Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1resrcmplf1dlem Structured version   Visualization version   GIF version

Theorem f1resrcmplf1dlem 35052
Description: Lemma for f1resrcmplf1d 35053. (Contributed by BTernaryTau, 27-Sep-2023.)
Hypotheses
Ref Expression
f1resrcmplf1dlem.1 (𝜑𝐶𝐴)
f1resrcmplf1dlem.2 (𝜑𝐷𝐴)
f1resrcmplf1dlem.3 (𝜑𝐹:𝐴𝐵)
f1resrcmplf1dlem.4 (𝜑 → ((𝐹𝐶) ∩ (𝐹𝐷)) = ∅)
Assertion
Ref Expression
f1resrcmplf1dlem (𝜑 → ((𝑋𝐶𝑌𝐷) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))

Proof of Theorem f1resrcmplf1dlem
StepHypRef Expression
1 f1resrcmplf1dlem.1 . . . . 5 (𝜑𝐶𝐴)
2 f1resrcmplf1dlem.3 . . . . . . 7 (𝜑𝐹:𝐴𝐵)
32ffnd 6657 . . . . . 6 (𝜑𝐹 Fn 𝐴)
4 fnfvima 7173 . . . . . 6 ((𝐹 Fn 𝐴𝐶𝐴𝑋𝐶) → (𝐹𝑋) ∈ (𝐹𝐶))
53, 4syl3an1 1163 . . . . 5 ((𝜑𝐶𝐴𝑋𝐶) → (𝐹𝑋) ∈ (𝐹𝐶))
61, 5syl3an2 1164 . . . 4 ((𝜑𝜑𝑋𝐶) → (𝐹𝑋) ∈ (𝐹𝐶))
763anidm12 1421 . . 3 ((𝜑𝑋𝐶) → (𝐹𝑋) ∈ (𝐹𝐶))
87ex 412 . 2 (𝜑 → (𝑋𝐶 → (𝐹𝑋) ∈ (𝐹𝐶)))
9 f1resrcmplf1dlem.2 . . . . 5 (𝜑𝐷𝐴)
10 fnfvima 7173 . . . . . 6 ((𝐹 Fn 𝐴𝐷𝐴𝑌𝐷) → (𝐹𝑌) ∈ (𝐹𝐷))
113, 10syl3an1 1163 . . . . 5 ((𝜑𝐷𝐴𝑌𝐷) → (𝐹𝑌) ∈ (𝐹𝐷))
129, 11syl3an2 1164 . . . 4 ((𝜑𝜑𝑌𝐷) → (𝐹𝑌) ∈ (𝐹𝐷))
13123anidm12 1421 . . 3 ((𝜑𝑌𝐷) → (𝐹𝑌) ∈ (𝐹𝐷))
1413ex 412 . 2 (𝜑 → (𝑌𝐷 → (𝐹𝑌) ∈ (𝐹𝐷)))
15 f1resrcmplf1dlem.4 . . . . 5 (𝜑 → ((𝐹𝐶) ∩ (𝐹𝐷)) = ∅)
16 disjne 4408 . . . . 5 ((((𝐹𝐶) ∩ (𝐹𝐷)) = ∅ ∧ (𝐹𝑋) ∈ (𝐹𝐶) ∧ (𝐹𝑌) ∈ (𝐹𝐷)) → (𝐹𝑋) ≠ (𝐹𝑌))
1715, 16syl3an1 1163 . . . 4 ((𝜑 ∧ (𝐹𝑋) ∈ (𝐹𝐶) ∧ (𝐹𝑌) ∈ (𝐹𝐷)) → (𝐹𝑋) ≠ (𝐹𝑌))
18173expib 1122 . . 3 (𝜑 → (((𝐹𝑋) ∈ (𝐹𝐶) ∧ (𝐹𝑌) ∈ (𝐹𝐷)) → (𝐹𝑋) ≠ (𝐹𝑌)))
19 neneq 2931 . . . 4 ((𝐹𝑋) ≠ (𝐹𝑌) → ¬ (𝐹𝑋) = (𝐹𝑌))
2019pm2.21d 121 . . 3 ((𝐹𝑋) ≠ (𝐹𝑌) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
2118, 20syl6 35 . 2 (𝜑 → (((𝐹𝑋) ∈ (𝐹𝐶) ∧ (𝐹𝑌) ∈ (𝐹𝐷)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
228, 14, 21syl2and 608 1 (𝜑 → ((𝑋𝐶𝑌𝐷) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cin 3904  wss 3905  c0 4286  cima 5626   Fn wfn 6481  wf 6482  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494
This theorem is referenced by:  f1resrcmplf1d  35053
  Copyright terms: Public domain W3C validator