Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac1 Structured version   Visualization version   GIF version

Theorem kelac1 43025
Description: Kelley's choice, basic form: if a collection of sets can be cast as closed sets in the factors of a topology, and there is a definable element in each topology (which need not be in the closed set - if it were this would be trivial), then compactness (via finite intersection) guarantees that the final product is nonempty. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
kelac1.z ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
kelac1.j ((𝜑𝑥𝐼) → 𝐽 ∈ Top)
kelac1.c ((𝜑𝑥𝐼) → 𝐶 ∈ (Clsd‘𝐽))
kelac1.b ((𝜑𝑥𝐼) → 𝐵:𝑆1-1-onto𝐶)
kelac1.u ((𝜑𝑥𝐼) → 𝑈 𝐽)
kelac1.k (𝜑 → (∏t‘(𝑥𝐼𝐽)) ∈ Comp)
Assertion
Ref Expression
kelac1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐼
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝐽(𝑥)

Proof of Theorem kelac1
Dummy variables 𝑓 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kelac1.c . . . . . . 7 ((𝜑𝑥𝐼) → 𝐶 ∈ (Clsd‘𝐽))
2 eqid 2729 . . . . . . . 8 𝐽 = 𝐽
32cldss 22892 . . . . . . 7 (𝐶 ∈ (Clsd‘𝐽) → 𝐶 𝐽)
41, 3syl 17 . . . . . 6 ((𝜑𝑥𝐼) → 𝐶 𝐽)
54ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑥𝐼 𝐶 𝐽)
6 boxriin 8890 . . . . 5 (∀𝑥𝐼 𝐶 𝐽X𝑥𝐼 𝐶 = (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
75, 6syl 17 . . . 4 (𝜑X𝑥𝐼 𝐶 = (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
8 kelac1.k . . . . . . . . 9 (𝜑 → (∏t‘(𝑥𝐼𝐽)) ∈ Comp)
9 cmptop 23258 . . . . . . . . 9 ((∏t‘(𝑥𝐼𝐽)) ∈ Comp → (∏t‘(𝑥𝐼𝐽)) ∈ Top)
10 0ntop 22768 . . . . . . . . . . 11 ¬ ∅ ∈ Top
11 fvprc 6832 . . . . . . . . . . . 12 (¬ (𝑥𝐼𝐽) ∈ V → (∏t‘(𝑥𝐼𝐽)) = ∅)
1211eleq1d 2813 . . . . . . . . . . 11 (¬ (𝑥𝐼𝐽) ∈ V → ((∏t‘(𝑥𝐼𝐽)) ∈ Top ↔ ∅ ∈ Top))
1310, 12mtbiri 327 . . . . . . . . . 10 (¬ (𝑥𝐼𝐽) ∈ V → ¬ (∏t‘(𝑥𝐼𝐽)) ∈ Top)
1413con4i 114 . . . . . . . . 9 ((∏t‘(𝑥𝐼𝐽)) ∈ Top → (𝑥𝐼𝐽) ∈ V)
158, 9, 143syl 18 . . . . . . . 8 (𝜑 → (𝑥𝐼𝐽) ∈ V)
16 kelac1.j . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐽 ∈ Top)
1716fmpttd 7069 . . . . . . . 8 (𝜑 → (𝑥𝐼𝐽):𝐼⟶Top)
18 dmfex 7861 . . . . . . . 8 (((𝑥𝐼𝐽) ∈ V ∧ (𝑥𝐼𝐽):𝐼⟶Top) → 𝐼 ∈ V)
1915, 17, 18syl2anc 584 . . . . . . 7 (𝜑𝐼 ∈ V)
2016ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑥𝐼 𝐽 ∈ Top)
21 eqid 2729 . . . . . . . 8 (∏t‘(𝑥𝐼𝐽)) = (∏t‘(𝑥𝐼𝐽))
2221ptunimpt 23458 . . . . . . 7 ((𝐼 ∈ V ∧ ∀𝑥𝐼 𝐽 ∈ Top) → X𝑥𝐼 𝐽 = (∏t‘(𝑥𝐼𝐽)))
2319, 20, 22syl2anc 584 . . . . . 6 (𝜑X𝑥𝐼 𝐽 = (∏t‘(𝑥𝐼𝐽)))
2423ineq1d 4178 . . . . 5 (𝜑 → (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
25 eqid 2729 . . . . . 6 (∏t‘(𝑥𝐼𝐽)) = (∏t‘(𝑥𝐼𝐽))
262topcld 22898 . . . . . . . . . 10 (𝐽 ∈ Top → 𝐽 ∈ (Clsd‘𝐽))
2716, 26syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐽 ∈ (Clsd‘𝐽))
281, 27ifcld 4531 . . . . . . . 8 ((𝜑𝑥𝐼) → if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘𝐽))
2919, 16, 28ptcldmpt 23477 . . . . . . 7 (𝜑X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘(∏t‘(𝑥𝐼𝐽))))
3029adantr 480 . . . . . 6 ((𝜑𝑦𝐼) → X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘(∏t‘(𝑥𝐼𝐽))))
31 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → 𝑧 ∈ Fin)
32 kelac1.b . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → 𝐵:𝑆1-1-onto𝐶)
33 f1ofo 6789 . . . . . . . . . . . . . . 15 (𝐵:𝑆1-1-onto𝐶𝐵:𝑆onto𝐶)
34 foima 6759 . . . . . . . . . . . . . . 15 (𝐵:𝑆onto𝐶 → (𝐵𝑆) = 𝐶)
3532, 33, 343syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (𝐵𝑆) = 𝐶)
3635eqcomd 2735 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 𝐶 = (𝐵𝑆))
37 kelac1.z . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
38 f1ofn 6783 . . . . . . . . . . . . . . . . 17 (𝐵:𝑆1-1-onto𝐶𝐵 Fn 𝑆)
3932, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → 𝐵 Fn 𝑆)
40 ssid 3966 . . . . . . . . . . . . . . . 16 𝑆𝑆
41 fnimaeq0 6633 . . . . . . . . . . . . . . . 16 ((𝐵 Fn 𝑆𝑆𝑆) → ((𝐵𝑆) = ∅ ↔ 𝑆 = ∅))
4239, 40, 41sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → ((𝐵𝑆) = ∅ ↔ 𝑆 = ∅))
4342necon3bid 2969 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → ((𝐵𝑆) ≠ ∅ ↔ 𝑆 ≠ ∅))
4437, 43mpbird 257 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (𝐵𝑆) ≠ ∅)
4536, 44eqnetrd 2992 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝐶 ≠ ∅)
46 n0 4312 . . . . . . . . . . . 12 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
4745, 46sylib 218 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → ∃𝑤 𝑤𝐶)
48 rexv 3472 . . . . . . . . . . 11 (∃𝑤 ∈ V 𝑤𝐶 ↔ ∃𝑤 𝑤𝐶)
4947, 48sylibr 234 . . . . . . . . . 10 ((𝜑𝑥𝐼) → ∃𝑤 ∈ V 𝑤𝐶)
5049ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼𝑤 ∈ V 𝑤𝐶)
51 ssralv 4012 . . . . . . . . . 10 (𝑧𝐼 → (∀𝑥𝐼𝑤 ∈ V 𝑤𝐶 → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶))
5251adantr 480 . . . . . . . . 9 ((𝑧𝐼𝑧 ∈ Fin) → (∀𝑥𝐼𝑤 ∈ V 𝑤𝐶 → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶))
5350, 52mpan9 506 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶)
54 eleq1 2816 . . . . . . . . 9 (𝑤 = (𝑓𝑥) → (𝑤𝐶 ↔ (𝑓𝑥) ∈ 𝐶))
5554ac6sfi 9207 . . . . . . . 8 ((𝑧 ∈ Fin ∧ ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶) → ∃𝑓(𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶))
5631, 53, 55syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ∃𝑓(𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶))
5723eqcomd 2735 . . . . . . . . . . 11 (𝜑 (∏t‘(𝑥𝐼𝐽)) = X𝑥𝐼 𝐽)
5857ineq1d 4178 . . . . . . . . . 10 (𝜑 → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
5958ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
60 iftrue 4490 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑧 → if(𝑥𝑧, (𝑓𝑥), 𝑈) = (𝑓𝑥))
6160ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = (𝑓𝑥))
62 simpll 766 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝜑)
63 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → 𝑧𝐼)
6463sselda 3943 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝑥𝐼)
6562, 64, 4syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝐶 𝐽)
6665sseld 3942 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → (𝑓𝑥) ∈ 𝐽))
6766impr 454 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → (𝑓𝑥) ∈ 𝐽)
6861, 67eqeltrd 2828 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
6968expr 456 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
7069ralimdva 3145 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶 → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
7170imp 406 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
72 eldifn 4091 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐼𝑧) → ¬ 𝑥𝑧)
7372iffalsed 4495 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐼𝑧) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
7473adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
75 eldifi 4090 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐼𝑧) → 𝑥𝐼)
76 kelac1.u . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → 𝑈 𝐽)
7775, 76sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐼𝑧)) → 𝑈 𝐽)
7874, 77eqeltrd 2828 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
7978ralrimiva 3125 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8079ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
81 ralun 4157 . . . . . . . . . . . . . 14 ((∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ∧ ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8271, 80, 81syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
83 undif 4441 . . . . . . . . . . . . . . . . 17 (𝑧𝐼 ↔ (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8483biimpi 216 . . . . . . . . . . . . . . . 16 (𝑧𝐼 → (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8584ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8685raleqdv 3296 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
8786adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
8882, 87mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8919ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → 𝐼 ∈ V)
90 mptelixpg 8885 . . . . . . . . . . . . 13 (𝐼 ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
9189, 90syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
9288, 91mpbird 257 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽)
93 eleq2 2817 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶 = if(𝑥 = 𝑦, 𝐶, 𝐽) → ((𝑓𝑥) ∈ 𝐶 ↔ (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
94 eleq2 2817 . . . . . . . . . . . . . . . . . . . . . 22 ( 𝐽 = if(𝑥 = 𝑦, 𝐶, 𝐽) → ((𝑓𝑥) ∈ 𝐽 ↔ (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
95 simplrr 777 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) ∧ 𝑥 = 𝑦) → (𝑓𝑥) ∈ 𝐶)
9667adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) ∧ ¬ 𝑥 = 𝑦) → (𝑓𝑥) ∈ 𝐽)
9793, 94, 95, 96ifbothda 4523 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
9861, 97eqeltrd 2828 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
9998expr 456 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
10099ralimdva 3145 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶 → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
101100imp 406 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
102101adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
10377adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑈 𝐽)
10473adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
105 disjdifr 4432 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼𝑧) ∩ 𝑧) = ∅
106105a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → ((𝐼𝑧) ∩ 𝑧) = ∅)
107 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑥 ∈ (𝐼𝑧))
108 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑦𝑧)
109 disjne 4414 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐼𝑧) ∩ 𝑧) = ∅ ∧ 𝑥 ∈ (𝐼𝑧) ∧ 𝑦𝑧) → 𝑥𝑦)
110106, 107, 108, 109syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑥𝑦)
111110neneqd 2930 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → ¬ 𝑥 = 𝑦)
112111iffalsed 4495 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥 = 𝑦, 𝐶, 𝐽) = 𝐽)
113103, 104, 1123eltr4d 2843 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
114113ralrimiva 3125 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
115114adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
116115adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
117 ralun 4157 . . . . . . . . . . . . . . . 16 ((∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ∧ ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
118102, 116, 117syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
11985raleqdv 3296 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
120119ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
121118, 120mpbid 232 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
12219ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → 𝐼 ∈ V)
123 mptelixpg 8885 . . . . . . . . . . . . . . 15 (𝐼 ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
124122, 123syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
125121, 124mpbird 257 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
126125ralrimiva 3125 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
127 mptexg 7177 . . . . . . . . . . . . . . 15 (𝐼 ∈ V → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
12819, 127syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
129128ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
130 eliin 4956 . . . . . . . . . . . . 13 ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
131129, 130syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
132126, 131mpbird 257 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
13392, 132elind 4159 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
134133ne0d 4301 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
13559, 134eqnetrd 2992 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
136135adantrl 716 . . . . . . 7 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶)) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
13756, 136exlimddv 1935 . . . . . 6 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
13825, 8, 30, 137cmpfiiin 42658 . . . . 5 (𝜑 → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
13924, 138eqnetrd 2992 . . . 4 (𝜑 → (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
1407, 139eqnetrd 2992 . . 3 (𝜑X𝑥𝐼 𝐶 ≠ ∅)
141 n0 4312 . . 3 (X𝑥𝐼 𝐶 ≠ ∅ ↔ ∃𝑦 𝑦X𝑥𝐼 𝐶)
142140, 141sylib 218 . 2 (𝜑 → ∃𝑦 𝑦X𝑥𝐼 𝐶)
143 elixp2 8851 . . . . . 6 (𝑦X𝑥𝐼 𝐶 ↔ (𝑦 ∈ V ∧ 𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶))
144143simp3bi 1147 . . . . 5 (𝑦X𝑥𝐼 𝐶 → ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶)
145 f1ocnv 6794 . . . . . . . 8 (𝐵:𝑆1-1-onto𝐶𝐵:𝐶1-1-onto𝑆)
146 f1of 6782 . . . . . . . 8 (𝐵:𝐶1-1-onto𝑆𝐵:𝐶𝑆)
147 ffvelcdm 7035 . . . . . . . . 9 ((𝐵:𝐶𝑆 ∧ (𝑦𝑥) ∈ 𝐶) → (𝐵‘(𝑦𝑥)) ∈ 𝑆)
148147ex 412 . . . . . . . 8 (𝐵:𝐶𝑆 → ((𝑦𝑥) ∈ 𝐶 → (𝐵‘(𝑦𝑥)) ∈ 𝑆))
14932, 145, 146, 1484syl 19 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝑦𝑥) ∈ 𝐶 → (𝐵‘(𝑦𝑥)) ∈ 𝑆))
150149ralimdva 3145 . . . . . 6 (𝜑 → (∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶 → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
151150imp 406 . . . . 5 ((𝜑 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶) → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆)
152144, 151sylan2 593 . . . 4 ((𝜑𝑦X𝑥𝐼 𝐶) → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆)
153 mptelixpg 8885 . . . . . 6 (𝐼 ∈ V → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
15419, 153syl 17 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
155154adantr 480 . . . 4 ((𝜑𝑦X𝑥𝐼 𝐶) → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
156152, 155mpbird 257 . . 3 ((𝜑𝑦X𝑥𝐼 𝐶) → (𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆)
157156ne0d 4301 . 2 ((𝜑𝑦X𝑥𝐼 𝐶) → X𝑥𝐼 𝑆 ≠ ∅)
158142, 157exlimddv 1935 1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  ifcif 4484   cuni 4867   ciin 4952  cmpt 5183  ccnv 5630  cima 5634   Fn wfn 6494  wf 6495  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499  Xcixp 8847  Fincfn 8895  tcpt 17377  Topctop 22756  Clsdccld 22879  Compccmp 23249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-2o 8412  df-ixp 8848  df-en 8896  df-dom 8897  df-fin 8899  df-fi 9338  df-topgen 17382  df-pt 17383  df-top 22757  df-bases 22809  df-cld 22882  df-cmp 23250
This theorem is referenced by:  kelac2  43027
  Copyright terms: Public domain W3C validator