
818adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑓:ℕ⟶(𝐴 ∪ {∅}))
82 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
8381, 82ffvelrnd 6944 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ (𝐴 ∪ {∅}))
8480, 83sseldd 3918 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝒫 𝑂)
8579, 84ffvelrnd 6944 . . . . 5 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑀‘(𝑓𝑘)) ∈ (0[,]+∞))
86 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓𝑘) = ∅) → (𝑓𝑘) = ∅)
8786fveq2d 6760 . . . . . 6 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓𝑘) = ∅) → (𝑀‘(𝑓𝑘)) = (𝑀‘∅))
8821ad2antrr 722 . . . . . 6 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓𝑘) = ∅) → (𝑀‘∅) = 0)
8987, 88eqtrd 2778 . . . . 5 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓𝑘) = ∅) → (𝑀‘(𝑓𝑘)) = 0)
90 cnvimass 5978 . . . . . . 7 (𝑓𝐴) ⊆ dom 𝑓
9190, 8fssdm 6604 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓𝐴) ⊆ ℕ)
92 ffun 6587 . . . . . . . . . . 11 (𝑓:ℕ⟶(𝐴 ∪ {∅}) → Fun 𝑓)
938, 92syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Fun 𝑓)
9493adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (𝑓𝐴))) → Fun 𝑓)
95 difpreima 6924 . . . . . . . . . . . . 13 (Fun 𝑓 → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = ((𝑓 “ (𝐴 ∪ {∅})) ∖ (𝑓𝐴)))
968, 92, 953syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = ((𝑓 “ (𝐴 ∪ {∅})) ∖ (𝑓𝐴)))
97 fimacnv 6606 . . . . . . . . . . . . . 14 (𝑓:ℕ⟶(𝐴 ∪ {∅}) → (𝑓 “ (𝐴 ∪ {∅})) = ℕ)
988, 97syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 “ (𝐴 ∪ {∅})) = ℕ)
9998difeq1d 4052 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ((𝑓 “ (𝐴 ∪ {∅})) ∖ (𝑓𝐴)) = (ℕ ∖ (𝑓𝐴)))
10096, 99eqtrd 2778 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = (ℕ ∖ (𝑓𝐴)))
101 uncom 4083 . . . . . . . . . . . . . . . 16 ({∅} ∪ 𝐴) = (𝐴 ∪ {∅})
102101difeq1i 4049 . . . . . . . . . . . . . . 15 (({∅} ∪ 𝐴) ∖ 𝐴) = ((𝐴 ∪ {∅}) ∖ 𝐴)
103 difun2 4411 . . . . . . . . . . . . . . 15 (({∅} ∪ 𝐴) ∖ 𝐴) = ({∅} ∖ 𝐴)
104102, 103eqtr3i 2768 . . . . . . . . . . . . . 14 ((𝐴 ∪ {∅}) ∖ 𝐴) = ({∅} ∖ 𝐴)
105 difss 4062 . . . . . . . . . . . . . 14 ({∅} ∖ 𝐴) ⊆ {∅}
106104, 105eqsstri 3951 . . . . . . . . . . . . 13 ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆ {∅}
107106a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆ {∅})
108 sspreima 6927 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆ {∅}) → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) ⊆ (𝑓 “ {∅}))
10993, 107, 108syl2anc 583 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) ⊆ (𝑓 “ {∅}))
110100, 109eqsstrrd 3956 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (ℕ ∖ (𝑓𝐴)) ⊆ (𝑓 “ {∅}))
111110sselda 3917 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (𝑓𝐴))) → 𝑘 ∈ (𝑓 “ {∅}))
112 fvimacnvi 6911 . . . . . . . . 9 ((Fun 𝑓𝑘 ∈ (𝑓 “ {∅})) → (𝑓𝑘) ∈ {∅})
11394, 111, 112syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (𝑓𝐴))) → (𝑓𝑘) ∈ {∅})
114 elsni 4575 . . . . . . . 8 ((𝑓𝑘) ∈ {∅} → (𝑓𝑘) = ∅)
115113, 114syl 17 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (𝑓𝐴))) → (𝑓𝑘) = ∅)
116115ralrimiva 3107 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∀𝑘 ∈ (ℕ ∖ (𝑓𝐴))(𝑓𝑘) = ∅)
117 carsggect.3 . . . . . . . 8 (𝜑Disj 𝑦𝐴 𝑦)
118117adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑦𝐴 𝑦)
119 simpr3 1194 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Fun (𝑓𝐴))
120 fresf1o 30867 . . . . . . . . . 10 ((Fun 𝑓𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴)
12193, 59, 119, 120syl3anc 1369 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴)
122 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑦 = ((𝑓 ↾ (𝑓𝐴))‘𝑘)) → 𝑦 = ((𝑓 ↾ (𝑓𝐴))‘𝑘))
123121, 122disjrdx 30831 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Disj 𝑘 ∈ (𝑓𝐴)((𝑓 ↾ (𝑓𝐴))‘𝑘) ↔ Disj 𝑦𝐴 𝑦))
124 fvres 6775 . . . . . . . . . 10 (𝑘 ∈ (𝑓𝐴) → ((𝑓 ↾ (𝑓𝐴))‘𝑘) = (𝑓𝑘))
125124adantl 481 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (𝑓𝐴)) → ((𝑓 ↾ (𝑓𝐴))‘𝑘) = (𝑓𝑘))
126125disjeq2dv 5040 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Disj 𝑘 ∈ (𝑓𝐴)((𝑓 ↾ (𝑓𝐴))‘𝑘) ↔ Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘)))
127123, 126bitr3d 280 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Disj 𝑦𝐴 𝑦Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘)))
128118, 127mpbid 231 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘))
129 disjss3 5069 . . . . . . 7 (((𝑓𝐴) ⊆ ℕ ∧ ∀𝑘 ∈ (ℕ ∖ (𝑓𝐴))(𝑓𝑘) = ∅) → (Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘) ↔ Disj 𝑘 ∈ ℕ (𝑓𝑘)))
130129biimpa 476 . . . . . 6 ((((𝑓𝐴) ⊆ ℕ ∧ ∀𝑘 ∈ (ℕ ∖ (𝑓𝐴))(𝑓𝑘) = ∅) ∧ Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘)) → Disj 𝑘 ∈ ℕ (𝑓𝑘))
13191, 116, 128, 130syl21anc 834 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑘 ∈ ℕ (𝑓𝑘))
13276, 78, 85, 84, 89, 131esumrnmpt2 31936 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran (𝑘 ∈ ℕ ↦ (𝑓𝑘))(𝑀𝑧) = Σ*𝑘 ∈ ℕ(𝑀‘(𝑓𝑘)))
13311, 75, 1323eqtr3rd 2787 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑘 ∈ ℕ(𝑀‘(𝑓𝑘)) = Σ*𝑧𝐴(𝑀𝑧))
134 uniiun 4984 . . . . . . 7 𝐴 = 𝑥𝐴 𝑥
13528sselda 3917 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 ∈ 𝒫 𝑂)
13639, 135elpwiuncl 30777 . . . . . . 7 (𝜑 𝑥𝐴 𝑥 ∈ 𝒫 𝑂)
137134, 136eqeltrid 2843 . . . . . 6 (𝜑 𝐴 ∈ 𝒫 𝑂)
138137adantr 480 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ∈ 𝒫 𝑂)
13919, 138ffvelrnd 6944 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑀 𝐴) ∈ (0[,]+∞))
140 carsgsiga.2 . . . . . . . . . 10 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
1411403adant1r 1175 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
142 fveq2 6756 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑀𝑦) = (𝑀𝑧))
143 nfcv 2906 . . . . . . . . . 10 𝑧𝑥
144 nfcv 2906 . . . . . . . . . 10 𝑦𝑥
145 nfcv 2906 . . . . . . . . . 10 𝑧(𝑀𝑦)
146 nfcv 2906 . . . . . . . . . 10 𝑦(𝑀𝑧)
147142, 143, 144, 145, 146cbvesum 31910 . . . . . . . . 9 Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑧𝑥(𝑀𝑧)
148141, 147breqtrdi 5111 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑧𝑥(𝑀𝑧))
149 ffn 6584 . . . . . . . . . 10 (𝑓:ℕ⟶(𝐴 ∪ {∅}) → 𝑓 Fn ℕ)
150 fz1ssnn 13216 . . . . . . . . . . 11 (1...𝑛) ⊆ ℕ
151 fnssres 6539 . . . . . . . . . . 11 ((𝑓 Fn ℕ ∧ (1...𝑛) ⊆ ℕ) → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛))
152150, 151mpan2 687 . . . . . . . . . 10 (𝑓 Fn ℕ → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛))
1538, 149, 1523syl 18 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛))
154 fzfi 13620 . . . . . . . . . 10 (1...𝑛) ∈ Fin
155 fnfi 8925 . . . . . . . . . 10 (((𝑓 ↾ (1...𝑛)) Fn (1...𝑛) ∧ (1...𝑛) ∈ Fin) → (𝑓 ↾ (1...𝑛)) ∈ Fin)
156154, 155mpan2 687 . . . . . . . . 9 ((𝑓 ↾ (1...𝑛)) Fn (1...𝑛) → (𝑓 ↾ (1...𝑛)) ∈ Fin)
157 rnfi 9032 . . . . . . . . 9 ((𝑓 ↾ (1...𝑛)) ∈ Fin → ran (𝑓 ↾ (1...𝑛)) ∈ Fin)
158153, 156, 1573syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ∈ Fin)
159 resss 5905 . . . . . . . . . . 11 (𝑓 ↾ (1...𝑛)) ⊆ 𝑓
160 rnss 5837 . . . . . . . . . . 11 ((𝑓 ↾ (1...𝑛)) ⊆ 𝑓 → ran (𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓)
161159, 160ax-mp 5 . . . . . . . . . 10 ran (𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓
162161a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓)
163162, 52sstrd 3927 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ (toCaraSiga‘𝑀))
164162, 36sstrd 3927 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅}))
165 nfcv 2906 . . . . . . . . . . . . 13 𝑧𝑦
166 nfcv 2906 . . . . . . . . . . . . 13 𝑦𝑧
167 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝑧𝑦 = 𝑧)
168165, 166, 167cbvdisj 5045 . . . . . . . . . . . 12 (Disj 𝑦𝐴 𝑦Disj 𝑧𝐴 𝑧)
169 disjun0 30835 . . . . . . . . . . . 12 (Disj 𝑧𝐴 𝑧Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧)
170168, 169sylbi 216 . . . . . . . . . . 11 (Disj 𝑦𝐴 𝑦Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧)
171117, 170syl 17 . . . . . . . . . 10 (𝜑Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧)
172171adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧)
173 disjss1 5041 . . . . . . . . 9 (ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅}) → (Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧Disj 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))𝑧))
174164, 172, 173sylc 65 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))𝑧)
175 pwidg 4552 . . . . . . . . 9 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
17617, 175syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑂 ∈ 𝒫 𝑂)
17717, 19, 21, 148, 158, 163, 174, 176carsgclctunlem1 32184 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑀‘(𝑂 ran (𝑓 ↾ (1...𝑛)))) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)))
178177adantr 480 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝑂 ran (𝑓 ↾ (1...𝑛)))) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)))
179164unissd 4846 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅}))
180 uniun 4861 . . . . . . . . . . . 12 (𝐴 ∪ {∅}) = ( 𝐴 {∅})
1812unisn 4858 . . . . . . . . . . . . 13 {∅} = ∅
182181uneq2i 4090 . . . . . . . . . . . 12 ( 𝐴 {∅}) = ( 𝐴 ∪ ∅)
183 un0 4321 . . . . . . . . . . . 12 ( 𝐴 ∪ ∅) = 𝐴
184180, 182, 1833eqtri 2770 . . . . . . . . . . 11 (𝐴 ∪ {∅}) = 𝐴
185179, 184sseqtrdi 3967 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ 𝐴)
186185adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ 𝐴)
187 uniss 4844 . . . . . . . . . . . 12 (𝐴 ⊆ 𝒫 𝑂 𝐴 𝒫 𝑂)
188 unipw 5360 . . . . . . . . . . . 12 𝒫 𝑂 = 𝑂
189187, 188sseqtrdi 3967 . . . . . . . . . . 11 (𝐴 ⊆ 𝒫 𝑂 𝐴𝑂)
19028, 189syl 17 . . . . . . . . . 10 (𝜑 𝐴𝑂)
191190ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴𝑂)
192186, 191sstrd 3927 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ 𝑂)
193 sseqin2 4146 . . . . . . . 8 ( ran (𝑓 ↾ (1...𝑛)) ⊆ 𝑂 ↔ (𝑂 ran (𝑓 ↾ (1...𝑛))) = ran (𝑓 ↾ (1...𝑛)))
194192, 193sylib 217 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑂 ran (𝑓 ↾ (1...𝑛))) = ran (𝑓 ↾ (1...𝑛)))
195194fveq2d 6760 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝑂 ran (𝑓 ↾ (1...𝑛)))) = (𝑀 ran (𝑓 ↾ (1...𝑛))))
196 nfv 1918 . . . . . . . 8 𝑧((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ)
197164adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅}))
19828ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ 𝒫 𝑂)
19930a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ∅ ∈ 𝒫 𝑂)
200199snssd 4739 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → {∅} ⊆ 𝒫 𝑂)
201198, 200unssd 4116 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂)
202197, 201sstrd 3927 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ 𝒫 𝑂)
203202sselda 3917 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → 𝑧 ∈ 𝒫 𝑂)
204203elpwid 4541 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → 𝑧𝑂)
205 sseqin2 4146 . . . . . . . . . . 11 (𝑧𝑂 ↔ (𝑂𝑧) = 𝑧)
206204, 205sylib 217 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → (𝑂𝑧) = 𝑧)
207206fveq2d 6760 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → (𝑀‘(𝑂𝑧)) = (𝑀𝑧))
208207ralrimiva 3107 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ∀𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)) = (𝑀𝑧))
209196, 208esumeq2d 31905 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀𝑧))
2109reseq1d 5879 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 ↾ (1...𝑛)) = ((𝑘 ∈ ℕ ↦ (𝑓𝑘)) ↾ (1...𝑛)))
211210adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑓 ↾ (1...𝑛)) = ((𝑘 ∈ ℕ ↦ (𝑓𝑘)) ↾ (1...𝑛)))
212 resmpt 5934 . . . . . . . . . . . 12 ((1...𝑛) ⊆ ℕ → ((𝑘 ∈ ℕ ↦ (𝑓𝑘)) ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘)))
213150, 212ax-mp 5 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ↦ (𝑓𝑘)) ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘))
214211, 213eqtrdi 2795 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑓 ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘)))
215214eqcomd 2744 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘)) = (𝑓 ↾ (1...𝑛)))
216215rneqd 5836 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘)) = ran (𝑓 ↾ (1...𝑛)))
217196, 216esumeq1d 31903 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑧 ∈ ran (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘))(𝑀𝑧) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀𝑧))
218154a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
21919ad2antrr 722 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
220150a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
221220sselda 3917 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
22284adantlr 711 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝒫 𝑂)
223221, 222syldan 590 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑓𝑘) ∈ 𝒫 𝑂)
224219, 223ffvelrnd 6944 . . . . . . . 8 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑀‘(𝑓𝑘)) ∈ (0[,]+∞))
225 simpr 484 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓𝑘) = ∅) → (𝑓𝑘) = ∅)
226225fveq2d 6760 . . . . . . . . 9 (((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓𝑘) = ∅) → (𝑀‘(𝑓𝑘)) = (𝑀‘∅))
22721ad3antrrr 726 . . . . . . . . 9 (((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓𝑘) = ∅) → (𝑀‘∅) = 0)
228226, 227eqtrd 2778 . . . . . . . 8 (((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓𝑘) = ∅) → (𝑀‘(𝑓𝑘)) = 0)
229 disjss1 5041 . . . . . . . . . . 11 ((1...𝑛) ⊆ ℕ → (Disj 𝑘 ∈ ℕ (𝑓𝑘) → Disj 𝑘 ∈ (1...𝑛)(𝑓𝑘)))
230150, 229ax-mp 5 . . . . . . . . . 10 (Disj 𝑘 ∈ ℕ (𝑓𝑘) → Disj 𝑘 ∈ (1...𝑛)(𝑓𝑘))
231131, 230syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑘 ∈ (1...𝑛)(𝑓𝑘))
232231adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Disj 𝑘 ∈ (1...𝑛)(𝑓𝑘))
23376, 218, 224, 223, 228, 232esumrnmpt2 31936 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑧 ∈ ran (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘))(𝑀𝑧) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓𝑘)))
234209, 217, 2333eqtr2d 2784 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓𝑘)))
235178, 195, 2343eqtr3d 2786 . . . . 5 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀 ran (𝑓 ↾ (1...𝑛))) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓𝑘)))
236 carsggect.4 . . . . . . . 8 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
2372363adant1r 1175 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
23817, 19, 185, 138, 237carsgmon 32181 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑀 ran (𝑓 ↾ (1...𝑛))) ≤ (𝑀 𝐴))
239238adantr 480 . . . . 5 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀 ran (𝑓 ↾ (1...𝑛))) ≤ (𝑀 𝐴))
240235, 239eqbrtrrd 5094 . . . 4 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓𝑘)) ≤ (𝑀 𝐴))
241139, 85, 240esumgect 31958 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑘 ∈ ℕ(𝑀‘(𝑓𝑘)) ≤ (𝑀 𝐴))
242133, 241eqbrtrrd 5094 . 2 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧𝐴(𝑀𝑧) ≤ (𝑀 𝐴))
2436, 242exlimddv 1939 1 (𝜑 → Σ*𝑧𝐴(𝑀𝑧) ≤ (𝑀 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836   ciun 4921  Disj wdisj 5035   class class class wbr 5070  cmpt 5153  ccnv 5579  ran crn 5581  cres 5582  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  ωcom 7687  cdom 8689  Fincfn 8691  0cc0 10802  1c1 10803  +∞cpnf 10937  *cxr 10939  cle 10941  cn 11903  [,]cicc 13011  ...cfz 13168  Σ*cesum 31895  toCaraSigaccarsg 32168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-ordt 17129  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-ps 18199  df-tsr 18200  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-abv 19992  df-lmod 20040  df-scaf 20041  df-sra 20349  df-rgmod 20350  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tmd 23131  df-tgp 23132  df-tsms 23186  df-trg 23219  df-xms 23381  df-ms 23382  df-tms 23383  df-nm 23644  df-ngp 23645  df-nrg 23647  df-nlm 23648  df-ii 23946  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-esum 31896  df-carsg 32169
This theorem is referenced by:  omsmeas  32190
  Copyright terms: Public domain W3C validator