Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjiun Structured version   Visualization version   GIF version

Theorem meadjiun 45643
Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjiun.1 𝑘𝜑
meadjiun.m (𝜑𝑀 ∈ Meas)
meadjiun.s 𝑆 = dom 𝑀
meadjiun.b ((𝜑𝑘𝐴) → 𝐵𝑆)
meadjiun.a (𝜑𝐴 ≼ ω)
meadjiun.dj (𝜑Disj 𝑘𝐴 𝐵)
Assertion
Ref Expression
meadjiun (𝜑 → (𝑀 𝑘𝐴 𝐵) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem meadjiun
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meadjiun.1 . . . . 5 𝑘𝜑
2 meadjiun.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑆)
32ex 412 . . . . 5 (𝜑 → (𝑘𝐴𝐵𝑆))
41, 3ralrimi 3253 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵𝑆)
5 dfiun3g 5963 . . . 4 (∀𝑘𝐴 𝐵𝑆 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
64, 5syl 17 . . 3 (𝜑 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
76fveq2d 6895 . 2 (𝜑 → (𝑀 𝑘𝐴 𝐵) = (𝑀 ran (𝑘𝐴𝐵)))
8 meadjiun.m . . 3 (𝜑𝑀 ∈ Meas)
9 meadjiun.s . . 3 𝑆 = dom 𝑀
10 eqid 2731 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
111, 10, 2rnmptssd 44356 . . 3 (𝜑 → ran (𝑘𝐴𝐵) ⊆ 𝑆)
12 meadjiun.a . . . 4 (𝜑𝐴 ≼ ω)
13 1stcrestlem 23276 . . . 4 (𝐴 ≼ ω → ran (𝑘𝐴𝐵) ≼ ω)
1412, 13syl 17 . . 3 (𝜑 → ran (𝑘𝐴𝐵) ≼ ω)
15 meadjiun.dj . . . 4 (𝜑Disj 𝑘𝐴 𝐵)
1610disjrnmpt2 44348 . . . 4 (Disj 𝑘𝐴 𝐵Disj 𝑥 ∈ ran (𝑘𝐴𝐵)𝑥)
1715, 16syl 17 . . 3 (𝜑Disj 𝑥 ∈ ran (𝑘𝐴𝐵)𝑥)
188, 9, 11, 14, 17meadjuni 45634 . 2 (𝜑 → (𝑀 ran (𝑘𝐴𝐵)) = (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))))
19 reldom 8951 . . . . . 6 Rel ≼
20 brrelex1 5729 . . . . . 6 ((Rel ≼ ∧ 𝐴 ≼ ω) → 𝐴 ∈ V)
2119, 20mpan 687 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
2212, 21syl 17 . . . 4 (𝜑𝐴 ∈ V)
231, 2, 10fmptdf 7118 . . . 4 (𝜑 → (𝑘𝐴𝐵):𝐴𝑆)
24 fveq2 6891 . . . . . 6 (𝑗 = 𝑖 → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐴𝐵)‘𝑖))
2524neeq1d 2999 . . . . 5 (𝑗 = 𝑖 → (((𝑘𝐴𝐵)‘𝑗) ≠ ∅ ↔ ((𝑘𝐴𝐵)‘𝑖) ≠ ∅))
2625cbvrabv 3441 . . . 4 {𝑗𝐴 ∣ ((𝑘𝐴𝐵)‘𝑗) ≠ ∅} = {𝑖𝐴 ∣ ((𝑘𝐴𝐵)‘𝑖) ≠ ∅}
27 simpr 484 . . . . . . . 8 ((𝜑𝑖𝐴) → 𝑖𝐴)
28 nfv 1916 . . . . . . . . . . 11 𝑘 𝑖𝐴
291, 28nfan 1901 . . . . . . . . . 10 𝑘(𝜑𝑖𝐴)
30 nfcv 2902 . . . . . . . . . . . 12 𝑘𝑖
3130nfcsb1 3917 . . . . . . . . . . 11 𝑘𝑖 / 𝑘𝐵
32 nfcv 2902 . . . . . . . . . . 11 𝑘𝑆
3331, 32nfel 2916 . . . . . . . . . 10 𝑘𝑖 / 𝑘𝐵𝑆
3429, 33nfim 1898 . . . . . . . . 9 𝑘((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)
35 eleq1w 2815 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑘𝐴𝑖𝐴))
3635anbi2d 628 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝜑𝑘𝐴) ↔ (𝜑𝑖𝐴)))
37 csbeq1a 3907 . . . . . . . . . . 11 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
3837eleq1d 2817 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝐵𝑆𝑖 / 𝑘𝐵𝑆))
3936, 38imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑖 → (((𝜑𝑘𝐴) → 𝐵𝑆) ↔ ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)))
4034, 39, 2chvarfv 2232 . . . . . . . 8 ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)
4130, 31, 37, 10fvmptf 7019 . . . . . . . 8 ((𝑖𝐴𝑖 / 𝑘𝐵𝑆) → ((𝑘𝐴𝐵)‘𝑖) = 𝑖 / 𝑘𝐵)
4227, 40, 41syl2anc 583 . . . . . . 7 ((𝜑𝑖𝐴) → ((𝑘𝐴𝐵)‘𝑖) = 𝑖 / 𝑘𝐵)
4342disjeq2dv 5118 . . . . . 6 (𝜑 → (Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖) ↔ Disj 𝑖𝐴 𝑖 / 𝑘𝐵))
44 nfcv 2902 . . . . . . . . 9 𝑖𝐵
4544, 31, 37cbvdisj 5123 . . . . . . . 8 (Disj 𝑘𝐴 𝐵Disj 𝑖𝐴 𝑖 / 𝑘𝐵)
4645bicomi 223 . . . . . . 7 (Disj 𝑖𝐴 𝑖 / 𝑘𝐵Disj 𝑘𝐴 𝐵)
4746a1i 11 . . . . . 6 (𝜑 → (Disj 𝑖𝐴 𝑖 / 𝑘𝐵Disj 𝑘𝐴 𝐵))
4843, 47bitrd 279 . . . . 5 (𝜑 → (Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖) ↔ Disj 𝑘𝐴 𝐵))
4915, 48mpbird 257 . . . 4 (𝜑Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖))
508, 9, 22, 23, 26, 49meadjiunlem 45642 . . 3 (𝜑 → (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))) = (Σ^‘(𝑀 ∘ (𝑘𝐴𝐵))))
5144, 31, 37cbvmpt 5259 . . . . . . 7 (𝑘𝐴𝐵) = (𝑖𝐴𝑖 / 𝑘𝐵)
5251coeq2i 5860 . . . . . 6 (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵))
5352a1i 11 . . . . 5 (𝜑 → (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵)))
54 eqidd 2732 . . . . . 6 (𝜑 → (𝑖𝐴𝑖 / 𝑘𝐵) = (𝑖𝐴𝑖 / 𝑘𝐵))
558, 9meaf 45630 . . . . . . 7 (𝜑𝑀:𝑆⟶(0[,]+∞))
5655feqmptd 6960 . . . . . 6 (𝜑𝑀 = (𝑦𝑆 ↦ (𝑀𝑦)))
57 fveq2 6891 . . . . . 6 (𝑦 = 𝑖 / 𝑘𝐵 → (𝑀𝑦) = (𝑀𝑖 / 𝑘𝐵))
5840, 54, 56, 57fmptco 7129 . . . . 5 (𝜑 → (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵)) = (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)))
59 nfcv 2902 . . . . . . . 8 𝑖(𝑀𝐵)
60 nfcv 2902 . . . . . . . . 9 𝑘𝑀
6160, 31nffv 6901 . . . . . . . 8 𝑘(𝑀𝑖 / 𝑘𝐵)
6237fveq2d 6895 . . . . . . . 8 (𝑘 = 𝑖 → (𝑀𝐵) = (𝑀𝑖 / 𝑘𝐵))
6359, 61, 62cbvmpt 5259 . . . . . . 7 (𝑘𝐴 ↦ (𝑀𝐵)) = (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵))
6463eqcomi 2740 . . . . . 6 (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵))
6564a1i 11 . . . . 5 (𝜑 → (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵)))
6653, 58, 653eqtrd 2775 . . . 4 (𝜑 → (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵)))
6766fveq2d 6895 . . 3 (𝜑 → (Σ^‘(𝑀 ∘ (𝑘𝐴𝐵))) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
6850, 67eqtrd 2771 . 2 (𝜑 → (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
697, 18, 683eqtrd 2775 1 (𝜑 → (𝑀 𝑘𝐴 𝐵) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wnf 1784  wcel 2105  wne 2939  wral 3060  {crab 3431  Vcvv 3473  csb 3893  c0 4322   cuni 4908   ciun 4997  Disj wdisj 5113   class class class wbr 5148  cmpt 5231  dom cdm 5676  ran crn 5677  cres 5678  ccom 5680  Rel wrel 5681  cfv 6543  (class class class)co 7412  ωcom 7859  cdom 8943  0cc0 11116  +∞cpnf 11252  [,]cicc 13334  Σ^csumge0 45539  Meascmea 45626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-oi 9511  df-card 9940  df-acn 9943  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-n0 12480  df-z 12566  df-uz 12830  df-rp 12982  df-xadd 13100  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-seq 13974  df-exp 14035  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-clim 15439  df-sum 15640  df-sumge0 45540  df-mea 45627
This theorem is referenced by:  meaiunlelem  45645  meaiuninclem  45657  vonct  45870
  Copyright terms: Public domain W3C validator