| Step | Hyp | Ref
| Expression |
| 1 | | meadjiun.1 |
. . . . 5
⊢
Ⅎ𝑘𝜑 |
| 2 | | meadjiun.b |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) |
| 3 | 2 | ex 412 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ 𝑆)) |
| 4 | 1, 3 | ralrimi 3257 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) |
| 5 | | dfiun3g 5978 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 𝐵 ∈ 𝑆 → ∪
𝑘 ∈ 𝐴 𝐵 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 = ∪ ran (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 7 | 6 | fveq2d 6910 |
. 2
⊢ (𝜑 → (𝑀‘∪
𝑘 ∈ 𝐴 𝐵) = (𝑀‘∪ ran
(𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 8 | | meadjiun.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ Meas) |
| 9 | | meadjiun.s |
. . 3
⊢ 𝑆 = dom 𝑀 |
| 10 | | eqid 2737 |
. . . 4
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
| 11 | 1, 10, 2 | rnmptssd 45201 |
. . 3
⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ⊆ 𝑆) |
| 12 | | meadjiun.a |
. . . 4
⊢ (𝜑 → 𝐴 ≼ ω) |
| 13 | | 1stcrestlem 23460 |
. . . 4
⊢ (𝐴 ≼ ω → ran
(𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
| 14 | 12, 13 | syl 17 |
. . 3
⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
| 15 | | meadjiun.dj |
. . . 4
⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
| 16 | 10 | disjrnmpt2 45193 |
. . . 4
⊢
(Disj 𝑘
∈ 𝐴 𝐵 → Disj 𝑥 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑥) |
| 17 | 15, 16 | syl 17 |
. . 3
⊢ (𝜑 → Disj 𝑥 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝑥) |
| 18 | 8, 9, 11, 14, 17 | meadjuni 46472 |
. 2
⊢ (𝜑 → (𝑀‘∪ ran
(𝑘 ∈ 𝐴 ↦ 𝐵)) =
(Σ^‘(𝑀 ↾ ran (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
| 19 | | reldom 8991 |
. . . . . 6
⊢ Rel
≼ |
| 20 | | brrelex1 5738 |
. . . . . 6
⊢ ((Rel
≼ ∧ 𝐴 ≼
ω) → 𝐴 ∈
V) |
| 21 | 19, 20 | mpan 690 |
. . . . 5
⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
| 22 | 12, 21 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ V) |
| 23 | 1, 2, 10 | fmptdf 7137 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝑆) |
| 24 | | fveq2 6906 |
. . . . . 6
⊢ (𝑗 = 𝑖 → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑖)) |
| 25 | 24 | neeq1d 3000 |
. . . . 5
⊢ (𝑗 = 𝑖 → (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) ≠ ∅ ↔ ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑖) ≠ ∅)) |
| 26 | 25 | cbvrabv 3447 |
. . . 4
⊢ {𝑗 ∈ 𝐴 ∣ ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑗) ≠ ∅} = {𝑖 ∈ 𝐴 ∣ ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑖) ≠ ∅} |
| 27 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝑖 ∈ 𝐴) |
| 28 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘 𝑖 ∈ 𝐴 |
| 29 | 1, 28 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑖 ∈ 𝐴) |
| 30 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝑖 |
| 31 | 30 | nfcsb1 3922 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 |
| 32 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘𝑆 |
| 33 | 31, 32 | nfel 2920 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 ∈ 𝑆 |
| 34 | 29, 33 | nfim 1896 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑘⦌𝐵 ∈ 𝑆) |
| 35 | | eleq1w 2824 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → (𝑘 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴)) |
| 36 | 35 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑖 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑖 ∈ 𝐴))) |
| 37 | | csbeq1a 3913 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑘⦌𝐵) |
| 38 | 37 | eleq1d 2826 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑖 → (𝐵 ∈ 𝑆 ↔ ⦋𝑖 / 𝑘⦌𝐵 ∈ 𝑆)) |
| 39 | 36, 38 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑘 = 𝑖 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) ↔ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑘⦌𝐵 ∈ 𝑆))) |
| 40 | 34, 39, 2 | chvarfv 2240 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑘⦌𝐵 ∈ 𝑆) |
| 41 | 30, 31, 37, 10 | fvmptf 7037 |
. . . . . . . 8
⊢ ((𝑖 ∈ 𝐴 ∧ ⦋𝑖 / 𝑘⦌𝐵 ∈ 𝑆) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑖) = ⦋𝑖 / 𝑘⦌𝐵) |
| 42 | 27, 40, 41 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑖) = ⦋𝑖 / 𝑘⦌𝐵) |
| 43 | 42 | disjeq2dv 5115 |
. . . . . 6
⊢ (𝜑 → (Disj 𝑖 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑖) ↔ Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑘⦌𝐵)) |
| 44 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝐵 |
| 45 | 44, 31, 37 | cbvdisj 5120 |
. . . . . . . 8
⊢
(Disj 𝑘
∈ 𝐴 𝐵 ↔ Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑘⦌𝐵) |
| 46 | 45 | bicomi 224 |
. . . . . . 7
⊢
(Disj 𝑖
∈ 𝐴
⦋𝑖 / 𝑘⦌𝐵 ↔ Disj 𝑘 ∈ 𝐴 𝐵) |
| 47 | 46 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (Disj 𝑖 ∈ 𝐴 ⦋𝑖 / 𝑘⦌𝐵 ↔ Disj 𝑘 ∈ 𝐴 𝐵)) |
| 48 | 43, 47 | bitrd 279 |
. . . . 5
⊢ (𝜑 → (Disj 𝑖 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑖) ↔ Disj 𝑘 ∈ 𝐴 𝐵)) |
| 49 | 15, 48 | mpbird 257 |
. . . 4
⊢ (𝜑 → Disj 𝑖 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑖)) |
| 50 | 8, 9, 22, 23, 26, 49 | meadjiunlem 46480 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑀 ↾ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) =
(Σ^‘(𝑀 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
| 51 | 44, 31, 37 | cbvmpt 5253 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑖 ∈ 𝐴 ↦ ⦋𝑖 / 𝑘⦌𝐵) |
| 52 | 51 | coeq2i 5871 |
. . . . . 6
⊢ (𝑀 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)) = (𝑀 ∘ (𝑖 ∈ 𝐴 ↦ ⦋𝑖 / 𝑘⦌𝐵)) |
| 53 | 52 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑀 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)) = (𝑀 ∘ (𝑖 ∈ 𝐴 ↦ ⦋𝑖 / 𝑘⦌𝐵))) |
| 54 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ 𝐴 ↦ ⦋𝑖 / 𝑘⦌𝐵) = (𝑖 ∈ 𝐴 ↦ ⦋𝑖 / 𝑘⦌𝐵)) |
| 55 | 8, 9 | meaf 46468 |
. . . . . . 7
⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
| 56 | 55 | feqmptd 6977 |
. . . . . 6
⊢ (𝜑 → 𝑀 = (𝑦 ∈ 𝑆 ↦ (𝑀‘𝑦))) |
| 57 | | fveq2 6906 |
. . . . . 6
⊢ (𝑦 = ⦋𝑖 / 𝑘⦌𝐵 → (𝑀‘𝑦) = (𝑀‘⦋𝑖 / 𝑘⦌𝐵)) |
| 58 | 40, 54, 56, 57 | fmptco 7149 |
. . . . 5
⊢ (𝜑 → (𝑀 ∘ (𝑖 ∈ 𝐴 ↦ ⦋𝑖 / 𝑘⦌𝐵)) = (𝑖 ∈ 𝐴 ↦ (𝑀‘⦋𝑖 / 𝑘⦌𝐵))) |
| 59 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝑀‘𝐵) |
| 60 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝑀 |
| 61 | 60, 31 | nffv 6916 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝑀‘⦋𝑖 / 𝑘⦌𝐵) |
| 62 | 37 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → (𝑀‘𝐵) = (𝑀‘⦋𝑖 / 𝑘⦌𝐵)) |
| 63 | 59, 61, 62 | cbvmpt 5253 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐴 ↦ (𝑀‘𝐵)) = (𝑖 ∈ 𝐴 ↦ (𝑀‘⦋𝑖 / 𝑘⦌𝐵)) |
| 64 | 63 | eqcomi 2746 |
. . . . . 6
⊢ (𝑖 ∈ 𝐴 ↦ (𝑀‘⦋𝑖 / 𝑘⦌𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝑀‘𝐵)) |
| 65 | 64 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑖 ∈ 𝐴 ↦ (𝑀‘⦋𝑖 / 𝑘⦌𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝑀‘𝐵))) |
| 66 | 53, 58, 65 | 3eqtrd 2781 |
. . . 4
⊢ (𝜑 → (𝑀 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵)) = (𝑘 ∈ 𝐴 ↦ (𝑀‘𝐵))) |
| 67 | 66 | fveq2d 6910 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑀 ∘ (𝑘 ∈ 𝐴 ↦ 𝐵))) =
(Σ^‘(𝑘 ∈ 𝐴 ↦ (𝑀‘𝐵)))) |
| 68 | 50, 67 | eqtrd 2777 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑀 ↾ ran (𝑘 ∈ 𝐴 ↦ 𝐵))) =
(Σ^‘(𝑘 ∈ 𝐴 ↦ (𝑀‘𝐵)))) |
| 69 | 7, 18, 68 | 3eqtrd 2781 |
1
⊢ (𝜑 → (𝑀‘∪
𝑘 ∈ 𝐴 𝐵) =
(Σ^‘(𝑘 ∈ 𝐴 ↦ (𝑀‘𝐵)))) |