Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjiun Structured version   Visualization version   GIF version

 Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
Assertion
Ref Expression
meadjiun (𝜑 → (𝑀 𝑘𝐴 𝐵) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meadjiun.1 . . . . 5 𝑘𝜑
2 meadjiun.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑆)
32ex 416 . . . . 5 (𝜑 → (𝑘𝐴𝐵𝑆))
41, 3ralrimi 3144 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵𝑆)
5 dfiun3g 5805 . . . 4 (∀𝑘𝐴 𝐵𝑆 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
64, 5syl 17 . . 3 (𝜑 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
76fveq2d 6662 . 2 (𝜑 → (𝑀 𝑘𝐴 𝐵) = (𝑀 ran (𝑘𝐴𝐵)))
8 meadjiun.m . . 3 (𝜑𝑀 ∈ Meas)
9 meadjiun.s . . 3 𝑆 = dom 𝑀
10 eqid 2758 . . . . 5 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
1110rnmptss 6877 . . . 4 (∀𝑘𝐴 𝐵𝑆 → ran (𝑘𝐴𝐵) ⊆ 𝑆)
124, 11syl 17 . . 3 (𝜑 → ran (𝑘𝐴𝐵) ⊆ 𝑆)
13 meadjiun.a . . . 4 (𝜑𝐴 ≼ ω)
14 1stcrestlem 22152 . . . 4 (𝐴 ≼ ω → ran (𝑘𝐴𝐵) ≼ ω)
1513, 14syl 17 . . 3 (𝜑 → ran (𝑘𝐴𝐵) ≼ ω)
16 meadjiun.dj . . . 4 (𝜑Disj 𝑘𝐴 𝐵)
1710disjrnmpt2 42185 . . . 4 (Disj 𝑘𝐴 𝐵Disj 𝑥 ∈ ran (𝑘𝐴𝐵)𝑥)
1816, 17syl 17 . . 3 (𝜑Disj 𝑥 ∈ ran (𝑘𝐴𝐵)𝑥)
198, 9, 12, 15, 18meadjuni 43462 . 2 (𝜑 → (𝑀 ran (𝑘𝐴𝐵)) = (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))))
20 reldom 8533 . . . . . 6 Rel ≼
21 brrelex1 5574 . . . . . 6 ((Rel ≼ ∧ 𝐴 ≼ ω) → 𝐴 ∈ V)
2220, 21mpan 689 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
2313, 22syl 17 . . . 4 (𝜑𝐴 ∈ V)
241, 2, 10fmptdf 6872 . . . 4 (𝜑 → (𝑘𝐴𝐵):𝐴𝑆)
25 fveq2 6658 . . . . . 6 (𝑗 = 𝑖 → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐴𝐵)‘𝑖))
2625neeq1d 3010 . . . . 5 (𝑗 = 𝑖 → (((𝑘𝐴𝐵)‘𝑗) ≠ ∅ ↔ ((𝑘𝐴𝐵)‘𝑖) ≠ ∅))
2726cbvrabv 3404 . . . 4 {𝑗𝐴 ∣ ((𝑘𝐴𝐵)‘𝑗) ≠ ∅} = {𝑖𝐴 ∣ ((𝑘𝐴𝐵)‘𝑖) ≠ ∅}
28 simpr 488 . . . . . . . 8 ((𝜑𝑖𝐴) → 𝑖𝐴)
29 nfv 1915 . . . . . . . . . . 11 𝑘 𝑖𝐴
301, 29nfan 1900 . . . . . . . . . 10 𝑘(𝜑𝑖𝐴)
31 nfcv 2919 . . . . . . . . . . . 12 𝑘𝑖
3231nfcsb1 3828 . . . . . . . . . . 11 𝑘𝑖 / 𝑘𝐵
33 nfcv 2919 . . . . . . . . . . 11 𝑘𝑆
3432, 33nfel 2933 . . . . . . . . . 10 𝑘𝑖 / 𝑘𝐵𝑆
3530, 34nfim 1897 . . . . . . . . 9 𝑘((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)
36 eleq1w 2834 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑘𝐴𝑖𝐴))
3736anbi2d 631 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝜑𝑘𝐴) ↔ (𝜑𝑖𝐴)))
38 csbeq1a 3819 . . . . . . . . . . 11 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
3938eleq1d 2836 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝐵𝑆𝑖 / 𝑘𝐵𝑆))
4037, 39imbi12d 348 . . . . . . . . 9 (𝑘 = 𝑖 → (((𝜑𝑘𝐴) → 𝐵𝑆) ↔ ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)))
4135, 40, 2chvarfv 2240 . . . . . . . 8 ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)
4231, 32, 38, 10fvmptf 6780 . . . . . . . 8 ((𝑖𝐴𝑖 / 𝑘𝐵𝑆) → ((𝑘𝐴𝐵)‘𝑖) = 𝑖 / 𝑘𝐵)
4328, 41, 42syl2anc 587 . . . . . . 7 ((𝜑𝑖𝐴) → ((𝑘𝐴𝐵)‘𝑖) = 𝑖 / 𝑘𝐵)
4443disjeq2dv 5002 . . . . . 6 (𝜑 → (Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖) ↔ Disj 𝑖𝐴 𝑖 / 𝑘𝐵))
45 nfcv 2919 . . . . . . . . 9 𝑖𝐵
4645, 32, 38cbvdisj 5007 . . . . . . . 8 (Disj 𝑘𝐴 𝐵Disj 𝑖𝐴 𝑖 / 𝑘𝐵)
4746bicomi 227 . . . . . . 7 (Disj 𝑖𝐴 𝑖 / 𝑘𝐵Disj 𝑘𝐴 𝐵)
4847a1i 11 . . . . . 6 (𝜑 → (Disj 𝑖𝐴 𝑖 / 𝑘𝐵Disj 𝑘𝐴 𝐵))
4944, 48bitrd 282 . . . . 5 (𝜑 → (Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖) ↔ Disj 𝑘𝐴 𝐵))
5016, 49mpbird 260 . . . 4 (𝜑Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖))
518, 9, 23, 24, 27, 50meadjiunlem 43470 . . 3 (𝜑 → (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))) = (Σ^‘(𝑀 ∘ (𝑘𝐴𝐵))))
5245, 32, 38cbvmpt 5133 . . . . . . 7 (𝑘𝐴𝐵) = (𝑖𝐴𝑖 / 𝑘𝐵)
5352coeq2i 5700 . . . . . 6 (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵))
5453a1i 11 . . . . 5 (𝜑 → (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵)))
55 eqidd 2759 . . . . . 6 (𝜑 → (𝑖𝐴𝑖 / 𝑘𝐵) = (𝑖𝐴𝑖 / 𝑘𝐵))
568, 9meaf 43458 . . . . . . 7 (𝜑𝑀:𝑆⟶(0[,]+∞))
5756feqmptd 6721 . . . . . 6 (𝜑𝑀 = (𝑦𝑆 ↦ (𝑀𝑦)))
58 fveq2 6658 . . . . . 6 (𝑦 = 𝑖 / 𝑘𝐵 → (𝑀𝑦) = (𝑀𝑖 / 𝑘𝐵))
5941, 55, 57, 58fmptco 6882 . . . . 5 (𝜑 → (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵)) = (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)))
60 nfcv 2919 . . . . . . . 8 𝑖(𝑀𝐵)
61 nfcv 2919 . . . . . . . . 9 𝑘𝑀
6261, 32nffv 6668 . . . . . . . 8 𝑘(𝑀𝑖 / 𝑘𝐵)
6338fveq2d 6662 . . . . . . . 8 (𝑘 = 𝑖 → (𝑀𝐵) = (𝑀𝑖 / 𝑘𝐵))
6460, 62, 63cbvmpt 5133 . . . . . . 7 (𝑘𝐴 ↦ (𝑀𝐵)) = (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵))
6564eqcomi 2767 . . . . . 6 (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵))
6665a1i 11 . . . . 5 (𝜑 → (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵)))
6754, 59, 663eqtrd 2797 . . . 4 (𝜑 → (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵)))
6867fveq2d 6662 . . 3 (𝜑 → (Σ^‘(𝑀 ∘ (𝑘𝐴𝐵))) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
6951, 68eqtrd 2793 . 2 (𝜑 → (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
707, 19, 693eqtrd 2797 1 (𝜑 → (𝑀 𝑘𝐴 𝐵) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  {crab 3074  Vcvv 3409  ⦋csb 3805   ⊆ wss 3858  ∅c0 4225  ∪ cuni 4798  ∪ ciun 4883  Disj wdisj 4997   class class class wbr 5032   ↦ cmpt 5112  dom cdm 5524  ran crn 5525   ↾ cres 5526   ∘ ccom 5528  Rel wrel 5529  ‘cfv 6335  (class class class)co 7150  ωcom 7579   ≼ cdom 8525  0cc0 10575  +∞cpnf 10710  [,]cicc 12782  Σ^csumge0 43367  Meascmea 43454 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-disj 4998  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-oi 9007  df-card 9401  df-acn 9404  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-xadd 12549  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-clim 14893  df-sum 15091  df-sumge0 43368  df-mea 43455 This theorem is referenced by:  meaiunlelem  43473  meaiuninclem  43485  vonct  43698
 Copyright terms: Public domain W3C validator