Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjiun Structured version   Visualization version   GIF version

Theorem meadjiun 46447
Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjiun.1 𝑘𝜑
meadjiun.m (𝜑𝑀 ∈ Meas)
meadjiun.s 𝑆 = dom 𝑀
meadjiun.b ((𝜑𝑘𝐴) → 𝐵𝑆)
meadjiun.a (𝜑𝐴 ≼ ω)
meadjiun.dj (𝜑Disj 𝑘𝐴 𝐵)
Assertion
Ref Expression
meadjiun (𝜑 → (𝑀 𝑘𝐴 𝐵) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem meadjiun
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meadjiun.1 . . . . 5 𝑘𝜑
2 meadjiun.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑆)
32ex 412 . . . . 5 (𝜑 → (𝑘𝐴𝐵𝑆))
41, 3ralrimi 3227 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵𝑆)
5 dfiun3g 5909 . . . 4 (∀𝑘𝐴 𝐵𝑆 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
64, 5syl 17 . . 3 (𝜑 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
76fveq2d 6826 . 2 (𝜑 → (𝑀 𝑘𝐴 𝐵) = (𝑀 ran (𝑘𝐴𝐵)))
8 meadjiun.m . . 3 (𝜑𝑀 ∈ Meas)
9 meadjiun.s . . 3 𝑆 = dom 𝑀
10 eqid 2729 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
111, 10, 2rnmptssd 45174 . . 3 (𝜑 → ran (𝑘𝐴𝐵) ⊆ 𝑆)
12 meadjiun.a . . . 4 (𝜑𝐴 ≼ ω)
13 1stcrestlem 23337 . . . 4 (𝐴 ≼ ω → ran (𝑘𝐴𝐵) ≼ ω)
1412, 13syl 17 . . 3 (𝜑 → ran (𝑘𝐴𝐵) ≼ ω)
15 meadjiun.dj . . . 4 (𝜑Disj 𝑘𝐴 𝐵)
1610disjrnmpt2 45166 . . . 4 (Disj 𝑘𝐴 𝐵Disj 𝑥 ∈ ran (𝑘𝐴𝐵)𝑥)
1715, 16syl 17 . . 3 (𝜑Disj 𝑥 ∈ ran (𝑘𝐴𝐵)𝑥)
188, 9, 11, 14, 17meadjuni 46438 . 2 (𝜑 → (𝑀 ran (𝑘𝐴𝐵)) = (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))))
19 reldom 8878 . . . . . 6 Rel ≼
20 brrelex1 5672 . . . . . 6 ((Rel ≼ ∧ 𝐴 ≼ ω) → 𝐴 ∈ V)
2119, 20mpan 690 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
2212, 21syl 17 . . . 4 (𝜑𝐴 ∈ V)
231, 2, 10fmptdf 7051 . . . 4 (𝜑 → (𝑘𝐴𝐵):𝐴𝑆)
24 fveq2 6822 . . . . . 6 (𝑗 = 𝑖 → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐴𝐵)‘𝑖))
2524neeq1d 2984 . . . . 5 (𝑗 = 𝑖 → (((𝑘𝐴𝐵)‘𝑗) ≠ ∅ ↔ ((𝑘𝐴𝐵)‘𝑖) ≠ ∅))
2625cbvrabv 3405 . . . 4 {𝑗𝐴 ∣ ((𝑘𝐴𝐵)‘𝑗) ≠ ∅} = {𝑖𝐴 ∣ ((𝑘𝐴𝐵)‘𝑖) ≠ ∅}
27 simpr 484 . . . . . . . 8 ((𝜑𝑖𝐴) → 𝑖𝐴)
28 nfv 1914 . . . . . . . . . . 11 𝑘 𝑖𝐴
291, 28nfan 1899 . . . . . . . . . 10 𝑘(𝜑𝑖𝐴)
30 nfcv 2891 . . . . . . . . . . . 12 𝑘𝑖
3130nfcsb1 3874 . . . . . . . . . . 11 𝑘𝑖 / 𝑘𝐵
32 nfcv 2891 . . . . . . . . . . 11 𝑘𝑆
3331, 32nfel 2906 . . . . . . . . . 10 𝑘𝑖 / 𝑘𝐵𝑆
3429, 33nfim 1896 . . . . . . . . 9 𝑘((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)
35 eleq1w 2811 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑘𝐴𝑖𝐴))
3635anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝜑𝑘𝐴) ↔ (𝜑𝑖𝐴)))
37 csbeq1a 3865 . . . . . . . . . . 11 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
3837eleq1d 2813 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝐵𝑆𝑖 / 𝑘𝐵𝑆))
3936, 38imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑖 → (((𝜑𝑘𝐴) → 𝐵𝑆) ↔ ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)))
4034, 39, 2chvarfv 2241 . . . . . . . 8 ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)
4130, 31, 37, 10fvmptf 6951 . . . . . . . 8 ((𝑖𝐴𝑖 / 𝑘𝐵𝑆) → ((𝑘𝐴𝐵)‘𝑖) = 𝑖 / 𝑘𝐵)
4227, 40, 41syl2anc 584 . . . . . . 7 ((𝜑𝑖𝐴) → ((𝑘𝐴𝐵)‘𝑖) = 𝑖 / 𝑘𝐵)
4342disjeq2dv 5064 . . . . . 6 (𝜑 → (Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖) ↔ Disj 𝑖𝐴 𝑖 / 𝑘𝐵))
44 nfcv 2891 . . . . . . . . 9 𝑖𝐵
4544, 31, 37cbvdisj 5069 . . . . . . . 8 (Disj 𝑘𝐴 𝐵Disj 𝑖𝐴 𝑖 / 𝑘𝐵)
4645bicomi 224 . . . . . . 7 (Disj 𝑖𝐴 𝑖 / 𝑘𝐵Disj 𝑘𝐴 𝐵)
4746a1i 11 . . . . . 6 (𝜑 → (Disj 𝑖𝐴 𝑖 / 𝑘𝐵Disj 𝑘𝐴 𝐵))
4843, 47bitrd 279 . . . . 5 (𝜑 → (Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖) ↔ Disj 𝑘𝐴 𝐵))
4915, 48mpbird 257 . . . 4 (𝜑Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖))
508, 9, 22, 23, 26, 49meadjiunlem 46446 . . 3 (𝜑 → (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))) = (Σ^‘(𝑀 ∘ (𝑘𝐴𝐵))))
5144, 31, 37cbvmpt 5194 . . . . . . 7 (𝑘𝐴𝐵) = (𝑖𝐴𝑖 / 𝑘𝐵)
5251coeq2i 5803 . . . . . 6 (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵))
5352a1i 11 . . . . 5 (𝜑 → (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵)))
54 eqidd 2730 . . . . . 6 (𝜑 → (𝑖𝐴𝑖 / 𝑘𝐵) = (𝑖𝐴𝑖 / 𝑘𝐵))
558, 9meaf 46434 . . . . . . 7 (𝜑𝑀:𝑆⟶(0[,]+∞))
5655feqmptd 6891 . . . . . 6 (𝜑𝑀 = (𝑦𝑆 ↦ (𝑀𝑦)))
57 fveq2 6822 . . . . . 6 (𝑦 = 𝑖 / 𝑘𝐵 → (𝑀𝑦) = (𝑀𝑖 / 𝑘𝐵))
5840, 54, 56, 57fmptco 7063 . . . . 5 (𝜑 → (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵)) = (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)))
59 nfcv 2891 . . . . . . . 8 𝑖(𝑀𝐵)
60 nfcv 2891 . . . . . . . . 9 𝑘𝑀
6160, 31nffv 6832 . . . . . . . 8 𝑘(𝑀𝑖 / 𝑘𝐵)
6237fveq2d 6826 . . . . . . . 8 (𝑘 = 𝑖 → (𝑀𝐵) = (𝑀𝑖 / 𝑘𝐵))
6359, 61, 62cbvmpt 5194 . . . . . . 7 (𝑘𝐴 ↦ (𝑀𝐵)) = (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵))
6463eqcomi 2738 . . . . . 6 (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵))
6564a1i 11 . . . . 5 (𝜑 → (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵)))
6653, 58, 653eqtrd 2768 . . . 4 (𝜑 → (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵)))
6766fveq2d 6826 . . 3 (𝜑 → (Σ^‘(𝑀 ∘ (𝑘𝐴𝐵))) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
6850, 67eqtrd 2764 . 2 (𝜑 → (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
697, 18, 683eqtrd 2768 1 (𝜑 → (𝑀 𝑘𝐴 𝐵) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2925  wral 3044  {crab 3394  Vcvv 3436  csb 3851  c0 4284   cuni 4858   ciun 4941  Disj wdisj 5059   class class class wbr 5092  cmpt 5173  dom cdm 5619  ran crn 5620  cres 5621  ccom 5623  Rel wrel 5624  cfv 6482  (class class class)co 7349  ωcom 7799  cdom 8870  0cc0 11009  +∞cpnf 11146  [,]cicc 13251  Σ^csumge0 46343  Meascmea 46430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-xadd 13015  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-sumge0 46344  df-mea 46431
This theorem is referenced by:  meaiunlelem  46449  meaiuninclem  46461  vonct  46674
  Copyright terms: Public domain W3C validator