Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac1 Structured version   Visualization version   GIF version

Theorem kelac1 40007
Description: Kelley's choice, basic form: if a collection of sets can be cast as closed sets in the factors of a topology, and there is a definable element in each topology (which need not be in the closed set - if it were this would be trivial), then compactness (via finite intersection) guarantees that the final product is nonempty. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
kelac1.z ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
kelac1.j ((𝜑𝑥𝐼) → 𝐽 ∈ Top)
kelac1.c ((𝜑𝑥𝐼) → 𝐶 ∈ (Clsd‘𝐽))
kelac1.b ((𝜑𝑥𝐼) → 𝐵:𝑆1-1-onto𝐶)
kelac1.u ((𝜑𝑥𝐼) → 𝑈 𝐽)
kelac1.k (𝜑 → (∏t‘(𝑥𝐼𝐽)) ∈ Comp)
Assertion
Ref Expression
kelac1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐼
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝐽(𝑥)

Proof of Theorem kelac1
Dummy variables 𝑓 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kelac1.c . . . . . . 7 ((𝜑𝑥𝐼) → 𝐶 ∈ (Clsd‘𝐽))
2 eqid 2798 . . . . . . . 8 𝐽 = 𝐽
32cldss 21634 . . . . . . 7 (𝐶 ∈ (Clsd‘𝐽) → 𝐶 𝐽)
41, 3syl 17 . . . . . 6 ((𝜑𝑥𝐼) → 𝐶 𝐽)
54ralrimiva 3149 . . . . 5 (𝜑 → ∀𝑥𝐼 𝐶 𝐽)
6 boxriin 8487 . . . . 5 (∀𝑥𝐼 𝐶 𝐽X𝑥𝐼 𝐶 = (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
75, 6syl 17 . . . 4 (𝜑X𝑥𝐼 𝐶 = (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
8 kelac1.k . . . . . . . . 9 (𝜑 → (∏t‘(𝑥𝐼𝐽)) ∈ Comp)
9 cmptop 22000 . . . . . . . . 9 ((∏t‘(𝑥𝐼𝐽)) ∈ Comp → (∏t‘(𝑥𝐼𝐽)) ∈ Top)
10 0ntop 21510 . . . . . . . . . . 11 ¬ ∅ ∈ Top
11 fvprc 6638 . . . . . . . . . . . 12 (¬ (𝑥𝐼𝐽) ∈ V → (∏t‘(𝑥𝐼𝐽)) = ∅)
1211eleq1d 2874 . . . . . . . . . . 11 (¬ (𝑥𝐼𝐽) ∈ V → ((∏t‘(𝑥𝐼𝐽)) ∈ Top ↔ ∅ ∈ Top))
1310, 12mtbiri 330 . . . . . . . . . 10 (¬ (𝑥𝐼𝐽) ∈ V → ¬ (∏t‘(𝑥𝐼𝐽)) ∈ Top)
1413con4i 114 . . . . . . . . 9 ((∏t‘(𝑥𝐼𝐽)) ∈ Top → (𝑥𝐼𝐽) ∈ V)
158, 9, 143syl 18 . . . . . . . 8 (𝜑 → (𝑥𝐼𝐽) ∈ V)
16 kelac1.j . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐽 ∈ Top)
1716fmpttd 6856 . . . . . . . 8 (𝜑 → (𝑥𝐼𝐽):𝐼⟶Top)
18 dmfex 7623 . . . . . . . 8 (((𝑥𝐼𝐽) ∈ V ∧ (𝑥𝐼𝐽):𝐼⟶Top) → 𝐼 ∈ V)
1915, 17, 18syl2anc 587 . . . . . . 7 (𝜑𝐼 ∈ V)
2016ralrimiva 3149 . . . . . . 7 (𝜑 → ∀𝑥𝐼 𝐽 ∈ Top)
21 eqid 2798 . . . . . . . 8 (∏t‘(𝑥𝐼𝐽)) = (∏t‘(𝑥𝐼𝐽))
2221ptunimpt 22200 . . . . . . 7 ((𝐼 ∈ V ∧ ∀𝑥𝐼 𝐽 ∈ Top) → X𝑥𝐼 𝐽 = (∏t‘(𝑥𝐼𝐽)))
2319, 20, 22syl2anc 587 . . . . . 6 (𝜑X𝑥𝐼 𝐽 = (∏t‘(𝑥𝐼𝐽)))
2423ineq1d 4138 . . . . 5 (𝜑 → (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
25 eqid 2798 . . . . . 6 (∏t‘(𝑥𝐼𝐽)) = (∏t‘(𝑥𝐼𝐽))
262topcld 21640 . . . . . . . . . 10 (𝐽 ∈ Top → 𝐽 ∈ (Clsd‘𝐽))
2716, 26syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐽 ∈ (Clsd‘𝐽))
281, 27ifcld 4470 . . . . . . . 8 ((𝜑𝑥𝐼) → if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘𝐽))
2919, 16, 28ptcldmpt 22219 . . . . . . 7 (𝜑X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘(∏t‘(𝑥𝐼𝐽))))
3029adantr 484 . . . . . 6 ((𝜑𝑦𝐼) → X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘(∏t‘(𝑥𝐼𝐽))))
31 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → 𝑧 ∈ Fin)
32 kelac1.b . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → 𝐵:𝑆1-1-onto𝐶)
33 f1ofo 6597 . . . . . . . . . . . . . . 15 (𝐵:𝑆1-1-onto𝐶𝐵:𝑆onto𝐶)
34 foima 6570 . . . . . . . . . . . . . . 15 (𝐵:𝑆onto𝐶 → (𝐵𝑆) = 𝐶)
3532, 33, 343syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (𝐵𝑆) = 𝐶)
3635eqcomd 2804 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 𝐶 = (𝐵𝑆))
37 kelac1.z . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
38 f1ofn 6591 . . . . . . . . . . . . . . . . 17 (𝐵:𝑆1-1-onto𝐶𝐵 Fn 𝑆)
3932, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → 𝐵 Fn 𝑆)
40 ssid 3937 . . . . . . . . . . . . . . . 16 𝑆𝑆
41 fnimaeq0 6453 . . . . . . . . . . . . . . . 16 ((𝐵 Fn 𝑆𝑆𝑆) → ((𝐵𝑆) = ∅ ↔ 𝑆 = ∅))
4239, 40, 41sylancl 589 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → ((𝐵𝑆) = ∅ ↔ 𝑆 = ∅))
4342necon3bid 3031 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → ((𝐵𝑆) ≠ ∅ ↔ 𝑆 ≠ ∅))
4437, 43mpbird 260 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (𝐵𝑆) ≠ ∅)
4536, 44eqnetrd 3054 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝐶 ≠ ∅)
46 n0 4260 . . . . . . . . . . . 12 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
4745, 46sylib 221 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → ∃𝑤 𝑤𝐶)
48 rexv 3467 . . . . . . . . . . 11 (∃𝑤 ∈ V 𝑤𝐶 ↔ ∃𝑤 𝑤𝐶)
4947, 48sylibr 237 . . . . . . . . . 10 ((𝜑𝑥𝐼) → ∃𝑤 ∈ V 𝑤𝐶)
5049ralrimiva 3149 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼𝑤 ∈ V 𝑤𝐶)
51 ssralv 3981 . . . . . . . . . 10 (𝑧𝐼 → (∀𝑥𝐼𝑤 ∈ V 𝑤𝐶 → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶))
5251adantr 484 . . . . . . . . 9 ((𝑧𝐼𝑧 ∈ Fin) → (∀𝑥𝐼𝑤 ∈ V 𝑤𝐶 → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶))
5350, 52mpan9 510 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶)
54 eleq1 2877 . . . . . . . . 9 (𝑤 = (𝑓𝑥) → (𝑤𝐶 ↔ (𝑓𝑥) ∈ 𝐶))
5554ac6sfi 8746 . . . . . . . 8 ((𝑧 ∈ Fin ∧ ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶) → ∃𝑓(𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶))
5631, 53, 55syl2anc 587 . . . . . . 7 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ∃𝑓(𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶))
5723eqcomd 2804 . . . . . . . . . . 11 (𝜑 (∏t‘(𝑥𝐼𝐽)) = X𝑥𝐼 𝐽)
5857ineq1d 4138 . . . . . . . . . 10 (𝜑 → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
5958ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
60 iftrue 4431 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑧 → if(𝑥𝑧, (𝑓𝑥), 𝑈) = (𝑓𝑥))
6160ad2antrl 727 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = (𝑓𝑥))
62 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝜑)
63 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → 𝑧𝐼)
6463sselda 3915 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝑥𝐼)
6562, 64, 4syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝐶 𝐽)
6665sseld 3914 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → (𝑓𝑥) ∈ 𝐽))
6766impr 458 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → (𝑓𝑥) ∈ 𝐽)
6861, 67eqeltrd 2890 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
6968expr 460 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
7069ralimdva 3144 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶 → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
7170imp 410 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
72 eldifn 4055 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐼𝑧) → ¬ 𝑥𝑧)
7372iffalsed 4436 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐼𝑧) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
7473adantl 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
75 eldifi 4054 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐼𝑧) → 𝑥𝐼)
76 kelac1.u . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → 𝑈 𝐽)
7775, 76sylan2 595 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐼𝑧)) → 𝑈 𝐽)
7874, 77eqeltrd 2890 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
7978ralrimiva 3149 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8079ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
81 ralun 4119 . . . . . . . . . . . . . 14 ((∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ∧ ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8271, 80, 81syl2anc 587 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
83 undif 4388 . . . . . . . . . . . . . . . . 17 (𝑧𝐼 ↔ (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8483biimpi 219 . . . . . . . . . . . . . . . 16 (𝑧𝐼 → (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8584ad2antrl 727 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8685raleqdv 3364 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
8786adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
8882, 87mpbid 235 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8919ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → 𝐼 ∈ V)
90 mptelixpg 8482 . . . . . . . . . . . . 13 (𝐼 ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
9189, 90syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
9288, 91mpbird 260 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽)
93 eleq2 2878 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶 = if(𝑥 = 𝑦, 𝐶, 𝐽) → ((𝑓𝑥) ∈ 𝐶 ↔ (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
94 eleq2 2878 . . . . . . . . . . . . . . . . . . . . . 22 ( 𝐽 = if(𝑥 = 𝑦, 𝐶, 𝐽) → ((𝑓𝑥) ∈ 𝐽 ↔ (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
95 simplrr 777 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) ∧ 𝑥 = 𝑦) → (𝑓𝑥) ∈ 𝐶)
9667adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) ∧ ¬ 𝑥 = 𝑦) → (𝑓𝑥) ∈ 𝐽)
9793, 94, 95, 96ifbothda 4462 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
9861, 97eqeltrd 2890 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
9998expr 460 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
10099ralimdva 3144 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶 → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
101100imp 410 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
102101adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
10377adantlr 714 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑈 𝐽)
10473adantl 485 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
105 incom 4128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐼𝑧) ∩ 𝑧) = (𝑧 ∩ (𝐼𝑧))
106 disjdif 4379 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∩ (𝐼𝑧)) = ∅
107105, 106eqtri 2821 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼𝑧) ∩ 𝑧) = ∅
108107a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → ((𝐼𝑧) ∩ 𝑧) = ∅)
109 simpr 488 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑥 ∈ (𝐼𝑧))
110 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑦𝑧)
111 disjne 4362 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐼𝑧) ∩ 𝑧) = ∅ ∧ 𝑥 ∈ (𝐼𝑧) ∧ 𝑦𝑧) → 𝑥𝑦)
112108, 109, 110, 111syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑥𝑦)
113112neneqd 2992 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → ¬ 𝑥 = 𝑦)
114113iffalsed 4436 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥 = 𝑦, 𝐶, 𝐽) = 𝐽)
115103, 104, 1143eltr4d 2905 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
116115ralrimiva 3149 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
117116adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
118117adantlr 714 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
119 ralun 4119 . . . . . . . . . . . . . . . 16 ((∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ∧ ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
120102, 118, 119syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
12185raleqdv 3364 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
122121ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
123120, 122mpbid 235 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
12419ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → 𝐼 ∈ V)
125 mptelixpg 8482 . . . . . . . . . . . . . . 15 (𝐼 ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
126124, 125syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
127123, 126mpbird 260 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
128127ralrimiva 3149 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
129 mptexg 6961 . . . . . . . . . . . . . . 15 (𝐼 ∈ V → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
13019, 129syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
131130ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
132 eliin 4886 . . . . . . . . . . . . 13 ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
133131, 132syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
134128, 133mpbird 260 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
13592, 134elind 4121 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
136135ne0d 4251 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
13759, 136eqnetrd 3054 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
138137adantrl 715 . . . . . . 7 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶)) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
13956, 138exlimddv 1936 . . . . . 6 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
14025, 8, 30, 139cmpfiiin 39638 . . . . 5 (𝜑 → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
14124, 140eqnetrd 3054 . . . 4 (𝜑 → (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
1427, 141eqnetrd 3054 . . 3 (𝜑X𝑥𝐼 𝐶 ≠ ∅)
143 n0 4260 . . 3 (X𝑥𝐼 𝐶 ≠ ∅ ↔ ∃𝑦 𝑦X𝑥𝐼 𝐶)
144142, 143sylib 221 . 2 (𝜑 → ∃𝑦 𝑦X𝑥𝐼 𝐶)
145 elixp2 8448 . . . . . 6 (𝑦X𝑥𝐼 𝐶 ↔ (𝑦 ∈ V ∧ 𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶))
146145simp3bi 1144 . . . . 5 (𝑦X𝑥𝐼 𝐶 → ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶)
147 f1ocnv 6602 . . . . . . . 8 (𝐵:𝑆1-1-onto𝐶𝐵:𝐶1-1-onto𝑆)
148 f1of 6590 . . . . . . . 8 (𝐵:𝐶1-1-onto𝑆𝐵:𝐶𝑆)
149 ffvelrn 6826 . . . . . . . . 9 ((𝐵:𝐶𝑆 ∧ (𝑦𝑥) ∈ 𝐶) → (𝐵‘(𝑦𝑥)) ∈ 𝑆)
150149ex 416 . . . . . . . 8 (𝐵:𝐶𝑆 → ((𝑦𝑥) ∈ 𝐶 → (𝐵‘(𝑦𝑥)) ∈ 𝑆))
15132, 147, 148, 1504syl 19 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝑦𝑥) ∈ 𝐶 → (𝐵‘(𝑦𝑥)) ∈ 𝑆))
152151ralimdva 3144 . . . . . 6 (𝜑 → (∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶 → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
153152imp 410 . . . . 5 ((𝜑 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶) → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆)
154146, 153sylan2 595 . . . 4 ((𝜑𝑦X𝑥𝐼 𝐶) → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆)
155 mptelixpg 8482 . . . . . 6 (𝐼 ∈ V → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
15619, 155syl 17 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
157156adantr 484 . . . 4 ((𝜑𝑦X𝑥𝐼 𝐶) → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
158154, 157mpbird 260 . . 3 ((𝜑𝑦X𝑥𝐼 𝐶) → (𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆)
159158ne0d 4251 . 2 ((𝜑𝑦X𝑥𝐼 𝐶) → X𝑥𝐼 𝑆 ≠ ∅)
160144, 159exlimddv 1936 1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  ifcif 4425   cuni 4800   ciin 4882  cmpt 5110  ccnv 5518  cima 5522   Fn wfn 6319  wf 6320  ontowfo 6322  1-1-ontowf1o 6323  cfv 6324  Xcixp 8444  Fincfn 8492  tcpt 16704  Topctop 21498  Clsdccld 21621  Compccmp 21991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-topgen 16709  df-pt 16710  df-top 21499  df-bases 21551  df-cld 21624  df-cmp 21992
This theorem is referenced by:  kelac2  40009
  Copyright terms: Public domain W3C validator