MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioovol Structured version   Visualization version   GIF version

Theorem uniioovol 24182
Description: A disjoint union of open intervals has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 24157.) Lemma 565Ca of [Fremlin5] p. 213. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
uniioombl.2 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
uniioombl.3 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
Assertion
Ref Expression
uniioovol (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem uniioovol
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 12838 . . . . . 6 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 uniioombl.1 . . . . . . 7 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 inss2 4208 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
4 rexpssxrxp 10688 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
53, 4sstri 3978 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
6 fss 6529 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
72, 5, 6sylancl 588 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
8 fco 6533 . . . . . 6 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
91, 7, 8sylancr 589 . . . . 5 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
109frnd 6523 . . . 4 (𝜑 → ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ)
11 sspwuni 5024 . . . 4 (ran ((,) ∘ 𝐹) ⊆ 𝒫 ℝ ↔ ran ((,) ∘ 𝐹) ⊆ ℝ)
1210, 11sylib 220 . . 3 (𝜑 ran ((,) ∘ 𝐹) ⊆ ℝ)
13 ovolcl 24081 . . 3 ( ran ((,) ∘ 𝐹) ⊆ ℝ → (vol*‘ ran ((,) ∘ 𝐹)) ∈ ℝ*)
1412, 13syl 17 . 2 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) ∈ ℝ*)
15 eqid 2823 . . . . . 6 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
16 uniioombl.3 . . . . . 6 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
1715, 16ovolsf 24075 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
18 frn 6522 . . . . 5 (𝑆:ℕ⟶(0[,)+∞) → ran 𝑆 ⊆ (0[,)+∞))
192, 17, 183syl 18 . . . 4 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
20 icossxr 12824 . . . 4 (0[,)+∞) ⊆ ℝ*
2119, 20sstrdi 3981 . . 3 (𝜑 → ran 𝑆 ⊆ ℝ*)
22 supxrcl 12711 . . 3 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
2321, 22syl 17 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
24 ssid 3991 . . 3 ran ((,) ∘ 𝐹) ⊆ ran ((,) ∘ 𝐹)
2516ovollb 24082 . . 3 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝐹) ⊆ ran ((,) ∘ 𝐹)) → (vol*‘ ran ((,) ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ))
262, 24, 25sylancl 588 . 2 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) ≤ sup(ran 𝑆, ℝ*, < ))
272adantr 483 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
28 elfznn 12939 . . . . . . . . . . 11 (𝑥 ∈ (1...𝑛) → 𝑥 ∈ ℕ)
2915ovolfsval 24073 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((abs ∘ − ) ∘ 𝐹)‘𝑥) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
3027, 28, 29syl2an 597 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝐹)‘𝑥) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
31 fvco3 6762 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
3227, 28, 31syl2an 597 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
33 ffvelrn 6851 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ( ≤ ∩ (ℝ × ℝ)))
3427, 28, 33syl2an 597 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (𝐹𝑥) ∈ ( ≤ ∩ (ℝ × ℝ)))
3534elin2d 4178 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (𝐹𝑥) ∈ (ℝ × ℝ))
36 1st2nd2 7730 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) ∈ (ℝ × ℝ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
3735, 36syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
3837fveq2d 6676 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((,)‘(𝐹𝑥)) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
39 df-ov 7161 . . . . . . . . . . . . . . 15 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
4038, 39syl6eqr 2876 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((,)‘(𝐹𝑥)) = ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))))
4132, 40eqtrd 2858 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))))
42 ioombl 24168 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∈ dom vol
4341, 42eqeltrdi 2923 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((,) ∘ 𝐹)‘𝑥) ∈ dom vol)
44 mblvol 24133 . . . . . . . . . . . 12 ((((,) ∘ 𝐹)‘𝑥) ∈ dom vol → (vol‘(((,) ∘ 𝐹)‘𝑥)) = (vol*‘(((,) ∘ 𝐹)‘𝑥)))
4543, 44syl 17 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol‘(((,) ∘ 𝐹)‘𝑥)) = (vol*‘(((,) ∘ 𝐹)‘𝑥)))
4641fveq2d 6676 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol*‘(((,) ∘ 𝐹)‘𝑥)) = (vol*‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))))
47 ovolfcl 24069 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
4827, 28, 47syl2an 597 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
49 ovolioo 24171 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → (vol*‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
5048, 49syl 17 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol*‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
5145, 46, 503eqtrd 2862 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol‘(((,) ∘ 𝐹)‘𝑥)) = ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))))
5230, 51eqtr4d 2861 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝐹)‘𝑥) = (vol‘(((,) ∘ 𝐹)‘𝑥)))
53 simpr 487 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
54 nnuz 12284 . . . . . . . . . 10 ℕ = (ℤ‘1)
5553, 54eleqtrdi 2925 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
5648simp2d 1139 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (2nd ‘(𝐹𝑥)) ∈ ℝ)
5748simp1d 1138 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (1st ‘(𝐹𝑥)) ∈ ℝ)
5856, 57resubcld 11070 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((2nd ‘(𝐹𝑥)) − (1st ‘(𝐹𝑥))) ∈ ℝ)
5951, 58eqeltrd 2915 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℝ)
6059recnd 10671 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℂ)
6152, 55, 60fsumser 15089 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → Σ𝑥 ∈ (1...𝑛)(vol‘(((,) ∘ 𝐹)‘𝑥)) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑛))
6216fveq1i 6673 . . . . . . . 8 (𝑆𝑛) = (seq1( + , ((abs ∘ − ) ∘ 𝐹))‘𝑛)
6361, 62syl6reqr 2877 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑆𝑛) = Σ𝑥 ∈ (1...𝑛)(vol‘(((,) ∘ 𝐹)‘𝑥)))
64 fzfid 13344 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
6543, 59jca 514 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑛)) → ((((,) ∘ 𝐹)‘𝑥) ∈ dom vol ∧ (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℝ))
6665ralrimiva 3184 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∀𝑥 ∈ (1...𝑛)((((,) ∘ 𝐹)‘𝑥) ∈ dom vol ∧ (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℝ))
67 fz1ssnn 12941 . . . . . . . . 9 (1...𝑛) ⊆ ℕ
68 uniioombl.2 . . . . . . . . . . 11 (𝜑Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥)))
692, 31sylan 582 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
7069disjeq2dv 5038 . . . . . . . . . . 11 (𝜑 → (Disj 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ↔ Disj 𝑥 ∈ ℕ ((,)‘(𝐹𝑥))))
7168, 70mpbird 259 . . . . . . . . . 10 (𝜑Disj 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥))
7271adantr 483 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → Disj 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥))
73 disjss1 5039 . . . . . . . . 9 ((1...𝑛) ⊆ ℕ → (Disj 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) → Disj 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)))
7467, 72, 73mpsyl 68 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → Disj 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥))
75 volfiniun 24150 . . . . . . . 8 (((1...𝑛) ∈ Fin ∧ ∀𝑥 ∈ (1...𝑛)((((,) ∘ 𝐹)‘𝑥) ∈ dom vol ∧ (vol‘(((,) ∘ 𝐹)‘𝑥)) ∈ ℝ) ∧ Disj 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) → (vol‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) = Σ𝑥 ∈ (1...𝑛)(vol‘(((,) ∘ 𝐹)‘𝑥)))
7664, 66, 74, 75syl3anc 1367 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (vol‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) = Σ𝑥 ∈ (1...𝑛)(vol‘(((,) ∘ 𝐹)‘𝑥)))
7743ralrimiva 3184 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ∀𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol)
78 finiunmbl 24147 . . . . . . . . 9 (((1...𝑛) ∈ Fin ∧ ∀𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol) → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol)
7964, 77, 78syl2anc 586 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol)
80 mblvol 24133 . . . . . . . 8 ( 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ∈ dom vol → (vol‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) = (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)))
8179, 80syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (vol‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) = (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)))
8263, 76, 813eqtr2d 2864 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑆𝑛) = (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)))
83 iunss1 4935 . . . . . . . . 9 ((1...𝑛) ⊆ ℕ → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ⊆ 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥))
8467, 83mp1i 13 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ⊆ 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥))
859adantr 483 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
86 ffn 6516 . . . . . . . . 9 (((,) ∘ 𝐹):ℕ⟶𝒫 ℝ → ((,) ∘ 𝐹) Fn ℕ)
87 fniunfv 7008 . . . . . . . . 9 (((,) ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
8885, 86, 873syl 18 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
8984, 88sseqtrd 4009 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ⊆ ran ((,) ∘ 𝐹))
9012adantr 483 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ran ((,) ∘ 𝐹) ⊆ ℝ)
91 ovolss 24088 . . . . . . 7 (( 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥) ⊆ ran ((,) ∘ 𝐹) ∧ ran ((,) ∘ 𝐹) ⊆ ℝ) → (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
9289, 90, 91syl2anc 586 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol*‘ 𝑥 ∈ (1...𝑛)(((,) ∘ 𝐹)‘𝑥)) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
9382, 92eqbrtrd 5090 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
9493ralrimiva 3184 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
952, 17syl 17 . . . . 5 (𝜑𝑆:ℕ⟶(0[,)+∞))
96 ffn 6516 . . . . 5 (𝑆:ℕ⟶(0[,)+∞) → 𝑆 Fn ℕ)
97 breq1 5071 . . . . . 6 (𝑦 = (𝑆𝑛) → (𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹))))
9897ralrn 6856 . . . . 5 (𝑆 Fn ℕ → (∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ ∀𝑛 ∈ ℕ (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹))))
9995, 96, 983syl 18 . . . 4 (𝜑 → (∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ ∀𝑛 ∈ ℕ (𝑆𝑛) ≤ (vol*‘ ran ((,) ∘ 𝐹))))
10094, 99mpbird 259 . . 3 (𝜑 → ∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹)))
101 supxrleub 12722 . . . 4 ((ran 𝑆 ⊆ ℝ* ∧ (vol*‘ ran ((,) ∘ 𝐹)) ∈ ℝ*) → (sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹))))
10221, 14, 101syl2anc 586 . . 3 (𝜑 → (sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ((,) ∘ 𝐹)) ↔ ∀𝑦 ∈ ran 𝑆 𝑦 ≤ (vol*‘ ran ((,) ∘ 𝐹))))
103100, 102mpbird 259 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ (vol*‘ ran ((,) ∘ 𝐹)))
10414, 23, 26, 103xrletrid 12551 1 (𝜑 → (vol*‘ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cin 3937  wss 3938  𝒫 cpw 4541  cop 4575   cuni 4840   ciun 4921  Disj wdisj 5033   class class class wbr 5068   × cxp 5555  dom cdm 5557  ran crn 5558  ccom 5561   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  Fincfn 8511  supcsup 8906  cr 10538  0cc0 10539  1c1 10540   + caddc 10542  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  cmin 10872  cn 11640  cuz 12246  (,)cioo 12741  [,)cico 12743  ...cfz 12895  seqcseq 13372  abscabs 14595  Σcsu 15044  vol*covol 24065  volcvol 24066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-rest 16698  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cmp 21997  df-ovol 24067  df-vol 24068
This theorem is referenced by:  uniiccvol  24183  uniioombllem2  24186
  Copyright terms: Public domain W3C validator