![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1resrcmplf1dlem | Structured version Visualization version GIF version |
Description: Lemma for f1resrcmplf1d 34579. (Contributed by BTernaryTau, 27-Sep-2023.) |
Ref | Expression |
---|---|
f1resrcmplf1dlem.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
f1resrcmplf1dlem.2 | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
f1resrcmplf1dlem.3 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
f1resrcmplf1dlem.4 | ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ 𝐷)) = ∅) |
Ref | Expression |
---|---|
f1resrcmplf1dlem | ⊢ (𝜑 → ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐷) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1resrcmplf1dlem.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
2 | f1resrcmplf1dlem.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | ffnd 6708 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
4 | fnfvima 7226 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) | |
5 | 3, 4 | syl3an1 1160 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ⊆ 𝐴 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) |
6 | 1, 5 | syl3an2 1161 | . . . 4 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) |
7 | 6 | 3anidm12 1416 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) |
8 | 7 | ex 412 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐶 → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶))) |
9 | f1resrcmplf1dlem.2 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
10 | fnfvima 7226 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) | |
11 | 3, 10 | syl3an1 1160 | . . . . 5 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐴 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) |
12 | 9, 11 | syl3an2 1161 | . . . 4 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) |
13 | 12 | 3anidm12 1416 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) |
14 | 13 | ex 412 | . 2 ⊢ (𝜑 → (𝑌 ∈ 𝐷 → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷))) |
15 | f1resrcmplf1dlem.4 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ 𝐷)) = ∅) | |
16 | disjne 4446 | . . . . 5 ⊢ ((((𝐹 “ 𝐶) ∩ (𝐹 “ 𝐷)) = ∅ ∧ (𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌)) | |
17 | 15, 16 | syl3an1 1160 | . . . 4 ⊢ ((𝜑 ∧ (𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌)) |
18 | 17 | 3expib 1119 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
19 | neneq 2938 | . . . 4 ⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) → ¬ (𝐹‘𝑋) = (𝐹‘𝑌)) | |
20 | 19 | pm2.21d 121 | . . 3 ⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) |
21 | 18, 20 | syl6 35 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
22 | 8, 14, 21 | syl2and 607 | 1 ⊢ (𝜑 → ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐷) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∩ cin 3939 ⊆ wss 3940 ∅c0 4314 “ cima 5669 Fn wfn 6528 ⟶wf 6529 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 |
This theorem is referenced by: f1resrcmplf1d 34579 |
Copyright terms: Public domain | W3C validator |