![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1resrcmplf1dlem | Structured version Visualization version GIF version |
Description: Lemma for f1resrcmplf1d 35063. (Contributed by BTernaryTau, 27-Sep-2023.) |
Ref | Expression |
---|---|
f1resrcmplf1dlem.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
f1resrcmplf1dlem.2 | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
f1resrcmplf1dlem.3 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
f1resrcmplf1dlem.4 | ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ 𝐷)) = ∅) |
Ref | Expression |
---|---|
f1resrcmplf1dlem | ⊢ (𝜑 → ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐷) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1resrcmplf1dlem.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
2 | f1resrcmplf1dlem.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | ffnd 6748 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
4 | fnfvima 7270 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) | |
5 | 3, 4 | syl3an1 1163 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ⊆ 𝐴 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) |
6 | 1, 5 | syl3an2 1164 | . . . 4 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) |
7 | 6 | 3anidm12 1419 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶)) |
8 | 7 | ex 412 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐶 → (𝐹‘𝑋) ∈ (𝐹 “ 𝐶))) |
9 | f1resrcmplf1dlem.2 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
10 | fnfvima 7270 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) | |
11 | 3, 10 | syl3an1 1163 | . . . . 5 ⊢ ((𝜑 ∧ 𝐷 ⊆ 𝐴 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) |
12 | 9, 11 | syl3an2 1164 | . . . 4 ⊢ ((𝜑 ∧ 𝜑 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) |
13 | 12 | 3anidm12 1419 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐷) → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) |
14 | 13 | ex 412 | . 2 ⊢ (𝜑 → (𝑌 ∈ 𝐷 → (𝐹‘𝑌) ∈ (𝐹 “ 𝐷))) |
15 | f1resrcmplf1dlem.4 | . . . . 5 ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ 𝐷)) = ∅) | |
16 | disjne 4478 | . . . . 5 ⊢ ((((𝐹 “ 𝐶) ∩ (𝐹 “ 𝐷)) = ∅ ∧ (𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌)) | |
17 | 15, 16 | syl3an1 1163 | . . . 4 ⊢ ((𝜑 ∧ (𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌)) |
18 | 17 | 3expib 1122 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
19 | neneq 2952 | . . . 4 ⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) → ¬ (𝐹‘𝑋) = (𝐹‘𝑌)) | |
20 | 19 | pm2.21d 121 | . . 3 ⊢ ((𝐹‘𝑋) ≠ (𝐹‘𝑌) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌)) |
21 | 18, 20 | syl6 35 | . 2 ⊢ (𝜑 → (((𝐹‘𝑋) ∈ (𝐹 “ 𝐶) ∧ (𝐹‘𝑌) ∈ (𝐹 “ 𝐷)) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
22 | 8, 14, 21 | syl2and 607 | 1 ⊢ (𝜑 → ((𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐷) → ((𝐹‘𝑋) = (𝐹‘𝑌) → 𝑋 = 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 “ cima 5703 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: f1resrcmplf1d 35063 |
Copyright terms: Public domain | W3C validator |