| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1resrcmplf1dlem | Structured version Visualization version GIF version | ||
| Description: Lemma for f1resrcmplf1d 35077. (Contributed by BTernaryTau, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| f1resrcmplf1dlem.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| f1resrcmplf1dlem.2 | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| f1resrcmplf1dlem.3 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| f1resrcmplf1dlem.4 | ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ 𝐷)) = ∅) |
| Ref | Expression |
|---|---|
| f1resrcmplf1dlem | ⊢ (𝜑 → ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐷) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1resrcmplf1dlem.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 2 | f1resrcmplf1dlem.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | ffnd 6689 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 4 | fnfvima 7207 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) | |
| 5 | 3, 4 | syl3an1 1163 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ⊆ 𝐴 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) |
| 6 | 1, 5 | syl3an2 1164 | . . . 4 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) |
| 7 | 6 | 3anidm12 1421 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) |
| 8 | 7 | ex 412 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐶 → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶))) |
| 9 | f1resrcmplf1dlem.2 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
| 10 | fnfvima 7207 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) | |
| 11 | 3, 10 | syl3an1 1163 | . . . . 5 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐴 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) |
| 12 | 9, 11 | syl3an2 1164 | . . . 4 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) |
| 13 | 12 | 3anidm12 1421 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) |
| 14 | 13 | ex 412 | . 2 ⊢ (𝜑 → (𝑌 ∈ 𝐷 → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷))) |
| 15 | f1resrcmplf1dlem.4 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ 𝐷)) = ∅) | |
| 16 | disjne 4418 | . . . . 5 ⊢ ((((𝐹 “ 𝐶) ∩ (𝐹 “ 𝐷)) = ∅ ∧ (𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌)) | |
| 17 | 15, 16 | syl3an1 1163 | . . . 4 ⊢ ((𝜑 ∧ (𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌)) |
| 18 | 17 | 3expib 1122 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
| 19 | neneq 2931 | . . . 4 ⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) → ¬ (𝐹‘𝑋) = (𝐹‘𝑌)) | |
| 20 | 19 | pm2.21d 121 | . . 3 ⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) |
| 21 | 18, 20 | syl6 35 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
| 22 | 8, 14, 21 | syl2and 608 | 1 ⊢ (𝜑 → ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐷) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 “ cima 5641 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: f1resrcmplf1d 35077 |
| Copyright terms: Public domain | W3C validator |