Step | Hyp | Ref
| Expression |
1 | | carsggect.1 |
. . 3
⊢ (𝜑 → 𝐴 ≼ ω) |
2 | | 0ex 5226 |
. . . 4
⊢ ∅
∈ V |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → ∅ ∈
V) |
4 | | carsggect.0 |
. . 3
⊢ (𝜑 → ¬ ∅ ∈ 𝐴) |
5 | | padct 30956 |
. . 3
⊢ ((𝐴 ≼ ω ∧ ∅
∈ V ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) |
6 | 1, 3, 4, 5 | syl3anc 1369 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) |
7 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑧(𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) |
8 | | simpr1 1192 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝑓:ℕ⟶(𝐴 ∪ {∅})) |
9 | 8 | feqmptd 6819 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝑓 = (𝑘 ∈ ℕ ↦ (𝑓‘𝑘))) |
10 | 9 | rneqd 5836 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran 𝑓 = ran (𝑘 ∈ ℕ ↦ (𝑓‘𝑘))) |
11 | 7, 10 | esumeq1d 31903 |
. . . 4
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) = Σ*𝑧 ∈ ran (𝑘 ∈ ℕ ↦ (𝑓‘𝑘))(𝑀‘𝑧)) |
12 | | fvex 6769 |
. . . . . . . . . 10
⊢
(toCaraSiga‘𝑀)
∈ V |
13 | 12 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (toCaraSiga‘𝑀) ∈ V) |
14 | | carsggect.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
15 | 14 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝐴 ⊆ (toCaraSiga‘𝑀)) |
16 | | carsgval.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑂 ∈ 𝑉) |
17 | 16 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝑂 ∈ 𝑉) |
18 | | carsgval.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
19 | 18 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
20 | | carsgsiga.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑀‘∅) = 0) |
21 | 20 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝑀‘∅) = 0) |
22 | 17, 19, 21 | 0elcarsg 32174 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∅ ∈
(toCaraSiga‘𝑀)) |
23 | 22 | snssd 4739 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → {∅} ⊆
(toCaraSiga‘𝑀)) |
24 | 15, 23 | unssd 4116 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝐴 ∪ {∅}) ⊆
(toCaraSiga‘𝑀)) |
25 | 13, 24 | ssexd 5243 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝐴 ∪ {∅}) ∈ V) |
26 | 19 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
27 | 16, 18 | carsgcl 32171 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂) |
28 | 14, 27 | sstrd 3927 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ⊆ 𝒫 𝑂) |
29 | 28 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝐴 ⊆ 𝒫 𝑂) |
30 | | 0elpw 5273 |
. . . . . . . . . . . . 13
⊢ ∅
∈ 𝒫 𝑂 |
31 | 30 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∅ ∈ 𝒫 𝑂) |
32 | 31 | snssd 4739 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → {∅} ⊆ 𝒫 𝑂) |
33 | 29, 32 | unssd 4116 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂) |
34 | 33 | sselda 3917 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → 𝑧 ∈ 𝒫 𝑂) |
35 | 26, 34 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ (𝐴 ∪ {∅})) → (𝑀‘𝑧) ∈ (0[,]+∞)) |
36 | 8 | frnd 6592 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran 𝑓 ⊆ (𝐴 ∪ {∅})) |
37 | 7, 25, 35, 36 | esummono 31922 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ≤ Σ*𝑧 ∈ (𝐴 ∪ {∅})(𝑀‘𝑧)) |
38 | | ctex 8708 |
. . . . . . . . . 10
⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
39 | 1, 38 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ V) |
40 | 39 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝐴 ∈ V) |
41 | 13, 23 | ssexd 5243 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → {∅} ∈
V) |
42 | 19 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ 𝐴) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
43 | 29 | sselda 3917 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝒫 𝑂) |
44 | 42, 43 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ 𝐴) → (𝑀‘𝑧) ∈ (0[,]+∞)) |
45 | | elsni 4575 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ {∅} → 𝑧 = ∅) |
46 | 45 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ {∅}) → 𝑧 = ∅) |
47 | 46 | fveq2d 6760 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀‘𝑧) = (𝑀‘∅)) |
48 | 21 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀‘∅) = 0) |
49 | 47, 48 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ {∅}) → (𝑀‘𝑧) = 0) |
50 | 40, 41, 44, 49 | esumpad 31923 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ (𝐴 ∪ {∅})(𝑀‘𝑧) = Σ*𝑧 ∈ 𝐴(𝑀‘𝑧)) |
51 | 37, 50 | breqtrd 5096 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ≤ Σ*𝑧 ∈ 𝐴(𝑀‘𝑧)) |
52 | 36, 24 | sstrd 3927 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran 𝑓 ⊆ (toCaraSiga‘𝑀)) |
53 | | ssexg 5242 |
. . . . . . . 8
⊢ ((ran
𝑓 ⊆
(toCaraSiga‘𝑀) ∧
(toCaraSiga‘𝑀) ∈
V) → ran 𝑓 ∈
V) |
54 | 52, 12, 53 | sylancl 585 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran 𝑓 ∈ V) |
55 | 19 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ ran 𝑓) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
56 | 36, 33 | sstrd 3927 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran 𝑓 ⊆ 𝒫 𝑂) |
57 | 56 | sselda 3917 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 ∈ 𝒫 𝑂) |
58 | 55, 57 | ffvelrnd 6944 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑧 ∈ ran 𝑓) → (𝑀‘𝑧) ∈ (0[,]+∞)) |
59 | | simpr2 1193 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝐴 ⊆ ran 𝑓) |
60 | 7, 54, 58, 59 | esummono 31922 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧)) |
61 | 51, 60 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ≤ Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ∧ Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧))) |
62 | | iccssxr 13091 |
. . . . . . 7
⊢
(0[,]+∞) ⊆ ℝ* |
63 | 58 | ralrimiva 3107 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∀𝑧 ∈ ran 𝑓(𝑀‘𝑧) ∈ (0[,]+∞)) |
64 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑧ran
𝑓 |
65 | 64 | esumcl 31898 |
. . . . . . . 8
⊢ ((ran
𝑓 ∈ V ∧
∀𝑧 ∈ ran 𝑓(𝑀‘𝑧) ∈ (0[,]+∞)) →
Σ*𝑧 ∈
ran 𝑓(𝑀‘𝑧) ∈ (0[,]+∞)) |
66 | 54, 63, 65 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ∈ (0[,]+∞)) |
67 | 62, 66 | sselid 3915 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ∈
ℝ*) |
68 | 44 | ralrimiva 3107 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∀𝑧 ∈ 𝐴 (𝑀‘𝑧) ∈ (0[,]+∞)) |
69 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑧𝐴 |
70 | 69 | esumcl 31898 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧ ∀𝑧 ∈ 𝐴 (𝑀‘𝑧) ∈ (0[,]+∞)) →
Σ*𝑧 ∈
𝐴(𝑀‘𝑧) ∈ (0[,]+∞)) |
71 | 40, 68, 70 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ∈ (0[,]+∞)) |
72 | 62, 71 | sselid 3915 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ∈
ℝ*) |
73 | | xrletri3 12817 |
. . . . . 6
⊢
((Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ∈ ℝ* ∧
Σ*𝑧 ∈
𝐴(𝑀‘𝑧) ∈ ℝ*) →
(Σ*𝑧
∈ ran 𝑓(𝑀‘𝑧) = Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ↔ (Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ≤ Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ∧ Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧)))) |
74 | 67, 72, 73 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) = Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ↔ (Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) ≤ Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ∧ Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ≤ Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧)))) |
75 | 61, 74 | mpbird 256 |
. . . 4
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ ran 𝑓(𝑀‘𝑧) = Σ*𝑧 ∈ 𝐴(𝑀‘𝑧)) |
76 | | fveq2 6756 |
. . . . 5
⊢ (𝑧 = (𝑓‘𝑘) → (𝑀‘𝑧) = (𝑀‘(𝑓‘𝑘))) |
77 | | nnex 11909 |
. . . . . 6
⊢ ℕ
∈ V |
78 | 77 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ℕ ∈
V) |
79 | 19 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
80 | 33 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂) |
81 | 8 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑓:ℕ⟶(𝐴 ∪ {∅})) |
82 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
83 | 81, 82 | ffvelrnd 6944 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ (𝐴 ∪ {∅})) |
84 | 80, 83 | sseldd 3918 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ 𝒫 𝑂) |
85 | 79, 84 | ffvelrnd 6944 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) → (𝑀‘(𝑓‘𝑘)) ∈ (0[,]+∞)) |
86 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓‘𝑘) = ∅) → (𝑓‘𝑘) = ∅) |
87 | 86 | fveq2d 6760 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓‘𝑘) = ∅) → (𝑀‘(𝑓‘𝑘)) = (𝑀‘∅)) |
88 | 21 | ad2antrr 722 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓‘𝑘) = ∅) → (𝑀‘∅) = 0) |
89 | 87, 88 | eqtrd 2778 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ ℕ) ∧ (𝑓‘𝑘) = ∅) → (𝑀‘(𝑓‘𝑘)) = 0) |
90 | | cnvimass 5978 |
. . . . . . 7
⊢ (◡𝑓 “ 𝐴) ⊆ dom 𝑓 |
91 | 90, 8 | fssdm 6604 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (◡𝑓 “ 𝐴) ⊆ ℕ) |
92 | | ffun 6587 |
. . . . . . . . . . 11
⊢ (𝑓:ℕ⟶(𝐴 ∪ {∅}) → Fun
𝑓) |
93 | 8, 92 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Fun 𝑓) |
94 | 93 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (◡𝑓 “ 𝐴))) → Fun 𝑓) |
95 | | difpreima 6924 |
. . . . . . . . . . . . 13
⊢ (Fun
𝑓 → (◡𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = ((◡𝑓 “ (𝐴 ∪ {∅})) ∖ (◡𝑓 “ 𝐴))) |
96 | 8, 92, 95 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (◡𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = ((◡𝑓 “ (𝐴 ∪ {∅})) ∖ (◡𝑓 “ 𝐴))) |
97 | | fimacnv 6606 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ⟶(𝐴 ∪ {∅}) → (◡𝑓 “ (𝐴 ∪ {∅})) =
ℕ) |
98 | 8, 97 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (◡𝑓 “ (𝐴 ∪ {∅})) =
ℕ) |
99 | 98 | difeq1d 4052 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ((◡𝑓 “ (𝐴 ∪ {∅})) ∖ (◡𝑓 “ 𝐴)) = (ℕ ∖ (◡𝑓 “ 𝐴))) |
100 | 96, 99 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (◡𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) = (ℕ ∖ (◡𝑓 “ 𝐴))) |
101 | | uncom 4083 |
. . . . . . . . . . . . . . . 16
⊢
({∅} ∪ 𝐴)
= (𝐴 ∪
{∅}) |
102 | 101 | difeq1i 4049 |
. . . . . . . . . . . . . . 15
⊢
(({∅} ∪ 𝐴)
∖ 𝐴) = ((𝐴 ∪ {∅}) ∖ 𝐴) |
103 | | difun2 4411 |
. . . . . . . . . . . . . . 15
⊢
(({∅} ∪ 𝐴)
∖ 𝐴) = ({∅}
∖ 𝐴) |
104 | 102, 103 | eqtr3i 2768 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∪ {∅}) ∖ 𝐴) = ({∅} ∖ 𝐴) |
105 | | difss 4062 |
. . . . . . . . . . . . . 14
⊢
({∅} ∖ 𝐴) ⊆ {∅} |
106 | 104, 105 | eqsstri 3951 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆
{∅} |
107 | 106 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆ {∅}) |
108 | | sspreima 6927 |
. . . . . . . . . . . 12
⊢ ((Fun
𝑓 ∧ ((𝐴 ∪ {∅}) ∖ 𝐴) ⊆ {∅}) → (◡𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) ⊆ (◡𝑓 “ {∅})) |
109 | 93, 107, 108 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (◡𝑓 “ ((𝐴 ∪ {∅}) ∖ 𝐴)) ⊆ (◡𝑓 “ {∅})) |
110 | 100, 109 | eqsstrrd 3956 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (ℕ ∖ (◡𝑓 “ 𝐴)) ⊆ (◡𝑓 “ {∅})) |
111 | 110 | sselda 3917 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (◡𝑓 “ 𝐴))) → 𝑘 ∈ (◡𝑓 “ {∅})) |
112 | | fvimacnvi 6911 |
. . . . . . . . 9
⊢ ((Fun
𝑓 ∧ 𝑘 ∈ (◡𝑓 “ {∅})) → (𝑓‘𝑘) ∈ {∅}) |
113 | 94, 111, 112 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (◡𝑓 “ 𝐴))) → (𝑓‘𝑘) ∈ {∅}) |
114 | | elsni 4575 |
. . . . . . . 8
⊢ ((𝑓‘𝑘) ∈ {∅} → (𝑓‘𝑘) = ∅) |
115 | 113, 114 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ (ℕ ∖ (◡𝑓 “ 𝐴))) → (𝑓‘𝑘) = ∅) |
116 | 115 | ralrimiva 3107 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∀𝑘 ∈ (ℕ ∖ (◡𝑓 “ 𝐴))(𝑓‘𝑘) = ∅) |
117 | | carsggect.3 |
. . . . . . . 8
⊢ (𝜑 → Disj 𝑦 ∈ 𝐴 𝑦) |
118 | 117 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Disj 𝑦 ∈ 𝐴 𝑦) |
119 | | simpr3 1194 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Fun (◡𝑓 ↾ 𝐴)) |
120 | | fresf1o 30867 |
. . . . . . . . . 10
⊢ ((Fun
𝑓 ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴)) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→𝐴) |
121 | 93, 59, 119, 120 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→𝐴) |
122 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑦 = ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑘)) → 𝑦 = ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑘)) |
123 | 121, 122 | disjrdx 30831 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (Disj 𝑘 ∈ (◡𝑓 “ 𝐴)((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑘) ↔ Disj 𝑦 ∈ 𝐴 𝑦)) |
124 | | fvres 6775 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (◡𝑓 “ 𝐴) → ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑘) = (𝑓‘𝑘)) |
125 | 124 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑘 ∈ (◡𝑓 “ 𝐴)) → ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑘) = (𝑓‘𝑘)) |
126 | 125 | disjeq2dv 5040 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (Disj 𝑘 ∈ (◡𝑓 “ 𝐴)((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑘) ↔ Disj 𝑘 ∈ (◡𝑓 “ 𝐴)(𝑓‘𝑘))) |
127 | 123, 126 | bitr3d 280 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (Disj 𝑦 ∈ 𝐴 𝑦 ↔ Disj 𝑘 ∈ (◡𝑓 “ 𝐴)(𝑓‘𝑘))) |
128 | 118, 127 | mpbid 231 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Disj 𝑘 ∈ (◡𝑓 “ 𝐴)(𝑓‘𝑘)) |
129 | | disjss3 5069 |
. . . . . . 7
⊢ (((◡𝑓 “ 𝐴) ⊆ ℕ ∧ ∀𝑘 ∈ (ℕ ∖ (◡𝑓 “ 𝐴))(𝑓‘𝑘) = ∅) → (Disj 𝑘 ∈ (◡𝑓 “ 𝐴)(𝑓‘𝑘) ↔ Disj 𝑘 ∈ ℕ (𝑓‘𝑘))) |
130 | 129 | biimpa 476 |
. . . . . 6
⊢ ((((◡𝑓 “ 𝐴) ⊆ ℕ ∧ ∀𝑘 ∈ (ℕ ∖ (◡𝑓 “ 𝐴))(𝑓‘𝑘) = ∅) ∧ Disj 𝑘 ∈ (◡𝑓 “ 𝐴)(𝑓‘𝑘)) → Disj 𝑘 ∈ ℕ (𝑓‘𝑘)) |
131 | 91, 116, 128, 130 | syl21anc 834 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Disj 𝑘 ∈ ℕ (𝑓‘𝑘)) |
132 | 76, 78, 85, 84, 89, 131 | esumrnmpt2 31936 |
. . . 4
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ ran (𝑘 ∈ ℕ ↦ (𝑓‘𝑘))(𝑀‘𝑧) = Σ*𝑘 ∈ ℕ(𝑀‘(𝑓‘𝑘))) |
133 | 11, 75, 132 | 3eqtr3rd 2787 |
. . 3
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑘 ∈ ℕ(𝑀‘(𝑓‘𝑘)) = Σ*𝑧 ∈ 𝐴(𝑀‘𝑧)) |
134 | | uniiun 4984 |
. . . . . . 7
⊢ ∪ 𝐴 =
∪ 𝑥 ∈ 𝐴 𝑥 |
135 | 28 | sselda 3917 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝒫 𝑂) |
136 | 39, 135 | elpwiuncl 30777 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝑂) |
137 | 134, 136 | eqeltrid 2843 |
. . . . . 6
⊢ (𝜑 → ∪ 𝐴
∈ 𝒫 𝑂) |
138 | 137 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∪
𝐴 ∈ 𝒫 𝑂) |
139 | 19, 138 | ffvelrnd 6944 |
. . . 4
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝑀‘∪ 𝐴) ∈
(0[,]+∞)) |
140 | | carsgsiga.2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
141 | 140 | 3adant1r 1175 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
142 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑀‘𝑦) = (𝑀‘𝑧)) |
143 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑧𝑥 |
144 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝑥 |
145 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑧(𝑀‘𝑦) |
146 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝑀‘𝑧) |
147 | 142, 143,
144, 145, 146 | cbvesum 31910 |
. . . . . . . . 9
⊢
Σ*𝑦
∈ 𝑥(𝑀‘𝑦) = Σ*𝑧 ∈ 𝑥(𝑀‘𝑧) |
148 | 141, 147 | breqtrdi 5111 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑧 ∈ 𝑥(𝑀‘𝑧)) |
149 | | ffn 6584 |
. . . . . . . . . 10
⊢ (𝑓:ℕ⟶(𝐴 ∪ {∅}) → 𝑓 Fn ℕ) |
150 | | fz1ssnn 13216 |
. . . . . . . . . . 11
⊢
(1...𝑛) ⊆
ℕ |
151 | | fnssres 6539 |
. . . . . . . . . . 11
⊢ ((𝑓 Fn ℕ ∧ (1...𝑛) ⊆ ℕ) → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛)) |
152 | 150, 151 | mpan2 687 |
. . . . . . . . . 10
⊢ (𝑓 Fn ℕ → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛)) |
153 | 8, 149, 152 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝑓 ↾ (1...𝑛)) Fn (1...𝑛)) |
154 | | fzfi 13620 |
. . . . . . . . . 10
⊢
(1...𝑛) ∈
Fin |
155 | | fnfi 8925 |
. . . . . . . . . 10
⊢ (((𝑓 ↾ (1...𝑛)) Fn (1...𝑛) ∧ (1...𝑛) ∈ Fin) → (𝑓 ↾ (1...𝑛)) ∈ Fin) |
156 | 154, 155 | mpan2 687 |
. . . . . . . . 9
⊢ ((𝑓 ↾ (1...𝑛)) Fn (1...𝑛) → (𝑓 ↾ (1...𝑛)) ∈ Fin) |
157 | | rnfi 9032 |
. . . . . . . . 9
⊢ ((𝑓 ↾ (1...𝑛)) ∈ Fin → ran (𝑓 ↾ (1...𝑛)) ∈ Fin) |
158 | 153, 156,
157 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran (𝑓 ↾ (1...𝑛)) ∈ Fin) |
159 | | resss 5905 |
. . . . . . . . . . 11
⊢ (𝑓 ↾ (1...𝑛)) ⊆ 𝑓 |
160 | | rnss 5837 |
. . . . . . . . . . 11
⊢ ((𝑓 ↾ (1...𝑛)) ⊆ 𝑓 → ran (𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓) |
161 | 159, 160 | ax-mp 5 |
. . . . . . . . . 10
⊢ ran
(𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓 |
162 | 161 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ ran 𝑓) |
163 | 162, 52 | sstrd 3927 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ (toCaraSiga‘𝑀)) |
164 | 162, 36 | sstrd 3927 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅})) |
165 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧𝑦 |
166 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦𝑧 |
167 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) |
168 | 165, 166,
167 | cbvdisj 5045 |
. . . . . . . . . . . 12
⊢
(Disj 𝑦
∈ 𝐴 𝑦 ↔ Disj 𝑧 ∈ 𝐴 𝑧) |
169 | | disjun0 30835 |
. . . . . . . . . . . 12
⊢
(Disj 𝑧
∈ 𝐴 𝑧 → Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧) |
170 | 168, 169 | sylbi 216 |
. . . . . . . . . . 11
⊢
(Disj 𝑦
∈ 𝐴 𝑦 → Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧) |
171 | 117, 170 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧) |
172 | 171 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧) |
173 | | disjss1 5041 |
. . . . . . . . 9
⊢ (ran
(𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅}) → (Disj 𝑧 ∈ (𝐴 ∪ {∅})𝑧 → Disj 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))𝑧)) |
174 | 164, 172,
173 | sylc 65 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Disj 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))𝑧) |
175 | | pwidg 4552 |
. . . . . . . . 9
⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝒫 𝑂) |
176 | 17, 175 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → 𝑂 ∈ 𝒫 𝑂) |
177 | 17, 19, 21, 148, 158, 163, 174, 176 | carsgclctunlem1 32184 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝑀‘(𝑂 ∩ ∪ ran
(𝑓 ↾ (1...𝑛)))) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂 ∩ 𝑧))) |
178 | 177 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝑂 ∩ ∪ ran
(𝑓 ↾ (1...𝑛)))) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂 ∩ 𝑧))) |
179 | 164 | unissd 4846 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∪ ran
(𝑓 ↾ (1...𝑛)) ⊆ ∪ (𝐴
∪ {∅})) |
180 | | uniun 4861 |
. . . . . . . . . . . 12
⊢ ∪ (𝐴
∪ {∅}) = (∪ 𝐴 ∪ ∪
{∅}) |
181 | 2 | unisn 4858 |
. . . . . . . . . . . . 13
⊢ ∪ {∅} = ∅ |
182 | 181 | uneq2i 4090 |
. . . . . . . . . . . 12
⊢ (∪ 𝐴
∪ ∪ {∅}) = (∪
𝐴 ∪
∅) |
183 | | un0 4321 |
. . . . . . . . . . . 12
⊢ (∪ 𝐴
∪ ∅) = ∪ 𝐴 |
184 | 180, 182,
183 | 3eqtri 2770 |
. . . . . . . . . . 11
⊢ ∪ (𝐴
∪ {∅}) = ∪ 𝐴 |
185 | 179, 184 | sseqtrdi 3967 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → ∪ ran
(𝑓 ↾ (1...𝑛)) ⊆ ∪ 𝐴) |
186 | 185 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ∪ ran (𝑓 ↾ (1...𝑛)) ⊆ ∪ 𝐴) |
187 | | uniss 4844 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ 𝒫 𝑂 → ∪ 𝐴
⊆ ∪ 𝒫 𝑂) |
188 | | unipw 5360 |
. . . . . . . . . . . 12
⊢ ∪ 𝒫 𝑂 = 𝑂 |
189 | 187, 188 | sseqtrdi 3967 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ 𝒫 𝑂 → ∪ 𝐴
⊆ 𝑂) |
190 | 28, 189 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝐴
⊆ 𝑂) |
191 | 190 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ∪ 𝐴
⊆ 𝑂) |
192 | 186, 191 | sstrd 3927 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ∪ ran (𝑓 ↾ (1...𝑛)) ⊆ 𝑂) |
193 | | sseqin2 4146 |
. . . . . . . 8
⊢ (∪ ran (𝑓 ↾ (1...𝑛)) ⊆ 𝑂 ↔ (𝑂 ∩ ∪ ran
(𝑓 ↾ (1...𝑛))) = ∪ ran (𝑓 ↾ (1...𝑛))) |
194 | 192, 193 | sylib 217 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑂 ∩ ∪ ran
(𝑓 ↾ (1...𝑛))) = ∪ ran (𝑓 ↾ (1...𝑛))) |
195 | 194 | fveq2d 6760 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝑂 ∩ ∪ ran
(𝑓 ↾ (1...𝑛)))) = (𝑀‘∪ ran
(𝑓 ↾ (1...𝑛)))) |
196 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑧((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) |
197 | 164 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ (𝐴 ∪ {∅})) |
198 | 28 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ 𝒫 𝑂) |
199 | 30 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ∅ ∈
𝒫 𝑂) |
200 | 199 | snssd 4739 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → {∅} ⊆
𝒫 𝑂) |
201 | 198, 200 | unssd 4116 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝐴 ∪ {∅}) ⊆ 𝒫 𝑂) |
202 | 197, 201 | sstrd 3927 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑓 ↾ (1...𝑛)) ⊆ 𝒫 𝑂) |
203 | 202 | sselda 3917 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → 𝑧 ∈ 𝒫 𝑂) |
204 | 203 | elpwid 4541 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → 𝑧 ⊆ 𝑂) |
205 | | sseqin2 4146 |
. . . . . . . . . . 11
⊢ (𝑧 ⊆ 𝑂 ↔ (𝑂 ∩ 𝑧) = 𝑧) |
206 | 204, 205 | sylib 217 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → (𝑂 ∩ 𝑧) = 𝑧) |
207 | 206 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑧 ∈ ran (𝑓 ↾ (1...𝑛))) → (𝑀‘(𝑂 ∩ 𝑧)) = (𝑀‘𝑧)) |
208 | 207 | ralrimiva 3107 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ∀𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂 ∩ 𝑧)) = (𝑀‘𝑧)) |
209 | 196, 208 | esumeq2d 31905 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) →
Σ*𝑧 ∈
ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂 ∩ 𝑧)) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘𝑧)) |
210 | 9 | reseq1d 5879 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝑓 ↾ (1...𝑛)) = ((𝑘 ∈ ℕ ↦ (𝑓‘𝑘)) ↾ (1...𝑛))) |
211 | 210 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑓 ↾ (1...𝑛)) = ((𝑘 ∈ ℕ ↦ (𝑓‘𝑘)) ↾ (1...𝑛))) |
212 | | resmpt 5934 |
. . . . . . . . . . . 12
⊢
((1...𝑛) ⊆
ℕ → ((𝑘 ∈
ℕ ↦ (𝑓‘𝑘)) ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓‘𝑘))) |
213 | 150, 212 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ↦ (𝑓‘𝑘)) ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓‘𝑘)) |
214 | 211, 213 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑓 ↾ (1...𝑛)) = (𝑘 ∈ (1...𝑛) ↦ (𝑓‘𝑘))) |
215 | 214 | eqcomd 2744 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑘 ∈ (1...𝑛) ↦ (𝑓‘𝑘)) = (𝑓 ↾ (1...𝑛))) |
216 | 215 | rneqd 5836 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → ran (𝑘 ∈ (1...𝑛) ↦ (𝑓‘𝑘)) = ran (𝑓 ↾ (1...𝑛))) |
217 | 196, 216 | esumeq1d 31903 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) →
Σ*𝑧 ∈
ran (𝑘 ∈ (1...𝑛) ↦ (𝑓‘𝑘))(𝑀‘𝑧) = Σ*𝑧 ∈ ran (𝑓 ↾ (1...𝑛))(𝑀‘𝑧)) |
218 | 154 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin) |
219 | 19 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
220 | 150 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ⊆
ℕ) |
221 | 220 | sselda 3917 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ) |
222 | 84 | adantlr 711 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ 𝒫 𝑂) |
223 | 221, 222 | syldan 590 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑓‘𝑘) ∈ 𝒫 𝑂) |
224 | 219, 223 | ffvelrnd 6944 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → (𝑀‘(𝑓‘𝑘)) ∈ (0[,]+∞)) |
225 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓‘𝑘) = ∅) → (𝑓‘𝑘) = ∅) |
226 | 225 | fveq2d 6760 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓‘𝑘) = ∅) → (𝑀‘(𝑓‘𝑘)) = (𝑀‘∅)) |
227 | 21 | ad3antrrr 726 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓‘𝑘) = ∅) → (𝑀‘∅) = 0) |
228 | 226, 227 | eqtrd 2778 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) ∧ (𝑓‘𝑘) = ∅) → (𝑀‘(𝑓‘𝑘)) = 0) |
229 | | disjss1 5041 |
. . . . . . . . . . 11
⊢
((1...𝑛) ⊆
ℕ → (Disj 𝑘 ∈ ℕ (𝑓‘𝑘) → Disj 𝑘 ∈ (1...𝑛)(𝑓‘𝑘))) |
230 | 150, 229 | ax-mp 5 |
. . . . . . . . . 10
⊢
(Disj 𝑘
∈ ℕ (𝑓‘𝑘) → Disj 𝑘 ∈ (1...𝑛)(𝑓‘𝑘)) |
231 | 131, 230 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Disj 𝑘 ∈ (1...𝑛)(𝑓‘𝑘)) |
232 | 231 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → Disj 𝑘 ∈ (1...𝑛)(𝑓‘𝑘)) |
233 | 76, 218, 224, 223, 228, 232 | esumrnmpt2 31936 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) →
Σ*𝑧 ∈
ran (𝑘 ∈ (1...𝑛) ↦ (𝑓‘𝑘))(𝑀‘𝑧) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓‘𝑘))) |
234 | 209, 217,
233 | 3eqtr2d 2784 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) →
Σ*𝑧 ∈
ran (𝑓 ↾ (1...𝑛))(𝑀‘(𝑂 ∩ 𝑧)) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓‘𝑘))) |
235 | 178, 195,
234 | 3eqtr3d 2786 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀‘∪ ran
(𝑓 ↾ (1...𝑛))) = Σ*𝑘 ∈ (1...𝑛)(𝑀‘(𝑓‘𝑘))) |
236 | | carsggect.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
237 | 236 | 3adant1r 1175 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
238 | 17, 19, 185, 138, 237 | carsgmon 32181 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → (𝑀‘∪ ran
(𝑓 ↾ (1...𝑛))) ≤ (𝑀‘∪ 𝐴)) |
239 | 238 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) → (𝑀‘∪ ran
(𝑓 ↾ (1...𝑛))) ≤ (𝑀‘∪ 𝐴)) |
240 | 235, 239 | eqbrtrrd 5094 |
. . . 4
⊢ (((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) ∧ 𝑛 ∈ ℕ) →
Σ*𝑘 ∈
(1...𝑛)(𝑀‘(𝑓‘𝑘)) ≤ (𝑀‘∪ 𝐴)) |
241 | 139, 85, 240 | esumgect 31958 |
. . 3
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑘 ∈ ℕ(𝑀‘(𝑓‘𝑘)) ≤ (𝑀‘∪ 𝐴)) |
242 | 133, 241 | eqbrtrrd 5094 |
. 2
⊢ ((𝜑 ∧ (𝑓:ℕ⟶(𝐴 ∪ {∅}) ∧ 𝐴 ⊆ ran 𝑓 ∧ Fun (◡𝑓 ↾ 𝐴))) → Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ≤ (𝑀‘∪ 𝐴)) |
243 | 6, 242 | exlimddv 1939 |
1
⊢ (𝜑 → Σ*𝑧 ∈ 𝐴(𝑀‘𝑧) ≤ (𝑀‘∪ 𝐴)) |