Step | Hyp | Ref
| Expression |
1 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑘 𝐴 ∈ dom vol |
2 | | nfcsb1v 3857 |
. . . . . 6
⊢
Ⅎ𝑛⦋𝑘 / 𝑛⦌𝐴 |
3 | 2 | nfel1 2923 |
. . . . 5
⊢
Ⅎ𝑛⦋𝑘 / 𝑛⦌𝐴 ∈ dom vol |
4 | | csbeq1a 3846 |
. . . . . 6
⊢ (𝑛 = 𝑘 → 𝐴 = ⦋𝑘 / 𝑛⦌𝐴) |
5 | 4 | eleq1d 2823 |
. . . . 5
⊢ (𝑛 = 𝑘 → (𝐴 ∈ dom vol ↔ ⦋𝑘 / 𝑛⦌𝐴 ∈ dom vol)) |
6 | 1, 3, 5 | cbvralw 3373 |
. . . 4
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
↔ ∀𝑘 ∈
ℕ ⦋𝑘 /
𝑛⦌𝐴 ∈ dom
vol) |
7 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑘𝐴 |
8 | 7, 2, 4 | cbviun 4966 |
. . . . . 6
⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑘 ∈ ℕ
⦋𝑘 / 𝑛⦌𝐴 |
9 | | csbeq1 3835 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → ⦋𝑘 / 𝑛⦌𝐴 = ⦋𝑚 / 𝑛⦌𝐴) |
10 | 9 | iundisj 24712 |
. . . . . 6
⊢ ∪ 𝑘 ∈ ℕ ⦋𝑘 / 𝑛⦌𝐴 = ∪ 𝑘 ∈ ℕ
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) |
11 | 8, 10 | eqtri 2766 |
. . . . 5
⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑘 ∈ ℕ
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) |
12 | | difexg 5251 |
. . . . . . 7
⊢
(⦋𝑘 /
𝑛⦌𝐴 ∈ dom vol →
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) ∈ V) |
13 | 12 | ralimi 3087 |
. . . . . 6
⊢
(∀𝑘 ∈
ℕ ⦋𝑘 /
𝑛⦌𝐴 ∈ dom vol →
∀𝑘 ∈ ℕ
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) ∈ V) |
14 | | dfiun2g 4960 |
. . . . . 6
⊢
(∀𝑘 ∈
ℕ (⦋𝑘 /
𝑛⦌𝐴 ∖ ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) ∈ V → ∪ 𝑘 ∈ ℕ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) = ∪ {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)}) |
15 | 13, 14 | syl 17 |
. . . . 5
⊢
(∀𝑘 ∈
ℕ ⦋𝑘 /
𝑛⦌𝐴 ∈ dom vol → ∪ 𝑘 ∈ ℕ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) = ∪ {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)}) |
16 | 11, 15 | eqtrid 2790 |
. . . 4
⊢
(∀𝑘 ∈
ℕ ⦋𝑘 /
𝑛⦌𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 = ∪ {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)}) |
17 | 6, 16 | sylbi 216 |
. . 3
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)}) |
18 | | eqid 2738 |
. . . . 5
⊢ (𝑘 ∈ ℕ ↦
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)) = (𝑘 ∈ ℕ ↦ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)) |
19 | 18 | rnmpt 5864 |
. . . 4
⊢ ran
(𝑘 ∈ ℕ ↦
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)} |
20 | 19 | unieqi 4852 |
. . 3
⊢ ∪ ran (𝑘 ∈ ℕ ↦ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)) = ∪ {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)} |
21 | 17, 20 | eqtr4di 2796 |
. 2
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ ran (𝑘 ∈ ℕ ↦
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴))) |
22 | 3, 5 | rspc 3549 |
. . . . . 6
⊢ (𝑘 ∈ ℕ →
(∀𝑛 ∈ ℕ
𝐴 ∈ dom vol →
⦋𝑘 / 𝑛⦌𝐴 ∈ dom vol)) |
23 | 22 | impcom 408 |
. . . . 5
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑘 ∈ ℕ)
→ ⦋𝑘 /
𝑛⦌𝐴 ∈ dom
vol) |
24 | | fzofi 13694 |
. . . . . 6
⊢
(1..^𝑘) ∈
Fin |
25 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑚 𝐴 ∈ dom vol |
26 | | nfcsb1v 3857 |
. . . . . . . . . 10
⊢
Ⅎ𝑛⦋𝑚 / 𝑛⦌𝐴 |
27 | 26 | nfel1 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑛⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol |
28 | | csbeq1a 3846 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑛⦌𝐴) |
29 | 28 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝐴 ∈ dom vol ↔ ⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol)) |
30 | 25, 27, 29 | cbvralw 3373 |
. . . . . . . 8
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
↔ ∀𝑚 ∈
ℕ ⦋𝑚 /
𝑛⦌𝐴 ∈ dom
vol) |
31 | | fzossnn 13436 |
. . . . . . . . 9
⊢
(1..^𝑘) ⊆
ℕ |
32 | | ssralv 3987 |
. . . . . . . . 9
⊢
((1..^𝑘) ⊆
ℕ → (∀𝑚
∈ ℕ ⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol → ∀𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol)) |
33 | 31, 32 | ax-mp 5 |
. . . . . . . 8
⊢
(∀𝑚 ∈
ℕ ⦋𝑚 /
𝑛⦌𝐴 ∈ dom vol →
∀𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol) |
34 | 30, 33 | sylbi 216 |
. . . . . . 7
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ ∀𝑚 ∈
(1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol) |
35 | 34 | adantr 481 |
. . . . . 6
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑘 ∈ ℕ)
→ ∀𝑚 ∈
(1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol) |
36 | | finiunmbl 24708 |
. . . . . 6
⊢
(((1..^𝑘) ∈ Fin
∧ ∀𝑚 ∈
(1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol) → ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol) |
37 | 24, 35, 36 | sylancr 587 |
. . . . 5
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑘 ∈ ℕ)
→ ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol) |
38 | | difmbl 24707 |
. . . . 5
⊢
((⦋𝑘 /
𝑛⦌𝐴 ∈ dom vol ∧ ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 ∈ dom vol) →
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) ∈ dom vol) |
39 | 23, 37, 38 | syl2anc 584 |
. . . 4
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑘 ∈ ℕ)
→ (⦋𝑘 /
𝑛⦌𝐴 ∖ ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) ∈ dom vol) |
40 | 39 | fmpttd 6989 |
. . 3
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ (𝑘 ∈ ℕ
↦ (⦋𝑘 /
𝑛⦌𝐴 ∖ ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)):ℕ⟶dom vol) |
41 | | csbeq1 3835 |
. . . . 5
⊢ (𝑖 = 𝑚 → ⦋𝑖 / 𝑛⦌𝐴 = ⦋𝑚 / 𝑛⦌𝐴) |
42 | 41 | iundisj2 24713 |
. . . 4
⊢
Disj 𝑖 ∈
ℕ (⦋𝑖 /
𝑛⦌𝐴 ∖ ∪ 𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴) |
43 | | csbeq1 3835 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → ⦋𝑘 / 𝑛⦌𝐴 = ⦋𝑖 / 𝑛⦌𝐴) |
44 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → (1..^𝑘) = (1..^𝑖)) |
45 | 44 | iuneq1d 4951 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴 = ∪ 𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴) |
46 | 43, 45 | difeq12d 4058 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴) = (⦋𝑖 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴)) |
47 | | simpr 485 |
. . . . . 6
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑖 ∈ ℕ)
→ 𝑖 ∈
ℕ) |
48 | | nfcsb1v 3857 |
. . . . . . . . . 10
⊢
Ⅎ𝑛⦋𝑖 / 𝑛⦌𝐴 |
49 | 48 | nfel1 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑛⦋𝑖 / 𝑛⦌𝐴 ∈ dom vol |
50 | | csbeq1a 3846 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑖 → 𝐴 = ⦋𝑖 / 𝑛⦌𝐴) |
51 | 50 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑛 = 𝑖 → (𝐴 ∈ dom vol ↔ ⦋𝑖 / 𝑛⦌𝐴 ∈ dom vol)) |
52 | 49, 51 | rspc 3549 |
. . . . . . . 8
⊢ (𝑖 ∈ ℕ →
(∀𝑛 ∈ ℕ
𝐴 ∈ dom vol →
⦋𝑖 / 𝑛⦌𝐴 ∈ dom vol)) |
53 | 52 | impcom 408 |
. . . . . . 7
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑖 ∈ ℕ)
→ ⦋𝑖 /
𝑛⦌𝐴 ∈ dom
vol) |
54 | 53 | difexd 5253 |
. . . . . 6
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑖 ∈ ℕ)
→ (⦋𝑖 /
𝑛⦌𝐴 ∖ ∪ 𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴) ∈ V) |
55 | 18, 46, 47, 54 | fvmptd3 6898 |
. . . . 5
⊢
((∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
∧ 𝑖 ∈ ℕ)
→ ((𝑘 ∈ ℕ
↦ (⦋𝑘 /
𝑛⦌𝐴 ∖ ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴))‘𝑖) = (⦋𝑖 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴)) |
56 | 55 | disjeq2dv 5044 |
. . . 4
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ (Disj 𝑖
∈ ℕ ((𝑘 ∈
ℕ ↦ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴))‘𝑖) ↔ Disj 𝑖 ∈ ℕ (⦋𝑖 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑖)⦋𝑚 / 𝑛⦌𝐴))) |
57 | 42, 56 | mpbiri 257 |
. . 3
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ Disj 𝑖 ∈
ℕ ((𝑘 ∈ ℕ
↦ (⦋𝑘 /
𝑛⦌𝐴 ∖ ∪ 𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴))‘𝑖)) |
58 | | eqid 2738 |
. . 3
⊢ (𝑦 ∈ ℕ ↦
(vol*‘(𝑥 ∩
((𝑘 ∈ ℕ ↦
(⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴))‘𝑦)))) = (𝑦 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑘 ∈ ℕ ↦ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴))‘𝑦)))) |
59 | 40, 57, 58 | voliunlem2 24715 |
. 2
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ ∪ ran (𝑘 ∈ ℕ ↦ (⦋𝑘 / 𝑛⦌𝐴 ∖ ∪
𝑚 ∈ (1..^𝑘)⦋𝑚 / 𝑛⦌𝐴)) ∈ dom vol) |
60 | 21, 59 | eqeltrd 2839 |
1
⊢
(∀𝑛 ∈
ℕ 𝐴 ∈ dom vol
→ ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol) |