Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjiun Structured version   Visualization version   GIF version

Theorem meadjiun 46437
Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjiun.1 𝑘𝜑
meadjiun.m (𝜑𝑀 ∈ Meas)
meadjiun.s 𝑆 = dom 𝑀
meadjiun.b ((𝜑𝑘𝐴) → 𝐵𝑆)
meadjiun.a (𝜑𝐴 ≼ ω)
meadjiun.dj (𝜑Disj 𝑘𝐴 𝐵)
Assertion
Ref Expression
meadjiun (𝜑 → (𝑀 𝑘𝐴 𝐵) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀   𝑆,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem meadjiun
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meadjiun.1 . . . . 5 𝑘𝜑
2 meadjiun.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑆)
32ex 412 . . . . 5 (𝜑 → (𝑘𝐴𝐵𝑆))
41, 3ralrimi 3233 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵𝑆)
5 dfiun3g 5920 . . . 4 (∀𝑘𝐴 𝐵𝑆 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
64, 5syl 17 . . 3 (𝜑 𝑘𝐴 𝐵 = ran (𝑘𝐴𝐵))
76fveq2d 6844 . 2 (𝜑 → (𝑀 𝑘𝐴 𝐵) = (𝑀 ran (𝑘𝐴𝐵)))
8 meadjiun.m . . 3 (𝜑𝑀 ∈ Meas)
9 meadjiun.s . . 3 𝑆 = dom 𝑀
10 eqid 2729 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
111, 10, 2rnmptssd 45163 . . 3 (𝜑 → ran (𝑘𝐴𝐵) ⊆ 𝑆)
12 meadjiun.a . . . 4 (𝜑𝐴 ≼ ω)
13 1stcrestlem 23315 . . . 4 (𝐴 ≼ ω → ran (𝑘𝐴𝐵) ≼ ω)
1412, 13syl 17 . . 3 (𝜑 → ran (𝑘𝐴𝐵) ≼ ω)
15 meadjiun.dj . . . 4 (𝜑Disj 𝑘𝐴 𝐵)
1610disjrnmpt2 45155 . . . 4 (Disj 𝑘𝐴 𝐵Disj 𝑥 ∈ ran (𝑘𝐴𝐵)𝑥)
1715, 16syl 17 . . 3 (𝜑Disj 𝑥 ∈ ran (𝑘𝐴𝐵)𝑥)
188, 9, 11, 14, 17meadjuni 46428 . 2 (𝜑 → (𝑀 ran (𝑘𝐴𝐵)) = (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))))
19 reldom 8901 . . . . . 6 Rel ≼
20 brrelex1 5684 . . . . . 6 ((Rel ≼ ∧ 𝐴 ≼ ω) → 𝐴 ∈ V)
2119, 20mpan 690 . . . . 5 (𝐴 ≼ ω → 𝐴 ∈ V)
2212, 21syl 17 . . . 4 (𝜑𝐴 ∈ V)
231, 2, 10fmptdf 7071 . . . 4 (𝜑 → (𝑘𝐴𝐵):𝐴𝑆)
24 fveq2 6840 . . . . . 6 (𝑗 = 𝑖 → ((𝑘𝐴𝐵)‘𝑗) = ((𝑘𝐴𝐵)‘𝑖))
2524neeq1d 2984 . . . . 5 (𝑗 = 𝑖 → (((𝑘𝐴𝐵)‘𝑗) ≠ ∅ ↔ ((𝑘𝐴𝐵)‘𝑖) ≠ ∅))
2625cbvrabv 3413 . . . 4 {𝑗𝐴 ∣ ((𝑘𝐴𝐵)‘𝑗) ≠ ∅} = {𝑖𝐴 ∣ ((𝑘𝐴𝐵)‘𝑖) ≠ ∅}
27 simpr 484 . . . . . . . 8 ((𝜑𝑖𝐴) → 𝑖𝐴)
28 nfv 1914 . . . . . . . . . . 11 𝑘 𝑖𝐴
291, 28nfan 1899 . . . . . . . . . 10 𝑘(𝜑𝑖𝐴)
30 nfcv 2891 . . . . . . . . . . . 12 𝑘𝑖
3130nfcsb1 3882 . . . . . . . . . . 11 𝑘𝑖 / 𝑘𝐵
32 nfcv 2891 . . . . . . . . . . 11 𝑘𝑆
3331, 32nfel 2906 . . . . . . . . . 10 𝑘𝑖 / 𝑘𝐵𝑆
3429, 33nfim 1896 . . . . . . . . 9 𝑘((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)
35 eleq1w 2811 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑘𝐴𝑖𝐴))
3635anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝜑𝑘𝐴) ↔ (𝜑𝑖𝐴)))
37 csbeq1a 3873 . . . . . . . . . . 11 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
3837eleq1d 2813 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝐵𝑆𝑖 / 𝑘𝐵𝑆))
3936, 38imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑖 → (((𝜑𝑘𝐴) → 𝐵𝑆) ↔ ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)))
4034, 39, 2chvarfv 2241 . . . . . . . 8 ((𝜑𝑖𝐴) → 𝑖 / 𝑘𝐵𝑆)
4130, 31, 37, 10fvmptf 6971 . . . . . . . 8 ((𝑖𝐴𝑖 / 𝑘𝐵𝑆) → ((𝑘𝐴𝐵)‘𝑖) = 𝑖 / 𝑘𝐵)
4227, 40, 41syl2anc 584 . . . . . . 7 ((𝜑𝑖𝐴) → ((𝑘𝐴𝐵)‘𝑖) = 𝑖 / 𝑘𝐵)
4342disjeq2dv 5074 . . . . . 6 (𝜑 → (Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖) ↔ Disj 𝑖𝐴 𝑖 / 𝑘𝐵))
44 nfcv 2891 . . . . . . . . 9 𝑖𝐵
4544, 31, 37cbvdisj 5079 . . . . . . . 8 (Disj 𝑘𝐴 𝐵Disj 𝑖𝐴 𝑖 / 𝑘𝐵)
4645bicomi 224 . . . . . . 7 (Disj 𝑖𝐴 𝑖 / 𝑘𝐵Disj 𝑘𝐴 𝐵)
4746a1i 11 . . . . . 6 (𝜑 → (Disj 𝑖𝐴 𝑖 / 𝑘𝐵Disj 𝑘𝐴 𝐵))
4843, 47bitrd 279 . . . . 5 (𝜑 → (Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖) ↔ Disj 𝑘𝐴 𝐵))
4915, 48mpbird 257 . . . 4 (𝜑Disj 𝑖𝐴 ((𝑘𝐴𝐵)‘𝑖))
508, 9, 22, 23, 26, 49meadjiunlem 46436 . . 3 (𝜑 → (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))) = (Σ^‘(𝑀 ∘ (𝑘𝐴𝐵))))
5144, 31, 37cbvmpt 5204 . . . . . . 7 (𝑘𝐴𝐵) = (𝑖𝐴𝑖 / 𝑘𝐵)
5251coeq2i 5814 . . . . . 6 (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵))
5352a1i 11 . . . . 5 (𝜑 → (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵)))
54 eqidd 2730 . . . . . 6 (𝜑 → (𝑖𝐴𝑖 / 𝑘𝐵) = (𝑖𝐴𝑖 / 𝑘𝐵))
558, 9meaf 46424 . . . . . . 7 (𝜑𝑀:𝑆⟶(0[,]+∞))
5655feqmptd 6911 . . . . . 6 (𝜑𝑀 = (𝑦𝑆 ↦ (𝑀𝑦)))
57 fveq2 6840 . . . . . 6 (𝑦 = 𝑖 / 𝑘𝐵 → (𝑀𝑦) = (𝑀𝑖 / 𝑘𝐵))
5840, 54, 56, 57fmptco 7083 . . . . 5 (𝜑 → (𝑀 ∘ (𝑖𝐴𝑖 / 𝑘𝐵)) = (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)))
59 nfcv 2891 . . . . . . . 8 𝑖(𝑀𝐵)
60 nfcv 2891 . . . . . . . . 9 𝑘𝑀
6160, 31nffv 6850 . . . . . . . 8 𝑘(𝑀𝑖 / 𝑘𝐵)
6237fveq2d 6844 . . . . . . . 8 (𝑘 = 𝑖 → (𝑀𝐵) = (𝑀𝑖 / 𝑘𝐵))
6359, 61, 62cbvmpt 5204 . . . . . . 7 (𝑘𝐴 ↦ (𝑀𝐵)) = (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵))
6463eqcomi 2738 . . . . . 6 (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵))
6564a1i 11 . . . . 5 (𝜑 → (𝑖𝐴 ↦ (𝑀𝑖 / 𝑘𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵)))
6653, 58, 653eqtrd 2768 . . . 4 (𝜑 → (𝑀 ∘ (𝑘𝐴𝐵)) = (𝑘𝐴 ↦ (𝑀𝐵)))
6766fveq2d 6844 . . 3 (𝜑 → (Σ^‘(𝑀 ∘ (𝑘𝐴𝐵))) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
6850, 67eqtrd 2764 . 2 (𝜑 → (Σ^‘(𝑀 ↾ ran (𝑘𝐴𝐵))) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
697, 18, 683eqtrd 2768 1 (𝜑 → (𝑀 𝑘𝐴 𝐵) = (Σ^‘(𝑘𝐴 ↦ (𝑀𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2925  wral 3044  {crab 3402  Vcvv 3444  csb 3859  c0 4292   cuni 4867   ciun 4951  Disj wdisj 5069   class class class wbr 5102  cmpt 5183  dom cdm 5631  ran crn 5632  cres 5633  ccom 5635  Rel wrel 5636  cfv 6499  (class class class)co 7369  ωcom 7822  cdom 8893  0cc0 11044  +∞cpnf 11181  [,]cicc 13285  Σ^csumge0 46333  Meascmea 46420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-xadd 13049  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-sumge0 46334  df-mea 46421
This theorem is referenced by:  meaiunlelem  46439  meaiuninclem  46451  vonct  46664
  Copyright terms: Public domain W3C validator