Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsggect Structured version   Visualization version   GIF version

Theorem carsggect 34283
Description: The outer measure is countably superadditive on Caratheodory measurable sets. (Contributed by Thierry Arnoux, 31-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
carsggect.0 (𝜑 → ¬ ∅ ∈ 𝐴)
carsggect.1 (𝜑𝐴 ≼ ω)
carsggect.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
carsggect.3 (𝜑Disj 𝑦𝐴 𝑦)
carsggect.4 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
Assertion
Ref Expression
carsggect (𝜑 → Σ*𝑧𝐴(𝑀𝑧) ≤ (𝑀 𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦   𝑧,𝐴   𝑧,𝑀   𝑧,𝑂,𝑥,𝑦   𝜑,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem carsggect
Dummy variables 𝑓 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 carsggect.1 . . 3 (𝜑𝐴 ≼ ω)
2 0ex 5325 . . . 4 ∅ ∈ V
32a1i 11 . . 3 (𝜑 → ∅ ∈ V)
4 carsggect.0 . . 3 (𝜑 → ¬ ∅ ∈ 𝐴)
5 padct 32733 . . 3 ((𝐴 ≼ ω ∧ ∅ ∈ V ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
61, 3, 4, 5syl3anc 1371 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
7 nfv 1913 . . . . 5 𝑧(𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)))
8 simpr1 1194 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑓:ℕ⟶(𝐴 ∪ {∅}))
98feqmptd 6990 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑓 = (𝑘 ∈ ℕ ↦ (𝑓𝑘)))
109rneqd 5963 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 = ran (𝑘 ∈ ℕ ↦ (𝑓𝑘)))
117, 10esumeq1d 33999 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) = Σ*𝑧 ∈ ran (𝑘 ∈ ℕ ↦ (𝑓𝑘))(𝑀𝑧))
12 fvex 6933 . . . . . . . . . 10 (toCaraSiga‘𝑀) ∈ V
1312a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (toCaraSiga‘𝑀) ∈ V)
14 carsggect.2 . . . . . . . . . . 11 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
1514adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ⊆ (toCaraSiga‘𝑀))
16 carsgval.1 . . . . . . . . . . . . 13 (𝜑𝑂𝑉)
1716adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑂𝑉)
18 carsgval.2 . . . . . . . . . . . . 13 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
1918adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
20 carsgsiga.1 . . . . . . . . . . . . 13 (𝜑 → (𝑀‘∅) = 0)
2120adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑀‘∅) = 0)
2217, 19, 210elcarsg 34272 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∅ ∈ (toCaraSiga‘𝑀))
2322snssd 4834 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → {∅} ⊆ (toCaraSiga‘𝑀))
2415, 23unssd 4215 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝐴 ∪ {∅}) ⊆ (toCaraSiga‘𝑀))
2513, 24ssexd 5342 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝐴 ∪ {∅}) ∈ V)
2619adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
2716, 18carsgcl 34269 . . . . . . . . . . . . 13 (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂)
2814, 27sstrd 4019 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ 𝒫 𝑂)
2928adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ⊆ 𝒫 𝑂)
30 0elpw 5374 . . . . . . . . . . . . 13 ∅ ∈ 𝒫 𝑂
3130a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∅ ∈ 𝒫 𝑂)
3231snssd 4834 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → {∅} ⊆ 𝒫 𝑂)
3329, 32unssd 4215 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂)
3433sselda 4008 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → 𝑧 ∈ 𝒫 𝑂)
3526, 34ffvelcdmd 7119 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → (𝑀𝑧) ∈ (0[,]+∞))
368frnd 6755 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 ⊆ (𝐴 ∪ {∅}))
377, 25, 35, 36esummono 34018 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧 ∈ (𝐴 ∪ {∅})(𝑀𝑧))
38 ctex 9023 . . . . . . . . . 10 (𝐴 ≼ ω → 𝐴 ∈ V)
391, 38syl 17 . . . . . . . . 9 (𝜑𝐴 ∈ V)
4039adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ∈ V)
4113, 23ssexd 5342 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → {∅} ∈ V)
4219adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
4329sselda 4008 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧𝐴) → 𝑧 ∈ 𝒫 𝑂)
4442, 43ffvelcdmd 7119 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧𝐴) → (𝑀𝑧) ∈ (0[,]+∞))
45 elsni 4665 . . . . . . . . . . 11 (𝑧 ∈ {∅} → 𝑧 = ∅)
4645adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ {∅}) → 𝑧 = ∅)
4746fveq2d 6924 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀𝑧) = (𝑀‘∅))
4821adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀‘∅) = 0)
4947, 48eqtrd 2780 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀𝑧) = 0)
5040, 41, 44, 49esumpad 34019 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ (𝐴 ∪ {∅})(𝑀𝑧) = Σ*𝑧𝐴(𝑀𝑧))
5137, 50breqtrd 5192 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧𝐴(𝑀𝑧))
5236, 24sstrd 4019 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 ⊆ (toCaraSiga‘𝑀))
53 ssexg 5341 . . . . . . . 8 ((ran 𝑓 ⊆ (toCaraSiga‘𝑀) ∧ (toCaraSiga‘𝑀) ∈ V) → ran 𝑓 ∈ V)
5452, 12, 53sylancl 585 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 ∈ V)
5519adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ ran 𝑓) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
5636, 33sstrd 4019 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran 𝑓 ⊆ 𝒫 𝑂)
5756sselda 4008 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 ∈ 𝒫 𝑂)
5855, 57ffvelcdmd 7119 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑧 ∈ ran 𝑓) → (𝑀𝑧) ∈ (0[,]+∞))
59 simpr2 1195 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ⊆ ran 𝑓)
607, 54, 58, 59esummono 34018 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧𝐴(𝑀𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀𝑧))
6151, 60jca 511 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧𝐴(𝑀𝑧) ∧ Σ*𝑧𝐴(𝑀𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀𝑧)))
62 iccssxr 13490 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
6358ralrimiva 3152 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∀𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ (0[,]+∞))
64 nfcv 2908 . . . . . . . . 9 𝑧ran 𝑓
6564esumcl 33994 . . . . . . . 8 ((ran 𝑓 ∈ V ∧ ∀𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ (0[,]+∞)) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ (0[,]+∞))
6654, 63, 65syl2anc 583 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ (0[,]+∞))
6762, 66sselid 4006 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ ℝ*)
6844ralrimiva 3152 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∀𝑧𝐴 (𝑀𝑧) ∈ (0[,]+∞))
69 nfcv 2908 . . . . . . . . 9 𝑧𝐴
7069esumcl 33994 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑧𝐴 (𝑀𝑧) ∈ (0[,]+∞)) → Σ*𝑧𝐴(𝑀𝑧) ∈ (0[,]+∞))
7140, 68, 70syl2anc 583 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧𝐴(𝑀𝑧) ∈ (0[,]+∞))
7262, 71sselid 4006 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧𝐴(𝑀𝑧) ∈ ℝ*)
73 xrletri3 13216 . . . . . 6 ((Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ∈ ℝ* ∧ Σ*𝑧𝐴(𝑀𝑧) ∈ ℝ*) → (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) = Σ*𝑧𝐴(𝑀𝑧) ↔ (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧𝐴(𝑀𝑧) ∧ Σ*𝑧𝐴(𝑀𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀𝑧))))
7467, 72, 73syl2anc 583 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) = Σ*𝑧𝐴(𝑀𝑧) ↔ (Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) ≤ Σ*𝑧𝐴(𝑀𝑧) ∧ Σ*𝑧𝐴(𝑀𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀𝑧))))
7561, 74mpbird 257 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀𝑧) = Σ*𝑧𝐴(𝑀𝑧))
76 fveq2 6920 . . . . 5 (𝑧 = (𝑓𝑘) → (𝑀𝑧) = (𝑀‘(𝑓𝑘)))
77 nnex 12299 . . . . . 6 ℕ ∈ V
7877a1i 11 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ℕ ∈ V)
7919adantr 480 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
8033adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂)
818adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑓:ℕ⟶(𝐴 ∪ {∅}))
82 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
8381, 82ffvelcdmd 7119 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ (𝐴 ∪ {∅}))
8480, 83sseldd 4009 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝒫 𝑂)
8579, 84ffvelcdmd 7119 . . . . 5 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑀‘(𝑓𝑘)) ∈ (0[,]+∞))
86 simpr 484 . . . . . . 7 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓𝑘) = ∅) → (𝑓𝑘) = ∅)
8786fveq2d 6924 . . . . . 6 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓𝑘) = ∅) → (𝑀‘(𝑓𝑘)) = (𝑀‘∅))
8821ad2antrr 725 . . . . . 6 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓𝑘) = ∅) → (𝑀‘∅) = 0)
8987, 88eqtrd 2780 . . . . 5 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓𝑘) = ∅) → (𝑀‘(𝑓𝑘)) = 0)
90 cnvimass 6111 . . . . . . 7 (𝑓𝐴) ⊆ dom 𝑓
9190, 8fssdm 6766 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓𝐴) ⊆ ℕ)
92 ffun 6750 . . . . . . . . . . 11 (𝑓:ℕ⟶(𝐴 ∪ {∅}) → Fun 𝑓)
938, 92syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Fun 𝑓)
9493adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (𝑓𝐴))) → Fun 𝑓)
95 difpreima 7098 . . . . . . . . . . . . 13 (Fun 𝑓 → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = ((𝑓 “ (𝐴 ∪ {∅})) ∖ (𝑓𝐴)))
968, 92, 953syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = ((𝑓 “ (𝐴 ∪ {∅})) ∖ (𝑓𝐴)))
97 fimacnv 6769 . . . . . . . . . . . . . 14 (𝑓:ℕ⟶(𝐴 ∪ {∅}) → (𝑓 “ (𝐴 ∪ {∅})) = ℕ)
988, 97syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 “ (𝐴 ∪ {∅})) = ℕ)
9998difeq1d 4148 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ((𝑓 “ (𝐴 ∪ {∅})) ∖ (𝑓𝐴)) = (ℕ ∖ (𝑓𝐴)))
10096, 99eqtrd 2780 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = (ℕ ∖ (𝑓𝐴)))
101 uncom 4181 . . . . . . . . . . . . . . . 16 ({∅} ∪ 𝐴) = (𝐴 ∪ {∅})
102101difeq1i 4145 . . . . . . . . . . . . . . 15 (({∅} ∪ 𝐴) ∖ 𝐴) = ((𝐴 ∪ {∅}) ∖ 𝐴)
103 difun2 4504 . . . . . . . . . . . . . . 15 (({∅} ∪ 𝐴) ∖ 𝐴) = ({∅} ∖ 𝐴)
104102, 103eqtr3i 2770 . . . . . . . . . . . . . 14 ((𝐴 ∪ {∅}) ∖ 𝐴) = ({∅} ∖ 𝐴)
105 difss 4159 . . . . . . . . . . . . . 14 ({∅} ∖ 𝐴) ⊆ {∅}
106104, 105eqsstri 4043 . . . . . . . . . . . . 13 ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆ {∅}
107106a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆ {∅})
108 sspreima 7101 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆ {∅}) → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) ⊆ (𝑓 “ {∅}))
10993, 107, 108syl2anc 583 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) ⊆ (𝑓 “ {∅}))
110100, 109eqsstrrd 4048 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (ℕ ∖ (𝑓𝐴)) ⊆ (𝑓 “ {∅}))
111110sselda 4008 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (𝑓𝐴))) → 𝑘 ∈ (𝑓 “ {∅}))
112 fvimacnvi 7085 . . . . . . . . 9 ((Fun 𝑓𝑘 ∈ (𝑓 “ {∅})) → (𝑓𝑘) ∈ {∅})
11394, 111, 112syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (𝑓𝐴))) → (𝑓𝑘) ∈ {∅})
114 elsni 4665 . . . . . . . 8 ((𝑓𝑘) ∈ {∅} → (𝑓𝑘) = ∅)
115113, 114syl 17 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (𝑓𝐴))) → (𝑓𝑘) = ∅)
116115ralrimiva 3152 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ∀𝑘 ∈ (ℕ ∖ (𝑓𝐴))(𝑓𝑘) = ∅)
117 carsggect.3 . . . . . . . 8 (𝜑Disj 𝑦𝐴 𝑦)
118117adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑦𝐴 𝑦)
119 simpr3 1196 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Fun (𝑓𝐴))
120 fresf1o 32650 . . . . . . . . . 10 ((Fun 𝑓𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴)
12193, 59, 119, 120syl3anc 1371 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴)
122 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑦 = ((𝑓 ↾ (𝑓𝐴))‘𝑘)) → 𝑦 = ((𝑓 ↾ (𝑓𝐴))‘𝑘))
123121, 122disjrdx 32613 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Disj 𝑘 ∈ (𝑓𝐴)((𝑓 ↾ (𝑓𝐴))‘𝑘) ↔ Disj 𝑦𝐴 𝑦))
124 fvres 6939 . . . . . . . . . 10 (𝑘 ∈ (𝑓𝐴) → ((𝑓 ↾ (𝑓𝐴))‘𝑘) = (𝑓𝑘))
125124adantl 481 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑘 ∈ (𝑓𝐴)) → ((𝑓 ↾ (𝑓𝐴))‘𝑘) = (𝑓𝑘))
126125disjeq2dv 5138 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Disj 𝑘 ∈ (𝑓𝐴)((𝑓 ↾ (𝑓𝐴))‘𝑘) ↔ Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘)))
127123, 126bitr3d 281 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (Disj 𝑦𝐴 𝑦Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘)))
128118, 127mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘))
129 disjss3 5165 . . . . . . 7 (((𝑓𝐴) ⊆ ℕ ∧ ∀𝑘 ∈ (ℕ ∖ (𝑓𝐴))(𝑓𝑘) = ∅) → (Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘) ↔ Disj 𝑘 ∈ ℕ (𝑓𝑘)))
130129biimpa 476 . . . . . 6 ((((𝑓𝐴) ⊆ ℕ ∧ ∀𝑘 ∈ (ℕ ∖ (𝑓𝐴))(𝑓𝑘) = ∅) ∧ Disj 𝑘 ∈ (𝑓𝐴)(𝑓𝑘)) → Disj 𝑘 ∈ ℕ (𝑓𝑘))
13191, 116, 128, 130syl21anc 837 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑘 ∈ ℕ (𝑓𝑘))
13276, 78, 85, 84, 89, 131esumrnmpt2 34032 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧 ∈ ran (𝑘 ∈ ℕ ↦ (𝑓𝑘))(𝑀𝑧) = Σ*𝑘 ∈ ℕ(𝑀‘(𝑓𝑘)))
13311, 75, 1323eqtr3rd 2789 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑘 ∈ ℕ(𝑀‘(𝑓𝑘)) = Σ*𝑧𝐴(𝑀𝑧))
134 uniiun 5081 . . . . . . 7 𝐴 = 𝑥𝐴 𝑥
13528sselda 4008 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 ∈ 𝒫 𝑂)
13639, 135elpwiuncl 32557 . . . . . . 7 (𝜑 𝑥𝐴 𝑥 ∈ 𝒫 𝑂)
137134, 136eqeltrid 2848 . . . . . 6 (𝜑 𝐴 ∈ 𝒫 𝑂)
138137adantr 480 . . . . 5 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝐴 ∈ 𝒫 𝑂)
13919, 138ffvelcdmd 7119 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑀 𝐴) ∈ (0[,]+∞))
140 carsgsiga.2 . . . . . . . . . 10 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
1411403adant1r 1177 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
142 fveq2 6920 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑀𝑦) = (𝑀𝑧))
143 nfcv 2908 . . . . . . . . . 10 𝑧𝑥
144 nfcv 2908 . . . . . . . . . 10 𝑦𝑥
145 nfcv 2908 . . . . . . . . . 10 𝑧(𝑀𝑦)
146 nfcv 2908 . . . . . . . . . 10 𝑦(𝑀𝑧)
147142, 143, 144, 145, 146cbvesum 34006 . . . . . . . . 9 Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑧𝑥(𝑀𝑧)
148141, 147breqtrdi 5207 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑧𝑥(𝑀𝑧))
149 ffn 6747 . . . . . . . . . 10 (𝑓:ℕ⟶(𝐴 ∪ {∅}) → 𝑓 Fn ℕ)
150 fz1ssnn 13615 . . . . . . . . . . 11 (1...𝑛) ⊆ ℕ
151 fnssres 6703 . . . . . . . . . . 11 ((𝑓 Fn ℕ ∧ (1...𝑛) ⊆ ℕ) → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛))
152150, 151mpan2 690 . . . . . . . . . 10 (𝑓 Fn ℕ → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛))
1538, 149, 1523syl 18 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛))
154 fzfi 14023 . . . . . . . . . 10 (1...𝑛) ∈ Fin
155 fnfi 9244 . . . . . . . . . 10 (((𝑓 ↾ (1...𝑛)) Fn (1...𝑛) ∧ (1...𝑛) ∈ Fin) → (𝑓 ↾ (1...𝑛)) ∈ Fin)
156154, 155mpan2 690 . . . . . . . . 9 ((𝑓 ↾ (1...𝑛)) Fn (1...𝑛) → (𝑓 ↾ (1...𝑛)) ∈ Fin)
157 rnfi 9408 . . . . . . . . 9 ((𝑓 ↾ (1...𝑛)) ∈ Fin → ran (𝑓 ↾ (1...𝑛)) ∈ Fin)
158153, 156, 1573syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ∈ Fin)
159 resss 6031 . . . . . . . . . . 11 (𝑓 ↾ (1...𝑛)) ⊆ 𝑓
160 rnss 5964 . . . . . . . . . . 11 ((𝑓 ↾ (1...𝑛)) ⊆ 𝑓 → ran (𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓)
161159, 160ax-mp 5 . . . . . . . . . 10 ran (𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓
162161a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓)
163162, 52sstrd 4019 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ (toCaraSiga‘𝑀))
164162, 36sstrd 4019 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅}))
165 nfcv 2908 . . . . . . . . . . . . 13 𝑧𝑦
166 nfcv 2908 . . . . . . . . . . . . 13 𝑦𝑧
167 id 22 . . . . . . . . . . . . 13 (𝑦 = 𝑧𝑦 = 𝑧)
168165, 166, 167cbvdisj 5143 . . . . . . . . . . . 12 (Disj 𝑦𝐴 𝑦Disj 𝑧𝐴 𝑧)
169 disjun0 32617 . . . . . . . . . . . 12 (Disj 𝑧𝐴 𝑧Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧)
170168, 169sylbi 217 . . . . . . . . . . 11 (Disj 𝑦𝐴 𝑦Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧)
171117, 170syl 17 . . . . . . . . . 10 (𝜑Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧)
172171adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧)
173 disjss1 5139 . . . . . . . . 9 (ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅}) → (Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧Disj 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))𝑧))
174164, 172, 173sylc 65 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))𝑧)
175 pwidg 4642 . . . . . . . . 9 (𝑂𝑉𝑂 ∈ 𝒫 𝑂)
17617, 175syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → 𝑂 ∈ 𝒫 𝑂)
17717, 19, 21, 148, 158, 163, 174, 176carsgclctunlem1 34282 . . . . . . 7 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑀‘(𝑂 ran (𝑓 ↾ (1...𝑛)))) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)))
178177adantr 480 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝑂 ran (𝑓 ↾ (1...𝑛)))) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)))
179164unissd 4941 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅}))
180 uniun 4954 . . . . . . . . . . . 12 (𝐴 ∪ {∅}) = ( 𝐴 {∅})
1812unisn 4950 . . . . . . . . . . . . 13 {∅} = ∅
182181uneq2i 4188 . . . . . . . . . . . 12 ( 𝐴 {∅}) = ( 𝐴 ∪ ∅)
183 un0 4417 . . . . . . . . . . . 12 ( 𝐴 ∪ ∅) = 𝐴
184180, 182, 1833eqtri 2772 . . . . . . . . . . 11 (𝐴 ∪ {∅}) = 𝐴
185179, 184sseqtrdi 4059 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ 𝐴)
186185adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ 𝐴)
187 uniss 4939 . . . . . . . . . . . 12 (𝐴 ⊆ 𝒫 𝑂 𝐴 𝒫 𝑂)
188 unipw 5470 . . . . . . . . . . . 12 𝒫 𝑂 = 𝑂
189187, 188sseqtrdi 4059 . . . . . . . . . . 11 (𝐴 ⊆ 𝒫 𝑂 𝐴𝑂)
19028, 189syl 17 . . . . . . . . . 10 (𝜑 𝐴𝑂)
191190ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴𝑂)
192186, 191sstrd 4019 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ 𝑂)
193 sseqin2 4244 . . . . . . . 8 ( ran (𝑓 ↾ (1...𝑛)) ⊆ 𝑂 ↔ (𝑂 ran (𝑓 ↾ (1...𝑛))) = ran (𝑓 ↾ (1...𝑛)))
194192, 193sylib 218 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑂 ran (𝑓 ↾ (1...𝑛))) = ran (𝑓 ↾ (1...𝑛)))
195194fveq2d 6924 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝑂 ran (𝑓 ↾ (1...𝑛)))) = (𝑀 ran (𝑓 ↾ (1...𝑛))))
196 nfv 1913 . . . . . . . 8 𝑧((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ)
197164adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅}))
19828ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ 𝒫 𝑂)
19930a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ∅ ∈ 𝒫 𝑂)
200199snssd 4834 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → {∅} ⊆ 𝒫 𝑂)
201198, 200unssd 4215 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂)
202197, 201sstrd 4019 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ 𝒫 𝑂)
203202sselda 4008 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → 𝑧 ∈ 𝒫 𝑂)
204203elpwid 4631 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → 𝑧𝑂)
205 sseqin2 4244 . . . . . . . . . . 11 (𝑧𝑂 ↔ (𝑂𝑧) = 𝑧)
206204, 205sylib 218 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → (𝑂𝑧) = 𝑧)
207206fveq2d 6924 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → (𝑀‘(𝑂𝑧)) = (𝑀𝑧))
208207ralrimiva 3152 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ∀𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)) = (𝑀𝑧))
209196, 208esumeq2d 34001 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀𝑧))
2109reseq1d 6008 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑓 ↾ (1...𝑛)) = ((𝑘 ∈ ℕ ↦ (𝑓𝑘)) ↾ (1...𝑛)))
211210adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑓 ↾ (1...𝑛)) = ((𝑘 ∈ ℕ ↦ (𝑓𝑘)) ↾ (1...𝑛)))
212 resmpt 6066 . . . . . . . . . . . 12 ((1...𝑛) ⊆ ℕ → ((𝑘 ∈ ℕ ↦ (𝑓𝑘)) ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘)))
213150, 212ax-mp 5 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ↦ (𝑓𝑘)) ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘))
214211, 213eqtrdi 2796 . . . . . . . . . 10 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑓 ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘)))
215214eqcomd 2746 . . . . . . . . 9 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘)) = (𝑓 ↾ (1...𝑛)))
216215rneqd 5963 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘)) = ran (𝑓 ↾ (1...𝑛)))
217196, 216esumeq1d 33999 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑧 ∈ ran (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘))(𝑀𝑧) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀𝑧))
218154a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
21919ad2antrr 725 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
220150a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
221220sselda 4008 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
22284adantlr 714 . . . . . . . . . 10 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝒫 𝑂)
223221, 222syldan 590 . . . . . . . . 9 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑓𝑘) ∈ 𝒫 𝑂)
224219, 223ffvelcdmd 7119 . . . . . . . 8 ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑀‘(𝑓𝑘)) ∈ (0[,]+∞))
225 simpr 484 . . . . . . . . . 10 (((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓𝑘) = ∅) → (𝑓𝑘) = ∅)
226225fveq2d 6924 . . . . . . . . 9 (((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓𝑘) = ∅) → (𝑀‘(𝑓𝑘)) = (𝑀‘∅))
22721ad3antrrr 729 . . . . . . . . 9 (((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓𝑘) = ∅) → (𝑀‘∅) = 0)
228226, 227eqtrd 2780 . . . . . . . 8 (((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓𝑘) = ∅) → (𝑀‘(𝑓𝑘)) = 0)
229 disjss1 5139 . . . . . . . . . . 11 ((1...𝑛) ⊆ ℕ → (Disj 𝑘 ∈ ℕ (𝑓𝑘) → Disj 𝑘 ∈ (1...𝑛)(𝑓𝑘)))
230150, 229ax-mp 5 . . . . . . . . . 10 (Disj 𝑘 ∈ ℕ (𝑓𝑘) → Disj 𝑘 ∈ (1...𝑛)(𝑓𝑘))
231131, 230syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Disj 𝑘 ∈ (1...𝑛)(𝑓𝑘))
232231adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Disj 𝑘 ∈ (1...𝑛)(𝑓𝑘))
23376, 218, 224, 223, 228, 232esumrnmpt2 34032 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑧 ∈ ran (𝑘 ∈ (1...𝑛) ↦ (𝑓𝑘))(𝑀𝑧) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓𝑘)))
234209, 217, 2333eqtr2d 2786 . . . . . 6 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂𝑧)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓𝑘)))
235178, 195, 2343eqtr3d 2788 . . . . 5 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀 ran (𝑓 ↾ (1...𝑛))) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓𝑘)))
236 carsggect.4 . . . . . . . 8 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
2372363adant1r 1177 . . . . . . 7 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
23817, 19, 185, 138, 237carsgmon 34279 . . . . . 6 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → (𝑀 ran (𝑓 ↾ (1...𝑛))) ≤ (𝑀 𝐴))
239238adantr 480 . . . . 5 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀 ran (𝑓 ↾ (1...𝑛))) ≤ (𝑀 𝐴))
240235, 239eqbrtrrd 5190 . . . 4 (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓𝑘)) ≤ (𝑀 𝐴))
241139, 85, 240esumgect 34054 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑘 ∈ ℕ(𝑀‘(𝑓𝑘)) ≤ (𝑀 𝐴))
242133, 241eqbrtrrd 5190 . 2 ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (𝑓𝐴))) → Σ*𝑧𝐴(𝑀𝑧) ≤ (𝑀 𝐴))
2436, 242exlimddv 1934 1 (𝜑 → Σ*𝑧𝐴(𝑀𝑧) ≤ (𝑀 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931   ciun 5015  Disj wdisj 5133   class class class wbr 5166  cmpt 5249  ccnv 5699  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  ωcom 7903  cdom 9001  Fincfn 9003  0cc0 11184  1c1 11185  +∞cpnf 11321  *cxr 11323  cle 11325  cn 12293  [,]cicc 13410  ...cfz 13567  Σ*cesum 33991  toCaraSigaccarsg 34266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-ordt 17561  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-ps 18636  df-tsr 18637  df-plusf 18677  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-abv 20832  df-lmod 20882  df-scaf 20883  df-sra 21195  df-rgmod 21196  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-tmd 24101  df-tgp 24102  df-tsms 24156  df-trg 24189  df-xms 24351  df-ms 24352  df-tms 24353  df-nm 24616  df-ngp 24617  df-nrg 24619  df-nlm 24620  df-ii 24922  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-esum 33992  df-carsg 34267
This theorem is referenced by:  omsmeas  34288
  Copyright terms: Public domain W3C validator