Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1resrcmplf1dlem | Structured version Visualization version GIF version |
Description: Lemma for f1resrcmplf1d 33059. (Contributed by BTernaryTau, 27-Sep-2023.) |
Ref | Expression |
---|---|
f1resrcmplf1dlem.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
f1resrcmplf1dlem.2 | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
f1resrcmplf1dlem.3 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
f1resrcmplf1dlem.4 | ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ 𝐷)) = ∅) |
Ref | Expression |
---|---|
f1resrcmplf1dlem | ⊢ (𝜑 → ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐷) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1resrcmplf1dlem.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
2 | f1resrcmplf1dlem.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | ffnd 6601 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
4 | fnfvima 7109 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) | |
5 | 3, 4 | syl3an1 1162 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ⊆ 𝐴 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) |
6 | 1, 5 | syl3an2 1163 | . . . 4 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) |
7 | 6 | 3anidm12 1418 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) |
8 | 7 | ex 413 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐶 → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶))) |
9 | f1resrcmplf1dlem.2 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
10 | fnfvima 7109 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) | |
11 | 3, 10 | syl3an1 1162 | . . . . 5 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐴 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) |
12 | 9, 11 | syl3an2 1163 | . . . 4 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) |
13 | 12 | 3anidm12 1418 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) |
14 | 13 | ex 413 | . 2 ⊢ (𝜑 → (𝑌 ∈ 𝐷 → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷))) |
15 | f1resrcmplf1dlem.4 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ 𝐷)) = ∅) | |
16 | disjne 4388 | . . . . 5 ⊢ ((((𝐹 “ 𝐶) ∩ (𝐹 “ 𝐷)) = ∅ ∧ (𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌)) | |
17 | 15, 16 | syl3an1 1162 | . . . 4 ⊢ ((𝜑 ∧ (𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌)) |
18 | 17 | 3expib 1121 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
19 | neneq 2949 | . . . 4 ⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) → ¬ (𝐹‘𝑋) = (𝐹‘𝑌)) | |
20 | 19 | pm2.21d 121 | . . 3 ⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) |
21 | 18, 20 | syl6 35 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
22 | 8, 14, 21 | syl2and 608 | 1 ⊢ (𝜑 → ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐷) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 “ cima 5592 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 |
This theorem is referenced by: f1resrcmplf1d 33059 |
Copyright terms: Public domain | W3C validator |