Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac1 Structured version   Visualization version   GIF version

Theorem kelac1 40804
Description: Kelley's choice, basic form: if a collection of sets can be cast as closed sets in the factors of a topology, and there is a definable element in each topology (which need not be in the closed set - if it were this would be trivial), then compactness (via finite intersection) guarantees that the final product is nonempty. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
kelac1.z ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
kelac1.j ((𝜑𝑥𝐼) → 𝐽 ∈ Top)
kelac1.c ((𝜑𝑥𝐼) → 𝐶 ∈ (Clsd‘𝐽))
kelac1.b ((𝜑𝑥𝐼) → 𝐵:𝑆1-1-onto𝐶)
kelac1.u ((𝜑𝑥𝐼) → 𝑈 𝐽)
kelac1.k (𝜑 → (∏t‘(𝑥𝐼𝐽)) ∈ Comp)
Assertion
Ref Expression
kelac1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐼
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝐽(𝑥)

Proof of Theorem kelac1
Dummy variables 𝑓 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kelac1.c . . . . . . 7 ((𝜑𝑥𝐼) → 𝐶 ∈ (Clsd‘𝐽))
2 eqid 2738 . . . . . . . 8 𝐽 = 𝐽
32cldss 22088 . . . . . . 7 (𝐶 ∈ (Clsd‘𝐽) → 𝐶 𝐽)
41, 3syl 17 . . . . . 6 ((𝜑𝑥𝐼) → 𝐶 𝐽)
54ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑥𝐼 𝐶 𝐽)
6 boxriin 8686 . . . . 5 (∀𝑥𝐼 𝐶 𝐽X𝑥𝐼 𝐶 = (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
75, 6syl 17 . . . 4 (𝜑X𝑥𝐼 𝐶 = (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
8 kelac1.k . . . . . . . . 9 (𝜑 → (∏t‘(𝑥𝐼𝐽)) ∈ Comp)
9 cmptop 22454 . . . . . . . . 9 ((∏t‘(𝑥𝐼𝐽)) ∈ Comp → (∏t‘(𝑥𝐼𝐽)) ∈ Top)
10 0ntop 21962 . . . . . . . . . . 11 ¬ ∅ ∈ Top
11 fvprc 6748 . . . . . . . . . . . 12 (¬ (𝑥𝐼𝐽) ∈ V → (∏t‘(𝑥𝐼𝐽)) = ∅)
1211eleq1d 2823 . . . . . . . . . . 11 (¬ (𝑥𝐼𝐽) ∈ V → ((∏t‘(𝑥𝐼𝐽)) ∈ Top ↔ ∅ ∈ Top))
1310, 12mtbiri 326 . . . . . . . . . 10 (¬ (𝑥𝐼𝐽) ∈ V → ¬ (∏t‘(𝑥𝐼𝐽)) ∈ Top)
1413con4i 114 . . . . . . . . 9 ((∏t‘(𝑥𝐼𝐽)) ∈ Top → (𝑥𝐼𝐽) ∈ V)
158, 9, 143syl 18 . . . . . . . 8 (𝜑 → (𝑥𝐼𝐽) ∈ V)
16 kelac1.j . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐽 ∈ Top)
1716fmpttd 6971 . . . . . . . 8 (𝜑 → (𝑥𝐼𝐽):𝐼⟶Top)
18 dmfex 7728 . . . . . . . 8 (((𝑥𝐼𝐽) ∈ V ∧ (𝑥𝐼𝐽):𝐼⟶Top) → 𝐼 ∈ V)
1915, 17, 18syl2anc 583 . . . . . . 7 (𝜑𝐼 ∈ V)
2016ralrimiva 3107 . . . . . . 7 (𝜑 → ∀𝑥𝐼 𝐽 ∈ Top)
21 eqid 2738 . . . . . . . 8 (∏t‘(𝑥𝐼𝐽)) = (∏t‘(𝑥𝐼𝐽))
2221ptunimpt 22654 . . . . . . 7 ((𝐼 ∈ V ∧ ∀𝑥𝐼 𝐽 ∈ Top) → X𝑥𝐼 𝐽 = (∏t‘(𝑥𝐼𝐽)))
2319, 20, 22syl2anc 583 . . . . . 6 (𝜑X𝑥𝐼 𝐽 = (∏t‘(𝑥𝐼𝐽)))
2423ineq1d 4142 . . . . 5 (𝜑 → (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
25 eqid 2738 . . . . . 6 (∏t‘(𝑥𝐼𝐽)) = (∏t‘(𝑥𝐼𝐽))
262topcld 22094 . . . . . . . . . 10 (𝐽 ∈ Top → 𝐽 ∈ (Clsd‘𝐽))
2716, 26syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐽 ∈ (Clsd‘𝐽))
281, 27ifcld 4502 . . . . . . . 8 ((𝜑𝑥𝐼) → if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘𝐽))
2919, 16, 28ptcldmpt 22673 . . . . . . 7 (𝜑X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘(∏t‘(𝑥𝐼𝐽))))
3029adantr 480 . . . . . 6 ((𝜑𝑦𝐼) → X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘(∏t‘(𝑥𝐼𝐽))))
31 simprr 769 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → 𝑧 ∈ Fin)
32 kelac1.b . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → 𝐵:𝑆1-1-onto𝐶)
33 f1ofo 6707 . . . . . . . . . . . . . . 15 (𝐵:𝑆1-1-onto𝐶𝐵:𝑆onto𝐶)
34 foima 6677 . . . . . . . . . . . . . . 15 (𝐵:𝑆onto𝐶 → (𝐵𝑆) = 𝐶)
3532, 33, 343syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (𝐵𝑆) = 𝐶)
3635eqcomd 2744 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 𝐶 = (𝐵𝑆))
37 kelac1.z . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
38 f1ofn 6701 . . . . . . . . . . . . . . . . 17 (𝐵:𝑆1-1-onto𝐶𝐵 Fn 𝑆)
3932, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → 𝐵 Fn 𝑆)
40 ssid 3939 . . . . . . . . . . . . . . . 16 𝑆𝑆
41 fnimaeq0 6550 . . . . . . . . . . . . . . . 16 ((𝐵 Fn 𝑆𝑆𝑆) → ((𝐵𝑆) = ∅ ↔ 𝑆 = ∅))
4239, 40, 41sylancl 585 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → ((𝐵𝑆) = ∅ ↔ 𝑆 = ∅))
4342necon3bid 2987 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → ((𝐵𝑆) ≠ ∅ ↔ 𝑆 ≠ ∅))
4437, 43mpbird 256 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (𝐵𝑆) ≠ ∅)
4536, 44eqnetrd 3010 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝐶 ≠ ∅)
46 n0 4277 . . . . . . . . . . . 12 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
4745, 46sylib 217 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → ∃𝑤 𝑤𝐶)
48 rexv 3447 . . . . . . . . . . 11 (∃𝑤 ∈ V 𝑤𝐶 ↔ ∃𝑤 𝑤𝐶)
4947, 48sylibr 233 . . . . . . . . . 10 ((𝜑𝑥𝐼) → ∃𝑤 ∈ V 𝑤𝐶)
5049ralrimiva 3107 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼𝑤 ∈ V 𝑤𝐶)
51 ssralv 3983 . . . . . . . . . 10 (𝑧𝐼 → (∀𝑥𝐼𝑤 ∈ V 𝑤𝐶 → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶))
5251adantr 480 . . . . . . . . 9 ((𝑧𝐼𝑧 ∈ Fin) → (∀𝑥𝐼𝑤 ∈ V 𝑤𝐶 → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶))
5350, 52mpan9 506 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶)
54 eleq1 2826 . . . . . . . . 9 (𝑤 = (𝑓𝑥) → (𝑤𝐶 ↔ (𝑓𝑥) ∈ 𝐶))
5554ac6sfi 8988 . . . . . . . 8 ((𝑧 ∈ Fin ∧ ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶) → ∃𝑓(𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶))
5631, 53, 55syl2anc 583 . . . . . . 7 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ∃𝑓(𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶))
5723eqcomd 2744 . . . . . . . . . . 11 (𝜑 (∏t‘(𝑥𝐼𝐽)) = X𝑥𝐼 𝐽)
5857ineq1d 4142 . . . . . . . . . 10 (𝜑 → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
5958ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
60 iftrue 4462 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑧 → if(𝑥𝑧, (𝑓𝑥), 𝑈) = (𝑓𝑥))
6160ad2antrl 724 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = (𝑓𝑥))
62 simpll 763 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝜑)
63 simprl 767 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → 𝑧𝐼)
6463sselda 3917 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝑥𝐼)
6562, 64, 4syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝐶 𝐽)
6665sseld 3916 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → (𝑓𝑥) ∈ 𝐽))
6766impr 454 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → (𝑓𝑥) ∈ 𝐽)
6861, 67eqeltrd 2839 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
6968expr 456 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
7069ralimdva 3102 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶 → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
7170imp 406 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
72 eldifn 4058 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐼𝑧) → ¬ 𝑥𝑧)
7372iffalsed 4467 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐼𝑧) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
7473adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
75 eldifi 4057 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐼𝑧) → 𝑥𝐼)
76 kelac1.u . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → 𝑈 𝐽)
7775, 76sylan2 592 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐼𝑧)) → 𝑈 𝐽)
7874, 77eqeltrd 2839 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
7978ralrimiva 3107 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8079ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
81 ralun 4122 . . . . . . . . . . . . . 14 ((∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ∧ ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8271, 80, 81syl2anc 583 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
83 undif 4412 . . . . . . . . . . . . . . . . 17 (𝑧𝐼 ↔ (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8483biimpi 215 . . . . . . . . . . . . . . . 16 (𝑧𝐼 → (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8584ad2antrl 724 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8685raleqdv 3339 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
8786adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
8882, 87mpbid 231 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8919ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → 𝐼 ∈ V)
90 mptelixpg 8681 . . . . . . . . . . . . 13 (𝐼 ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
9189, 90syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
9288, 91mpbird 256 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽)
93 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶 = if(𝑥 = 𝑦, 𝐶, 𝐽) → ((𝑓𝑥) ∈ 𝐶 ↔ (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
94 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . 22 ( 𝐽 = if(𝑥 = 𝑦, 𝐶, 𝐽) → ((𝑓𝑥) ∈ 𝐽 ↔ (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
95 simplrr 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) ∧ 𝑥 = 𝑦) → (𝑓𝑥) ∈ 𝐶)
9667adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) ∧ ¬ 𝑥 = 𝑦) → (𝑓𝑥) ∈ 𝐽)
9793, 94, 95, 96ifbothda 4494 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
9861, 97eqeltrd 2839 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
9998expr 456 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
10099ralimdva 3102 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶 → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
101100imp 406 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
102101adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
10377adantlr 711 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑈 𝐽)
10473adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
105 disjdifr 4403 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼𝑧) ∩ 𝑧) = ∅
106105a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → ((𝐼𝑧) ∩ 𝑧) = ∅)
107 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑥 ∈ (𝐼𝑧))
108 simplr 765 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑦𝑧)
109 disjne 4385 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐼𝑧) ∩ 𝑧) = ∅ ∧ 𝑥 ∈ (𝐼𝑧) ∧ 𝑦𝑧) → 𝑥𝑦)
110106, 107, 108, 109syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑥𝑦)
111110neneqd 2947 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → ¬ 𝑥 = 𝑦)
112111iffalsed 4467 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥 = 𝑦, 𝐶, 𝐽) = 𝐽)
113103, 104, 1123eltr4d 2854 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
114113ralrimiva 3107 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
115114adantlr 711 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
116115adantlr 711 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
117 ralun 4122 . . . . . . . . . . . . . . . 16 ((∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ∧ ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
118102, 116, 117syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
11985raleqdv 3339 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
120119ad2antrr 722 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
121118, 120mpbid 231 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
12219ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → 𝐼 ∈ V)
123 mptelixpg 8681 . . . . . . . . . . . . . . 15 (𝐼 ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
124122, 123syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
125121, 124mpbird 256 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
126125ralrimiva 3107 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
127 mptexg 7079 . . . . . . . . . . . . . . 15 (𝐼 ∈ V → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
12819, 127syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
129128ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
130 eliin 4926 . . . . . . . . . . . . 13 ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
131129, 130syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
132126, 131mpbird 256 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
13392, 132elind 4124 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
134133ne0d 4266 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
13559, 134eqnetrd 3010 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
136135adantrl 712 . . . . . . 7 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶)) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
13756, 136exlimddv 1939 . . . . . 6 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
13825, 8, 30, 137cmpfiiin 40435 . . . . 5 (𝜑 → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
13924, 138eqnetrd 3010 . . . 4 (𝜑 → (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
1407, 139eqnetrd 3010 . . 3 (𝜑X𝑥𝐼 𝐶 ≠ ∅)
141 n0 4277 . . 3 (X𝑥𝐼 𝐶 ≠ ∅ ↔ ∃𝑦 𝑦X𝑥𝐼 𝐶)
142140, 141sylib 217 . 2 (𝜑 → ∃𝑦 𝑦X𝑥𝐼 𝐶)
143 elixp2 8647 . . . . . 6 (𝑦X𝑥𝐼 𝐶 ↔ (𝑦 ∈ V ∧ 𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶))
144143simp3bi 1145 . . . . 5 (𝑦X𝑥𝐼 𝐶 → ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶)
145 f1ocnv 6712 . . . . . . . 8 (𝐵:𝑆1-1-onto𝐶𝐵:𝐶1-1-onto𝑆)
146 f1of 6700 . . . . . . . 8 (𝐵:𝐶1-1-onto𝑆𝐵:𝐶𝑆)
147 ffvelrn 6941 . . . . . . . . 9 ((𝐵:𝐶𝑆 ∧ (𝑦𝑥) ∈ 𝐶) → (𝐵‘(𝑦𝑥)) ∈ 𝑆)
148147ex 412 . . . . . . . 8 (𝐵:𝐶𝑆 → ((𝑦𝑥) ∈ 𝐶 → (𝐵‘(𝑦𝑥)) ∈ 𝑆))
14932, 145, 146, 1484syl 19 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝑦𝑥) ∈ 𝐶 → (𝐵‘(𝑦𝑥)) ∈ 𝑆))
150149ralimdva 3102 . . . . . 6 (𝜑 → (∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶 → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
151150imp 406 . . . . 5 ((𝜑 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶) → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆)
152144, 151sylan2 592 . . . 4 ((𝜑𝑦X𝑥𝐼 𝐶) → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆)
153 mptelixpg 8681 . . . . . 6 (𝐼 ∈ V → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
15419, 153syl 17 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
155154adantr 480 . . . 4 ((𝜑𝑦X𝑥𝐼 𝐶) → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
156152, 155mpbird 256 . . 3 ((𝜑𝑦X𝑥𝐼 𝐶) → (𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆)
157156ne0d 4266 . 2 ((𝜑𝑦X𝑥𝐼 𝐶) → X𝑥𝐼 𝑆 ≠ ∅)
158142, 157exlimddv 1939 1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  ifcif 4456   cuni 4836   ciin 4922  cmpt 5153  ccnv 5579  cima 5583   Fn wfn 6413  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  Xcixp 8643  Fincfn 8691  tcpt 17066  Topctop 21950  Clsdccld 22075  Compccmp 22445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-er 8456  df-ixp 8644  df-en 8692  df-fin 8695  df-fi 9100  df-topgen 17071  df-pt 17072  df-top 21951  df-bases 22004  df-cld 22078  df-cmp 22446
This theorem is referenced by:  kelac2  40806
  Copyright terms: Public domain W3C validator