Step | Hyp | Ref
| Expression |
1 | | kelac1.c |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐶 ∈ (Clsd‘𝐽)) |
2 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
3 | 2 | cldss 22180 |
. . . . . . 7
⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐶 ⊆ ∪ 𝐽) |
4 | 1, 3 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐶 ⊆ ∪ 𝐽) |
5 | 4 | ralrimiva 3103 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝐶 ⊆ ∪ 𝐽) |
6 | | boxriin 8728 |
. . . . 5
⊢
(∀𝑥 ∈
𝐼 𝐶 ⊆ ∪ 𝐽 → X𝑥 ∈
𝐼 𝐶 = (X𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝜑 → X𝑥 ∈
𝐼 𝐶 = (X𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
8 | | kelac1.k |
. . . . . . . . 9
⊢ (𝜑 →
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Comp) |
9 | | cmptop 22546 |
. . . . . . . . 9
⊢
((∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Comp →
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Top) |
10 | | 0ntop 22054 |
. . . . . . . . . . 11
⊢ ¬
∅ ∈ Top |
11 | | fvprc 6766 |
. . . . . . . . . . . 12
⊢ (¬
(𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V →
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) = ∅) |
12 | 11 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (¬
(𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V →
((∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Top ↔ ∅ ∈
Top)) |
13 | 10, 12 | mtbiri 327 |
. . . . . . . . . 10
⊢ (¬
(𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V → ¬
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Top) |
14 | 13 | con4i 114 |
. . . . . . . . 9
⊢
((∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Top → (𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V) |
15 | 8, 9, 14 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V) |
16 | | kelac1.j |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐽 ∈ Top) |
17 | 16 | fmpttd 6989 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐽):𝐼⟶Top) |
18 | | dmfex 7754 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V ∧ (𝑥 ∈ 𝐼 ↦ 𝐽):𝐼⟶Top) → 𝐼 ∈ V) |
19 | 15, 17, 18 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ V) |
20 | 16 | ralrimiva 3103 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝐽 ∈ Top) |
21 | | eqid 2738 |
. . . . . . . 8
⊢
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) = (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) |
22 | 21 | ptunimpt 22746 |
. . . . . . 7
⊢ ((𝐼 ∈ V ∧ ∀𝑥 ∈ 𝐼 𝐽 ∈ Top) → X𝑥 ∈
𝐼 ∪ 𝐽 =
∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽))) |
23 | 19, 20, 22 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → X𝑥 ∈
𝐼 ∪ 𝐽 =
∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽))) |
24 | 23 | ineq1d 4145 |
. . . . 5
⊢ (𝜑 → (X𝑥 ∈
𝐼 ∪ 𝐽
∩ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) = (∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
25 | | eqid 2738 |
. . . . . 6
⊢ ∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) = ∪
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) |
26 | 2 | topcld 22186 |
. . . . . . . . . 10
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ (Clsd‘𝐽)) |
27 | 16, 26 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∪ 𝐽 ∈ (Clsd‘𝐽)) |
28 | 1, 27 | ifcld 4505 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ∈ (Clsd‘𝐽)) |
29 | 19, 16, 28 | ptcldmpt 22765 |
. . . . . . 7
⊢ (𝜑 → X𝑥 ∈
𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ∈
(Clsd‘(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)))) |
30 | 29 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ∈
(Clsd‘(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)))) |
31 | | simprr 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → 𝑧 ∈ Fin) |
32 | | kelac1.b |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐵:𝑆–1-1-onto→𝐶) |
33 | | f1ofo 6723 |
. . . . . . . . . . . . . . 15
⊢ (𝐵:𝑆–1-1-onto→𝐶 → 𝐵:𝑆–onto→𝐶) |
34 | | foima 6693 |
. . . . . . . . . . . . . . 15
⊢ (𝐵:𝑆–onto→𝐶 → (𝐵 “ 𝑆) = 𝐶) |
35 | 32, 33, 34 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐵 “ 𝑆) = 𝐶) |
36 | 35 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐶 = (𝐵 “ 𝑆)) |
37 | | kelac1.z |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ≠ ∅) |
38 | | f1ofn 6717 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵:𝑆–1-1-onto→𝐶 → 𝐵 Fn 𝑆) |
39 | 32, 38 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐵 Fn 𝑆) |
40 | | ssid 3943 |
. . . . . . . . . . . . . . . 16
⊢ 𝑆 ⊆ 𝑆 |
41 | | fnimaeq0 6566 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 Fn 𝑆 ∧ 𝑆 ⊆ 𝑆) → ((𝐵 “ 𝑆) = ∅ ↔ 𝑆 = ∅)) |
42 | 39, 40, 41 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐵 “ 𝑆) = ∅ ↔ 𝑆 = ∅)) |
43 | 42 | necon3bid 2988 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐵 “ 𝑆) ≠ ∅ ↔ 𝑆 ≠ ∅)) |
44 | 37, 43 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐵 “ 𝑆) ≠ ∅) |
45 | 36, 44 | eqnetrd 3011 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐶 ≠ ∅) |
46 | | n0 4280 |
. . . . . . . . . . . 12
⊢ (𝐶 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝐶) |
47 | 45, 46 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∃𝑤 𝑤 ∈ 𝐶) |
48 | | rexv 3457 |
. . . . . . . . . . 11
⊢
(∃𝑤 ∈ V
𝑤 ∈ 𝐶 ↔ ∃𝑤 𝑤 ∈ 𝐶) |
49 | 47, 48 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∃𝑤 ∈ V 𝑤 ∈ 𝐶) |
50 | 49 | ralrimiva 3103 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∃𝑤 ∈ V 𝑤 ∈ 𝐶) |
51 | | ssralv 3987 |
. . . . . . . . . 10
⊢ (𝑧 ⊆ 𝐼 → (∀𝑥 ∈ 𝐼 ∃𝑤 ∈ V 𝑤 ∈ 𝐶 → ∀𝑥 ∈ 𝑧 ∃𝑤 ∈ V 𝑤 ∈ 𝐶)) |
52 | 51 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin) → (∀𝑥 ∈ 𝐼 ∃𝑤 ∈ V 𝑤 ∈ 𝐶 → ∀𝑥 ∈ 𝑧 ∃𝑤 ∈ V 𝑤 ∈ 𝐶)) |
53 | 50, 52 | mpan9 507 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → ∀𝑥 ∈ 𝑧 ∃𝑤 ∈ V 𝑤 ∈ 𝐶) |
54 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑤 = (𝑓‘𝑥) → (𝑤 ∈ 𝐶 ↔ (𝑓‘𝑥) ∈ 𝐶)) |
55 | 54 | ac6sfi 9058 |
. . . . . . . 8
⊢ ((𝑧 ∈ Fin ∧ ∀𝑥 ∈ 𝑧 ∃𝑤 ∈ V 𝑤 ∈ 𝐶) → ∃𝑓(𝑓:𝑧⟶V ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶)) |
56 | 31, 53, 55 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → ∃𝑓(𝑓:𝑧⟶V ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶)) |
57 | 23 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) = X𝑥 ∈ 𝐼 ∪ 𝐽) |
58 | 57 | ineq1d 4145 |
. . . . . . . . . 10
⊢ (𝜑 → (∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∩ ∩
𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) = (X𝑥 ∈
𝐼 ∪ 𝐽
∩ ∩ 𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
59 | 58 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (∪
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∩ ∩
𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) = (X𝑥 ∈
𝐼 ∪ 𝐽
∩ ∩ 𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
60 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝑧 → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) = (𝑓‘𝑥)) |
61 | 60 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑥 ∈ 𝑧 ∧ (𝑓‘𝑥) ∈ 𝐶)) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) = (𝑓‘𝑥)) |
62 | | simpll 764 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ 𝑥 ∈ 𝑧) → 𝜑) |
63 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → 𝑧 ⊆ 𝐼) |
64 | 63 | sselda 3921 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ 𝑥 ∈ 𝑧) → 𝑥 ∈ 𝐼) |
65 | 62, 64, 4 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ 𝑥 ∈ 𝑧) → 𝐶 ⊆ ∪ 𝐽) |
66 | 65 | sseld 3920 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ 𝑥 ∈ 𝑧) → ((𝑓‘𝑥) ∈ 𝐶 → (𝑓‘𝑥) ∈ ∪ 𝐽)) |
67 | 66 | impr 455 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑥 ∈ 𝑧 ∧ (𝑓‘𝑥) ∈ 𝐶)) → (𝑓‘𝑥) ∈ ∪ 𝐽) |
68 | 61, 67 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑥 ∈ 𝑧 ∧ (𝑓‘𝑥) ∈ 𝐶)) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
69 | 68 | expr 457 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ 𝑥 ∈ 𝑧) → ((𝑓‘𝑥) ∈ 𝐶 → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽)) |
70 | 69 | ralimdva 3108 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → (∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶 → ∀𝑥 ∈ 𝑧 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽)) |
71 | 70 | imp 407 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ∀𝑥 ∈ 𝑧 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
72 | | eldifn 4062 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝐼 ∖ 𝑧) → ¬ 𝑥 ∈ 𝑧) |
73 | 72 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (𝐼 ∖ 𝑧) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) = 𝑈) |
74 | 73 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) = 𝑈) |
75 | | eldifi 4061 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (𝐼 ∖ 𝑧) → 𝑥 ∈ 𝐼) |
76 | | kelac1.u |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑈 ∈ ∪ 𝐽) |
77 | 75, 76 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → 𝑈 ∈ ∪ 𝐽) |
78 | 74, 77 | eqeltrd 2839 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
79 | 78 | ralrimiva 3103 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ (𝐼 ∖ 𝑧)if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
80 | 79 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ∀𝑥 ∈ (𝐼 ∖ 𝑧)if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
81 | | ralun 4126 |
. . . . . . . . . . . . . 14
⊢
((∀𝑥 ∈
𝑧 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽 ∧ ∀𝑥 ∈ (𝐼 ∖ 𝑧)if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) → ∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
82 | 71, 80, 81 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
83 | | undif 4415 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ⊆ 𝐼 ↔ (𝑧 ∪ (𝐼 ∖ 𝑧)) = 𝐼) |
84 | 83 | biimpi 215 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ⊆ 𝐼 → (𝑧 ∪ (𝐼 ∖ 𝑧)) = 𝐼) |
85 | 84 | ad2antrl 725 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → (𝑧 ∪ (𝐼 ∖ 𝑧)) = 𝐼) |
86 | 85 | raleqdv 3348 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → (∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽 ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽)) |
87 | 86 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽 ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽)) |
88 | 82, 87 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
89 | 19 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → 𝐼 ∈ V) |
90 | | mptelixpg 8723 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ V → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 ∪ 𝐽 ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽)) |
91 | 89, 90 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 ∪ 𝐽 ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽)) |
92 | 88, 91 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 ∪ 𝐽) |
93 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐶 = if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) → ((𝑓‘𝑥) ∈ 𝐶 ↔ (𝑓‘𝑥) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
94 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∪ 𝐽 =
if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) → ((𝑓‘𝑥) ∈ ∪ 𝐽 ↔ (𝑓‘𝑥) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
95 | | simplrr 775 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑥 ∈ 𝑧 ∧ (𝑓‘𝑥) ∈ 𝐶)) ∧ 𝑥 = 𝑦) → (𝑓‘𝑥) ∈ 𝐶) |
96 | 67 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑥 ∈ 𝑧 ∧ (𝑓‘𝑥) ∈ 𝐶)) ∧ ¬ 𝑥 = 𝑦) → (𝑓‘𝑥) ∈ ∪ 𝐽) |
97 | 93, 94, 95, 96 | ifbothda 4497 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑥 ∈ 𝑧 ∧ (𝑓‘𝑥) ∈ 𝐶)) → (𝑓‘𝑥) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
98 | 61, 97 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑥 ∈ 𝑧 ∧ (𝑓‘𝑥) ∈ 𝐶)) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
99 | 98 | expr 457 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ 𝑥 ∈ 𝑧) → ((𝑓‘𝑥) ∈ 𝐶 → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
100 | 99 | ralimdva 3108 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → (∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶 → ∀𝑥 ∈ 𝑧 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
101 | 100 | imp 407 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ∀𝑥 ∈ 𝑧 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
102 | 101 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → ∀𝑥 ∈ 𝑧 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
103 | 77 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → 𝑈 ∈ ∪ 𝐽) |
104 | 73 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) = 𝑈) |
105 | | disjdifr 4406 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐼 ∖ 𝑧) ∩ 𝑧) = ∅ |
106 | 105 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → ((𝐼 ∖ 𝑧) ∩ 𝑧) = ∅) |
107 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → 𝑥 ∈ (𝐼 ∖ 𝑧)) |
108 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → 𝑦 ∈ 𝑧) |
109 | | disjne 4388 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐼 ∖ 𝑧) ∩ 𝑧) = ∅ ∧ 𝑥 ∈ (𝐼 ∖ 𝑧) ∧ 𝑦 ∈ 𝑧) → 𝑥 ≠ 𝑦) |
110 | 106, 107,
108, 109 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → 𝑥 ≠ 𝑦) |
111 | 110 | neneqd 2948 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → ¬ 𝑥 = 𝑦) |
112 | 111 | iffalsed 4470 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) = ∪
𝐽) |
113 | 103, 104,
112 | 3eltr4d 2854 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
114 | 113 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → ∀𝑥 ∈ (𝐼 ∖ 𝑧)if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
115 | 114 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ 𝑦 ∈ 𝑧) → ∀𝑥 ∈ (𝐼 ∖ 𝑧)if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
116 | 115 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → ∀𝑥 ∈ (𝐼 ∖ 𝑧)if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
117 | | ralun 4126 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑥 ∈
𝑧 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ∧ ∀𝑥 ∈ (𝐼 ∖ 𝑧)if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) → ∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
118 | 102, 116,
117 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → ∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
119 | 85 | raleqdv 3348 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → (∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
120 | 119 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → (∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
121 | 118, 120 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
122 | 19 | ad3antrrr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → 𝐼 ∈ V) |
123 | | mptelixpg 8723 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 ∈ V → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
124 | 122, 123 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
125 | 121, 124 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
126 | 125 | ralrimiva 3103 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ∀𝑦 ∈ 𝑧 (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
127 | | mptexg 7097 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 ∈ V → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ V) |
128 | 19, 127 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ V) |
129 | 128 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ V) |
130 | | eliin 4929 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ V → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ ∩ 𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ↔ ∀𝑦 ∈ 𝑧 (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
131 | 129, 130 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ ∩ 𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ↔ ∀𝑦 ∈ 𝑧 (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
132 | 126, 131 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ ∩ 𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
133 | 92, 132 | elind 4128 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ (X𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
134 | 133 | ne0d 4269 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (X𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) ≠
∅) |
135 | 59, 134 | eqnetrd 3011 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (∪
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∩ ∩
𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) ≠
∅) |
136 | 135 | adantrl 713 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑓:𝑧⟶V ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶)) → (∪
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∩ ∩
𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) ≠
∅) |
137 | 56, 136 | exlimddv 1938 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → (∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∩ ∩
𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) ≠
∅) |
138 | 25, 8, 30, 137 | cmpfiiin 40519 |
. . . . 5
⊢ (𝜑 → (∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) ≠
∅) |
139 | 24, 138 | eqnetrd 3011 |
. . . 4
⊢ (𝜑 → (X𝑥 ∈
𝐼 ∪ 𝐽
∩ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) ≠
∅) |
140 | 7, 139 | eqnetrd 3011 |
. . 3
⊢ (𝜑 → X𝑥 ∈
𝐼 𝐶 ≠ ∅) |
141 | | n0 4280 |
. . 3
⊢ (X𝑥 ∈
𝐼 𝐶 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ X𝑥 ∈ 𝐼 𝐶) |
142 | 140, 141 | sylib 217 |
. 2
⊢ (𝜑 → ∃𝑦 𝑦 ∈ X𝑥 ∈ 𝐼 𝐶) |
143 | | elixp2 8689 |
. . . . . 6
⊢ (𝑦 ∈ X𝑥 ∈
𝐼 𝐶 ↔ (𝑦 ∈ V ∧ 𝑦 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ 𝐶)) |
144 | 143 | simp3bi 1146 |
. . . . 5
⊢ (𝑦 ∈ X𝑥 ∈
𝐼 𝐶 → ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ 𝐶) |
145 | | f1ocnv 6728 |
. . . . . . . 8
⊢ (𝐵:𝑆–1-1-onto→𝐶 → ◡𝐵:𝐶–1-1-onto→𝑆) |
146 | | f1of 6716 |
. . . . . . . 8
⊢ (◡𝐵:𝐶–1-1-onto→𝑆 → ◡𝐵:𝐶⟶𝑆) |
147 | | ffvelrn 6959 |
. . . . . . . . 9
⊢ ((◡𝐵:𝐶⟶𝑆 ∧ (𝑦‘𝑥) ∈ 𝐶) → (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆) |
148 | 147 | ex 413 |
. . . . . . . 8
⊢ (◡𝐵:𝐶⟶𝑆 → ((𝑦‘𝑥) ∈ 𝐶 → (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆)) |
149 | 32, 145, 146, 148 | 4syl 19 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑦‘𝑥) ∈ 𝐶 → (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆)) |
150 | 149 | ralimdva 3108 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ 𝐶 → ∀𝑥 ∈ 𝐼 (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆)) |
151 | 150 | imp 407 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ 𝐶) → ∀𝑥 ∈ 𝐼 (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆) |
152 | 144, 151 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ X𝑥 ∈ 𝐼 𝐶) → ∀𝑥 ∈ 𝐼 (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆) |
153 | | mptelixpg 8723 |
. . . . . 6
⊢ (𝐼 ∈ V → ((𝑥 ∈ 𝐼 ↦ (◡𝐵‘(𝑦‘𝑥))) ∈ X𝑥 ∈ 𝐼 𝑆 ↔ ∀𝑥 ∈ 𝐼 (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆)) |
154 | 19, 153 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (◡𝐵‘(𝑦‘𝑥))) ∈ X𝑥 ∈ 𝐼 𝑆 ↔ ∀𝑥 ∈ 𝐼 (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆)) |
155 | 154 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ X𝑥 ∈ 𝐼 𝐶) → ((𝑥 ∈ 𝐼 ↦ (◡𝐵‘(𝑦‘𝑥))) ∈ X𝑥 ∈ 𝐼 𝑆 ↔ ∀𝑥 ∈ 𝐼 (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆)) |
156 | 152, 155 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ X𝑥 ∈ 𝐼 𝐶) → (𝑥 ∈ 𝐼 ↦ (◡𝐵‘(𝑦‘𝑥))) ∈ X𝑥 ∈ 𝐼 𝑆) |
157 | 156 | ne0d 4269 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ X𝑥 ∈ 𝐼 𝐶) → X𝑥 ∈ 𝐼 𝑆 ≠ ∅) |
158 | 142, 157 | exlimddv 1938 |
1
⊢ (𝜑 → X𝑥 ∈
𝐼 𝑆 ≠ ∅) |