MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioovol Structured version   Visualization version   GIF version

Theorem uniioovol 25614
Description: A disjoint union of open intervals has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 25589.) Lemma 565Ca of [Fremlin5] p. 213. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniioovol (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniioovol
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 13487 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 uniioombl.1 . . . . . . 7 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 inss2 4238 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
4 rexpssxrxp 11306 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
53, 4sstri 3993 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
6 fss 6752 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
72, 5, 6sylancl 586 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
8 fco 6760 . . . . . 6 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
91, 7, 8sylancr 587 . . . . 5 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
109frnd 6744 . . . 4 (𝜑 → ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ)
11 sspwuni 5100 . . . 4 (ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ ↔ ran ((,) ∘ 𝐹) ⊆ ℝ)
1210, 11sylib 218 . . 3 (𝜑 ran ((,) ∘ 𝐹) ⊆ ℝ)
13 ovolcl 25513 . . 3 ( ran ((,) ∘ 𝐹) ⊆ ℝ → (vol*‘ ran ((,) ∘ 𝐹)) ∈ ℝ*)
1412, 13syl 17 . 2 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) ∈ ℝ*)
15 eqid 2737 . . . . . 6 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
16 uniioombl.3 . . . . . 6 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
1715, 16ovolsf 25507 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
18 frn 6743 . . . . 5 (𝑆:ℕ⟶(0[,)+∞) → ran 𝑆 ⊆ (0[,)+∞))
192, 17, 183syl 18 . . . 4 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
20 icossxr 13472 . . . 4 (0[,)+∞) ⊆ ℝ*
2119, 20sstrdi 3996 . . 3 (𝜑 → ran 𝑆 ⊆ ℝ*)
22 supxrcl 13357 . . 3 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
2321, 22syl 17 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
24 ssid 4006 . . 3 ran ((,) ∘ 𝐹) ⊆ ran ((,) ∘ 𝐹)
2516ovollb 25514 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐹) ⊆ ran ((,) ∘ 𝐹)) → (vol*‘ ran ((,) ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ))
262, 24, 25sylancl 586 . 2 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ))
2716fveq1i 6907 . . . . . . . 8 (𝑆𝑛) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑛)
282adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
29 elfznn 13593 . . . . . . . . . . 11 (𝑥 ∈ (1...𝑛) → 𝑥 ∈ ℕ)
3015ovolfsval 25505 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑥) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
3128, 29, 30syl2an 596 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝐹)‘𝑥) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
32 fvco3 7008 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
3328, 29, 32syl2an 596 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
34 ffvelcdm 7101 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ( ≤ ∩ (ℝ × ℝ)))
3528, 29, 34syl2an 596 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (𝐹𝑥) ∈ ( ≤ ∩ (ℝ × ℝ)))
3635elin2d 4205 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (𝐹𝑥) ∈ (ℝ × ℝ))
37 1st2nd2 8053 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) ∈ (ℝ × ℝ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
3836, 37syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
3938fveq2d 6910 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((,)‘(𝐹𝑥)) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
40 df-ov 7434 . . . . . . . . . . . . . . 15 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
4139, 40eqtr4di 2795 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((,)‘(𝐹𝑥)) = ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))))
4233, 41eqtrd 2777 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))))
43 ioombl 25600 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∈ dom vol
4442, 43eqeltrdi 2849 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((,) ∘ 𝐹)‘𝑥) ∈ dom vol)
45 mblvol 25565 . . . . . . . . . . . 12 ((((,) ∘ 𝐹)‘𝑥) ∈ dom vol → (vol‘(((,) ∘ 𝐹)‘𝑥)) = (vol*‘(((,) ∘ 𝐹)‘𝑥)))
4644, 45syl 17 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol‘(((,) ∘ 𝐹)‘𝑥)) = (vol*‘(((,) ∘ 𝐹)‘𝑥)))
4742fveq2d 6910 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol*‘(((,) ∘ 𝐹)‘𝑥)) = (vol*‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))))
48 ovolfcl 25501 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
4928, 29, 48syl2an 596 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
50 ovolioo 25603 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → (vol*‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
5149, 50syl 17 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol*‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
5246, 47, 513eqtrd 2781 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol‘(((,) ∘ 𝐹)‘𝑥)) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
5331, 52eqtr4d 2780 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝐹)‘𝑥) = (vol‘(((,) ∘ 𝐹)‘𝑥)))
54 simpr 484 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
55 nnuz 12921 . . . . . . . . . 10 ℕ = (ℤ‘1)
5654, 55eleqtrdi 2851 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
5749simp2d 1144 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (2nd ‘(𝐹𝑥)) ∈ ℝ)
5849simp1d 1143 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (1st ‘(𝐹𝑥)) ∈ ℝ)
5957, 58resubcld 11691 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))) ∈ ℝ)
6052, 59eqeltrd 2841 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℝ)
6160recnd 11289 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℂ)
6253, 56, 61fsumser 15766 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → Σ𝑥 ∈ (1...𝑛)(vol‘(((,) ∘ 𝐹)‘𝑥)) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑛))
6327, 62eqtr4id 2796 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑆𝑛) = Σ𝑥 ∈ (1...𝑛)(vol‘(((,) ∘ 𝐹)‘𝑥)))
64 fzfid 14014 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
6544, 60jca 511 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((((,) ∘ 𝐹)‘𝑥) ∈ dom vol ∧ (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℝ))
6665ralrimiva 3146 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∀𝑥 ∈ (1...𝑛)((((,) ∘ 𝐹)‘𝑥) ∈ dom vol ∧ (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℝ))
67 fz1ssnn 13595 . . . . . . . . 9 (1...𝑛) ⊆ ℕ
68 uniioombl.2 . . . . . . . . . . 11 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
692, 32sylan 580 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
7069disjeq2dv 5115 . . . . . . . . . . 11 (𝜑 → (Disj 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ↔ Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥))))
7168, 70mpbird 257 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥))
7271adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → Disj 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥))
73 disjss1 5116 . . . . . . . . 9 ((1...𝑛) ⊆ ℕ → (Disj 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) → Disj 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)))
7467, 72, 73mpsyl 68 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → Disj 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥))
75 volfiniun 25582 . . . . . . . 8 (((1...𝑛) ∈ Fin ∧ ∀𝑥 ∈ (1...𝑛)((((,) ∘ 𝐹)‘𝑥) ∈ dom vol ∧ (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℝ) ∧ Disj 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) → (vol‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) = Σ𝑥 ∈ (1...𝑛)(vol‘(((,) ∘ 𝐹)‘𝑥)))
7664, 66, 74, 75syl3anc 1373 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (vol‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) = Σ𝑥 ∈ (1...𝑛)(vol‘(((,) ∘ 𝐹)‘𝑥)))
7744ralrimiva 3146 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∀𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol)
78 finiunmbl 25579 . . . . . . . . 9 (((1...𝑛) ∈ Fin ∧ ∀𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol) → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol)
7964, 77, 78syl2anc 584 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol)
80 mblvol 25565 . . . . . . . 8 ( 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol → (vol‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) = (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)))
8179, 80syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (vol‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) = (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)))
8263, 76, 813eqtr2d 2783 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑆𝑛) = (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)))
83 iunss1 5006 . . . . . . . . 9 ((1...𝑛) ⊆ ℕ → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ⊆ 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥))
8467, 83mp1i 13 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ⊆ 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥))
859adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
86 ffn 6736 . . . . . . . . 9 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → ((,) ∘ 𝐹) Fn ℕ)
87 fniunfv 7267 . . . . . . . . 9 (((,) ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
8885, 86, 873syl 18 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
8984, 88sseqtrd 4020 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ⊆ ran ((,) ∘ 𝐹))
9012adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ran ((,) ∘ 𝐹) ⊆ ℝ)
91 ovolss 25520 . . . . . . 7 (( 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ⊆ ran ((,) ∘ 𝐹) ∧ ran ((,) ∘ 𝐹) ⊆ ℝ) → (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
9289, 90, 91syl2anc 584 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
9382, 92eqbrtrd 5165 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
9493ralrimiva 3146 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
952, 17syl 17 . . . . 5 (𝜑𝑆:ℕ⟶(0[,)+∞))
96 ffn 6736 . . . . 5 (𝑆:ℕ⟶(0[,)+∞) → 𝑆 Fn ℕ)
97 breq1 5146 . . . . . 6 (𝑦 = (𝑆𝑛) → (𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹))))
9897ralrn 7108 . . . . 5 (𝑆 Fn ℕ → (∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ ∀𝑛 ∈ ℕ (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹))))
9995, 96, 983syl 18 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ ∀𝑛 ∈ ℕ (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹))))
10094, 99mpbird 257 . . 3 (𝜑 → ∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹)))
101 supxrleub 13368 . . . 4 ((ran 𝑆 ⊆ ℝ* ∧ (vol*‘ ran ((,) ∘ 𝐹)) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹))))
10221, 14, 101syl2anc 584 . . 3 (𝜑 → (sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹))))
103100, 102mpbird 257 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
10414, 23, 26, 103xrletrid 13197 1 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  cin 3950  wss 3951  𝒫 cpw 4600  cop 4632   cuni 4907   ciun 4991  Disj wdisj 5110   class class class wbr 5143   × cxp 5683  dom cdm 5685  ran crn 5686  ccom 5689   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  Fincfn 8985  supcsup 9480  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  cmin 11492  cn 12266  cuz 12878  (,)cioo 13387  [,)cico 13389  ...cfz 13547  seqcseq 14042  abscabs 15273  Σcsu 15722  vol*covol 25497  volcvol 25498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-rest 17467  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cmp 23395  df-ovol 25499  df-vol 25500
This theorem is referenced by:  uniiccvol  25615  uniioombllem2  25618
  Copyright terms: Public domain W3C validator