Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1resrcmplf1dlem Structured version   Visualization version   GIF version

Theorem f1resrcmplf1dlem 33058
Description: Lemma for f1resrcmplf1d 33059. (Contributed by BTernaryTau, 27-Sep-2023.)
Hypotheses
Ref Expression
f1resrcmplf1dlem.1 (𝜑𝐶𝐴)
f1resrcmplf1dlem.2 (𝜑𝐷𝐴)
f1resrcmplf1dlem.3 (𝜑𝐹:𝐴𝐵)
f1resrcmplf1dlem.4 (𝜑 → ((𝐹𝐶) ∩ (𝐹𝐷)) = ∅)
Assertion
Ref Expression
f1resrcmplf1dlem (𝜑 → ((𝑋𝐶𝑌𝐷) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))

Proof of Theorem f1resrcmplf1dlem
StepHypRef Expression
1 f1resrcmplf1dlem.1 . . . . 5 (𝜑𝐶𝐴)
2 f1resrcmplf1dlem.3 . . . . . . 7 (𝜑𝐹:𝐴𝐵)
32ffnd 6601 . . . . . 6 (𝜑𝐹 Fn 𝐴)
4 fnfvima 7109 . . . . . 6 ((𝐹 Fn 𝐴𝐶𝐴𝑋𝐶) → (𝐹𝑋) ∈ (𝐹𝐶))
53, 4syl3an1 1162 . . . . 5 ((𝜑𝐶𝐴𝑋𝐶) → (𝐹𝑋) ∈ (𝐹𝐶))
61, 5syl3an2 1163 . . . 4 ((𝜑𝜑𝑋𝐶) → (𝐹𝑋) ∈ (𝐹𝐶))
763anidm12 1418 . . 3 ((𝜑𝑋𝐶) → (𝐹𝑋) ∈ (𝐹𝐶))
87ex 413 . 2 (𝜑 → (𝑋𝐶 → (𝐹𝑋) ∈ (𝐹𝐶)))
9 f1resrcmplf1dlem.2 . . . . 5 (𝜑𝐷𝐴)
10 fnfvima 7109 . . . . . 6 ((𝐹 Fn 𝐴𝐷𝐴𝑌𝐷) → (𝐹𝑌) ∈ (𝐹𝐷))
113, 10syl3an1 1162 . . . . 5 ((𝜑𝐷𝐴𝑌𝐷) → (𝐹𝑌) ∈ (𝐹𝐷))
129, 11syl3an2 1163 . . . 4 ((𝜑𝜑𝑌𝐷) → (𝐹𝑌) ∈ (𝐹𝐷))
13123anidm12 1418 . . 3 ((𝜑𝑌𝐷) → (𝐹𝑌) ∈ (𝐹𝐷))
1413ex 413 . 2 (𝜑 → (𝑌𝐷 → (𝐹𝑌) ∈ (𝐹𝐷)))
15 f1resrcmplf1dlem.4 . . . . 5 (𝜑 → ((𝐹𝐶) ∩ (𝐹𝐷)) = ∅)
16 disjne 4388 . . . . 5 ((((𝐹𝐶) ∩ (𝐹𝐷)) = ∅ ∧ (𝐹𝑋) ∈ (𝐹𝐶) ∧ (𝐹𝑌) ∈ (𝐹𝐷)) → (𝐹𝑋) ≠ (𝐹𝑌))
1715, 16syl3an1 1162 . . . 4 ((𝜑 ∧ (𝐹𝑋) ∈ (𝐹𝐶) ∧ (𝐹𝑌) ∈ (𝐹𝐷)) → (𝐹𝑋) ≠ (𝐹𝑌))
18173expib 1121 . . 3 (𝜑 → (((𝐹𝑋) ∈ (𝐹𝐶) ∧ (𝐹𝑌) ∈ (𝐹𝐷)) → (𝐹𝑋) ≠ (𝐹𝑌)))
19 neneq 2949 . . . 4 ((𝐹𝑋) ≠ (𝐹𝑌) → ¬ (𝐹𝑋) = (𝐹𝑌))
2019pm2.21d 121 . . 3 ((𝐹𝑋) ≠ (𝐹𝑌) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌))
2118, 20syl6 35 . 2 (𝜑 → (((𝐹𝑋) ∈ (𝐹𝐶) ∧ (𝐹𝑌) ∈ (𝐹𝐷)) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
228, 14, 21syl2and 608 1 (𝜑 → ((𝑋𝐶𝑌𝐷) → ((𝐹𝑋) = (𝐹𝑌) → 𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cin 3886  wss 3887  c0 4256  cima 5592   Fn wfn 6428  wf 6429  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  f1resrcmplf1d  33059
  Copyright terms: Public domain W3C validator