MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmbl Structured version   Visualization version   GIF version

Theorem iunmbl 25061
Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.)
Assertion
Ref Expression
iunmbl (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)

Proof of Theorem iunmbl
Dummy variables 𝑖 𝑘 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . . 5 𝑘 𝐴 ∈ dom vol
2 nfcsb1v 3917 . . . . . 6 𝑛𝑘 / 𝑛𝐴
32nfel1 2919 . . . . 5 𝑛𝑘 / 𝑛𝐴 ∈ dom vol
4 csbeq1a 3906 . . . . . 6 (𝑛 = 𝑘𝐴 = 𝑘 / 𝑛𝐴)
54eleq1d 2818 . . . . 5 (𝑛 = 𝑘 → (𝐴 ∈ dom vol ↔ 𝑘 / 𝑛𝐴 ∈ dom vol))
61, 3, 5cbvralw 3303 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ ∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol)
7 nfcv 2903 . . . . . . 7 𝑘𝐴
87, 2, 4cbviun 5038 . . . . . 6 𝑛 ∈ ℕ 𝐴 = 𝑘 ∈ ℕ 𝑘 / 𝑛𝐴
9 csbeq1 3895 . . . . . . 7 (𝑘 = 𝑚𝑘 / 𝑛𝐴 = 𝑚 / 𝑛𝐴)
109iundisj 25056 . . . . . 6 𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 = 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)
118, 10eqtri 2760 . . . . 5 𝑛 ∈ ℕ 𝐴 = 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)
12 difexg 5326 . . . . . . 7 (𝑘 / 𝑛𝐴 ∈ dom vol → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ V)
1312ralimi 3083 . . . . . 6 (∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol → ∀𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ V)
14 dfiun2g 5032 . . . . . 6 (∀𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ V → 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
1513, 14syl 17 . . . . 5 (∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol → 𝑘 ∈ ℕ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
1611, 15eqtrid 2784 . . . 4 (∀𝑘 ∈ ℕ 𝑘 / 𝑛𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
176, 16sylbi 216 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)})
18 eqid 2732 . . . . 5 (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) = (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))
1918rnmpt 5952 . . . 4 ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)}
2019unieqi 4920 . . 3 ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) = {𝑦 ∣ ∃𝑘 ∈ ℕ 𝑦 = (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)}
2117, 20eqtr4di 2790 . 2 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 = ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)))
223, 5rspc 3600 . . . . . 6 (𝑘 ∈ ℕ → (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑘 / 𝑛𝐴 ∈ dom vol))
2322impcom 408 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑘 / 𝑛𝐴 ∈ dom vol)
24 fzofi 13935 . . . . . 6 (1..^𝑘) ∈ Fin
25 nfv 1917 . . . . . . . . 9 𝑚 𝐴 ∈ dom vol
26 nfcsb1v 3917 . . . . . . . . . 10 𝑛𝑚 / 𝑛𝐴
2726nfel1 2919 . . . . . . . . 9 𝑛𝑚 / 𝑛𝐴 ∈ dom vol
28 csbeq1a 3906 . . . . . . . . . 10 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
2928eleq1d 2818 . . . . . . . . 9 (𝑛 = 𝑚 → (𝐴 ∈ dom vol ↔ 𝑚 / 𝑛𝐴 ∈ dom vol))
3025, 27, 29cbvralw 3303 . . . . . . . 8 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ∈ dom vol)
31 fzossnn 13677 . . . . . . . . 9 (1..^𝑘) ⊆ ℕ
32 ssralv 4049 . . . . . . . . 9 ((1..^𝑘) ⊆ ℕ → (∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ∈ dom vol → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol))
3331, 32ax-mp 5 . . . . . . . 8 (∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ∈ dom vol → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
3430, 33sylbi 216 . . . . . . 7 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
3534adantr 481 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
36 finiunmbl 25052 . . . . . 6 (((1..^𝑘) ∈ Fin ∧ ∀𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol) → 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
3724, 35, 36sylancr 587 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol)
38 difmbl 25051 . . . . 5 ((𝑘 / 𝑛𝐴 ∈ dom vol ∧ 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 ∈ dom vol) → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ dom vol)
3923, 37, 38syl2anc 584 . . . 4 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑘 ∈ ℕ) → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) ∈ dom vol)
4039fmpttd 7111 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)):ℕ⟶dom vol)
41 csbeq1 3895 . . . . 5 (𝑖 = 𝑚𝑖 / 𝑛𝐴 = 𝑚 / 𝑛𝐴)
4241iundisj2 25057 . . . 4 Disj 𝑖 ∈ ℕ (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴)
43 csbeq1 3895 . . . . . . 7 (𝑘 = 𝑖𝑘 / 𝑛𝐴 = 𝑖 / 𝑛𝐴)
44 oveq2 7413 . . . . . . . 8 (𝑘 = 𝑖 → (1..^𝑘) = (1..^𝑖))
4544iuneq1d 5023 . . . . . . 7 (𝑘 = 𝑖 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴 = 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴)
4643, 45difeq12d 4122 . . . . . 6 (𝑘 = 𝑖 → (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴) = (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴))
47 simpr 485 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
48 nfcsb1v 3917 . . . . . . . . . 10 𝑛𝑖 / 𝑛𝐴
4948nfel1 2919 . . . . . . . . 9 𝑛𝑖 / 𝑛𝐴 ∈ dom vol
50 csbeq1a 3906 . . . . . . . . . 10 (𝑛 = 𝑖𝐴 = 𝑖 / 𝑛𝐴)
5150eleq1d 2818 . . . . . . . . 9 (𝑛 = 𝑖 → (𝐴 ∈ dom vol ↔ 𝑖 / 𝑛𝐴 ∈ dom vol))
5249, 51rspc 3600 . . . . . . . 8 (𝑖 ∈ ℕ → (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑖 / 𝑛𝐴 ∈ dom vol))
5352impcom 408 . . . . . . 7 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → 𝑖 / 𝑛𝐴 ∈ dom vol)
5453difexd 5328 . . . . . 6 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴) ∈ V)
5518, 46, 47, 54fvmptd3 7018 . . . . 5 ((∀𝑛 ∈ ℕ 𝐴 ∈ dom vol ∧ 𝑖 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖) = (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴))
5655disjeq2dv 5117 . . . 4 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → (Disj 𝑖 ∈ ℕ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖) ↔ Disj 𝑖 ∈ ℕ (𝑖 / 𝑛𝐴 𝑚 ∈ (1..^𝑖)𝑚 / 𝑛𝐴)))
5742, 56mpbiri 257 . . 3 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → Disj 𝑖 ∈ ℕ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑖))
58 eqid 2732 . . 3 (𝑦 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑦)))) = (𝑦 ∈ ℕ ↦ (vol*‘(𝑥 ∩ ((𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴))‘𝑦))))
5940, 57, 58voliunlem2 25059 . 2 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ran (𝑘 ∈ ℕ ↦ (𝑘 / 𝑛𝐴 𝑚 ∈ (1..^𝑘)𝑚 / 𝑛𝐴)) ∈ dom vol)
6021, 59eqeltrd 2833 1 (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → 𝑛 ∈ ℕ 𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {cab 2709  wral 3061  wrex 3070  Vcvv 3474  csb 3892  cdif 3944  cin 3946  wss 3947   cuni 4907   ciun 4996  Disj wdisj 5112  cmpt 5230  dom cdm 5675  ran crn 5676  cfv 6540  (class class class)co 7405  Fincfn 8935  1c1 11107  cn 12208  ..^cfzo 13623  vol*covol 24970  volcvol 24971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cc 10426  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xadd 13089  df-ioo 13324  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629  df-xmet 20929  df-met 20930  df-ovol 24972  df-vol 24973
This theorem is referenced by:  volsup  25064  iunmbl2  25065  vitalilem4  25119  vitalilem5  25120  ismbf3d  25162  itg2gt0  25269  voliune  33215  dmvolsal  45048  voliunsge0lem  45174
  Copyright terms: Public domain W3C validator