Step | Hyp | Ref
| Expression |
1 | | kelac1.c |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐶 ∈ (Clsd‘𝐽)) |
2 | | eqid 2758 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
3 | 2 | cldss 21734 |
. . . . . . 7
⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐶 ⊆ ∪ 𝐽) |
4 | 1, 3 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐶 ⊆ ∪ 𝐽) |
5 | 4 | ralrimiva 3113 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝐶 ⊆ ∪ 𝐽) |
6 | | boxriin 8527 |
. . . . 5
⊢
(∀𝑥 ∈
𝐼 𝐶 ⊆ ∪ 𝐽 → X𝑥 ∈
𝐼 𝐶 = (X𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝜑 → X𝑥 ∈
𝐼 𝐶 = (X𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
8 | | kelac1.k |
. . . . . . . . 9
⊢ (𝜑 →
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Comp) |
9 | | cmptop 22100 |
. . . . . . . . 9
⊢
((∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Comp →
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Top) |
10 | | 0ntop 21610 |
. . . . . . . . . . 11
⊢ ¬
∅ ∈ Top |
11 | | fvprc 6654 |
. . . . . . . . . . . 12
⊢ (¬
(𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V →
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) = ∅) |
12 | 11 | eleq1d 2836 |
. . . . . . . . . . 11
⊢ (¬
(𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V →
((∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Top ↔ ∅ ∈
Top)) |
13 | 10, 12 | mtbiri 330 |
. . . . . . . . . 10
⊢ (¬
(𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V → ¬
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Top) |
14 | 13 | con4i 114 |
. . . . . . . . 9
⊢
((∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∈ Top → (𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V) |
15 | 8, 9, 14 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V) |
16 | | kelac1.j |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐽 ∈ Top) |
17 | 16 | fmpttd 6875 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 𝐽):𝐼⟶Top) |
18 | | dmfex 7622 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐼 ↦ 𝐽) ∈ V ∧ (𝑥 ∈ 𝐼 ↦ 𝐽):𝐼⟶Top) → 𝐼 ∈ V) |
19 | 15, 17, 18 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ V) |
20 | 16 | ralrimiva 3113 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝐽 ∈ Top) |
21 | | eqid 2758 |
. . . . . . . 8
⊢
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) = (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) |
22 | 21 | ptunimpt 22300 |
. . . . . . 7
⊢ ((𝐼 ∈ V ∧ ∀𝑥 ∈ 𝐼 𝐽 ∈ Top) → X𝑥 ∈
𝐼 ∪ 𝐽 =
∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽))) |
23 | 19, 20, 22 | syl2anc 587 |
. . . . . 6
⊢ (𝜑 → X𝑥 ∈
𝐼 ∪ 𝐽 =
∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽))) |
24 | 23 | ineq1d 4118 |
. . . . 5
⊢ (𝜑 → (X𝑥 ∈
𝐼 ∪ 𝐽
∩ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) = (∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
25 | | eqid 2758 |
. . . . . 6
⊢ ∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) = ∪
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) |
26 | 2 | topcld 21740 |
. . . . . . . . . 10
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ (Clsd‘𝐽)) |
27 | 16, 26 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∪ 𝐽 ∈ (Clsd‘𝐽)) |
28 | 1, 27 | ifcld 4469 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ∈ (Clsd‘𝐽)) |
29 | 19, 16, 28 | ptcldmpt 22319 |
. . . . . . 7
⊢ (𝜑 → X𝑥 ∈
𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ∈
(Clsd‘(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)))) |
30 | 29 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ∈
(Clsd‘(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)))) |
31 | | simprr 772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → 𝑧 ∈ Fin) |
32 | | kelac1.b |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐵:𝑆–1-1-onto→𝐶) |
33 | | f1ofo 6613 |
. . . . . . . . . . . . . . 15
⊢ (𝐵:𝑆–1-1-onto→𝐶 → 𝐵:𝑆–onto→𝐶) |
34 | | foima 6585 |
. . . . . . . . . . . . . . 15
⊢ (𝐵:𝑆–onto→𝐶 → (𝐵 “ 𝑆) = 𝐶) |
35 | 32, 33, 34 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐵 “ 𝑆) = 𝐶) |
36 | 35 | eqcomd 2764 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐶 = (𝐵 “ 𝑆)) |
37 | | kelac1.z |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑆 ≠ ∅) |
38 | | f1ofn 6607 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵:𝑆–1-1-onto→𝐶 → 𝐵 Fn 𝑆) |
39 | 32, 38 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐵 Fn 𝑆) |
40 | | ssid 3916 |
. . . . . . . . . . . . . . . 16
⊢ 𝑆 ⊆ 𝑆 |
41 | | fnimaeq0 6468 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 Fn 𝑆 ∧ 𝑆 ⊆ 𝑆) → ((𝐵 “ 𝑆) = ∅ ↔ 𝑆 = ∅)) |
42 | 39, 40, 41 | sylancl 589 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐵 “ 𝑆) = ∅ ↔ 𝑆 = ∅)) |
43 | 42 | necon3bid 2995 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐵 “ 𝑆) ≠ ∅ ↔ 𝑆 ≠ ∅)) |
44 | 37, 43 | mpbird 260 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐵 “ 𝑆) ≠ ∅) |
45 | 36, 44 | eqnetrd 3018 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐶 ≠ ∅) |
46 | | n0 4247 |
. . . . . . . . . . . 12
⊢ (𝐶 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝐶) |
47 | 45, 46 | sylib 221 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∃𝑤 𝑤 ∈ 𝐶) |
48 | | rexv 3436 |
. . . . . . . . . . 11
⊢
(∃𝑤 ∈ V
𝑤 ∈ 𝐶 ↔ ∃𝑤 𝑤 ∈ 𝐶) |
49 | 47, 48 | sylibr 237 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∃𝑤 ∈ V 𝑤 ∈ 𝐶) |
50 | 49 | ralrimiva 3113 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∃𝑤 ∈ V 𝑤 ∈ 𝐶) |
51 | | ssralv 3960 |
. . . . . . . . . 10
⊢ (𝑧 ⊆ 𝐼 → (∀𝑥 ∈ 𝐼 ∃𝑤 ∈ V 𝑤 ∈ 𝐶 → ∀𝑥 ∈ 𝑧 ∃𝑤 ∈ V 𝑤 ∈ 𝐶)) |
52 | 51 | adantr 484 |
. . . . . . . . 9
⊢ ((𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin) → (∀𝑥 ∈ 𝐼 ∃𝑤 ∈ V 𝑤 ∈ 𝐶 → ∀𝑥 ∈ 𝑧 ∃𝑤 ∈ V 𝑤 ∈ 𝐶)) |
53 | 50, 52 | mpan9 510 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → ∀𝑥 ∈ 𝑧 ∃𝑤 ∈ V 𝑤 ∈ 𝐶) |
54 | | eleq1 2839 |
. . . . . . . . 9
⊢ (𝑤 = (𝑓‘𝑥) → (𝑤 ∈ 𝐶 ↔ (𝑓‘𝑥) ∈ 𝐶)) |
55 | 54 | ac6sfi 8800 |
. . . . . . . 8
⊢ ((𝑧 ∈ Fin ∧ ∀𝑥 ∈ 𝑧 ∃𝑤 ∈ V 𝑤 ∈ 𝐶) → ∃𝑓(𝑓:𝑧⟶V ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶)) |
56 | 31, 53, 55 | syl2anc 587 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → ∃𝑓(𝑓:𝑧⟶V ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶)) |
57 | 23 | eqcomd 2764 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) = X𝑥 ∈ 𝐼 ∪ 𝐽) |
58 | 57 | ineq1d 4118 |
. . . . . . . . . 10
⊢ (𝜑 → (∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∩ ∩
𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) = (X𝑥 ∈
𝐼 ∪ 𝐽
∩ ∩ 𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
59 | 58 | ad2antrr 725 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (∪
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∩ ∩
𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) = (X𝑥 ∈
𝐼 ∪ 𝐽
∩ ∩ 𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
60 | | iftrue 4429 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝑧 → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) = (𝑓‘𝑥)) |
61 | 60 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑥 ∈ 𝑧 ∧ (𝑓‘𝑥) ∈ 𝐶)) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) = (𝑓‘𝑥)) |
62 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ 𝑥 ∈ 𝑧) → 𝜑) |
63 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → 𝑧 ⊆ 𝐼) |
64 | 63 | sselda 3894 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ 𝑥 ∈ 𝑧) → 𝑥 ∈ 𝐼) |
65 | 62, 64, 4 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ 𝑥 ∈ 𝑧) → 𝐶 ⊆ ∪ 𝐽) |
66 | 65 | sseld 3893 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ 𝑥 ∈ 𝑧) → ((𝑓‘𝑥) ∈ 𝐶 → (𝑓‘𝑥) ∈ ∪ 𝐽)) |
67 | 66 | impr 458 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑥 ∈ 𝑧 ∧ (𝑓‘𝑥) ∈ 𝐶)) → (𝑓‘𝑥) ∈ ∪ 𝐽) |
68 | 61, 67 | eqeltrd 2852 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑥 ∈ 𝑧 ∧ (𝑓‘𝑥) ∈ 𝐶)) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
69 | 68 | expr 460 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ 𝑥 ∈ 𝑧) → ((𝑓‘𝑥) ∈ 𝐶 → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽)) |
70 | 69 | ralimdva 3108 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → (∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶 → ∀𝑥 ∈ 𝑧 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽)) |
71 | 70 | imp 410 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ∀𝑥 ∈ 𝑧 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
72 | | eldifn 4035 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝐼 ∖ 𝑧) → ¬ 𝑥 ∈ 𝑧) |
73 | 72 | iffalsed 4434 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (𝐼 ∖ 𝑧) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) = 𝑈) |
74 | 73 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) = 𝑈) |
75 | | eldifi 4034 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (𝐼 ∖ 𝑧) → 𝑥 ∈ 𝐼) |
76 | | kelac1.u |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑈 ∈ ∪ 𝐽) |
77 | 75, 76 | sylan2 595 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → 𝑈 ∈ ∪ 𝐽) |
78 | 74, 77 | eqeltrd 2852 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
79 | 78 | ralrimiva 3113 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ (𝐼 ∖ 𝑧)if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
80 | 79 | ad2antrr 725 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ∀𝑥 ∈ (𝐼 ∖ 𝑧)if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
81 | | ralun 4099 |
. . . . . . . . . . . . . 14
⊢
((∀𝑥 ∈
𝑧 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽 ∧ ∀𝑥 ∈ (𝐼 ∖ 𝑧)if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) → ∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
82 | 71, 80, 81 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
83 | | undif 4381 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ⊆ 𝐼 ↔ (𝑧 ∪ (𝐼 ∖ 𝑧)) = 𝐼) |
84 | 83 | biimpi 219 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ⊆ 𝐼 → (𝑧 ∪ (𝐼 ∖ 𝑧)) = 𝐼) |
85 | 84 | ad2antrl 727 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → (𝑧 ∪ (𝐼 ∖ 𝑧)) = 𝐼) |
86 | 85 | raleqdv 3329 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → (∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽 ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽)) |
87 | 86 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽 ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽)) |
88 | 82, 87 | mpbid 235 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽) |
89 | 19 | ad2antrr 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → 𝐼 ∈ V) |
90 | | mptelixpg 8522 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ V → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 ∪ 𝐽 ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽)) |
91 | 89, 90 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 ∪ 𝐽 ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ ∪ 𝐽)) |
92 | 88, 91 | mpbird 260 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 ∪ 𝐽) |
93 | | eleq2 2840 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐶 = if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) → ((𝑓‘𝑥) ∈ 𝐶 ↔ (𝑓‘𝑥) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
94 | | eleq2 2840 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∪ 𝐽 =
if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) → ((𝑓‘𝑥) ∈ ∪ 𝐽 ↔ (𝑓‘𝑥) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
95 | | simplrr 777 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑥 ∈ 𝑧 ∧ (𝑓‘𝑥) ∈ 𝐶)) ∧ 𝑥 = 𝑦) → (𝑓‘𝑥) ∈ 𝐶) |
96 | 67 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑥 ∈ 𝑧 ∧ (𝑓‘𝑥) ∈ 𝐶)) ∧ ¬ 𝑥 = 𝑦) → (𝑓‘𝑥) ∈ ∪ 𝐽) |
97 | 93, 94, 95, 96 | ifbothda 4461 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑥 ∈ 𝑧 ∧ (𝑓‘𝑥) ∈ 𝐶)) → (𝑓‘𝑥) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
98 | 61, 97 | eqeltrd 2852 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑥 ∈ 𝑧 ∧ (𝑓‘𝑥) ∈ 𝐶)) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
99 | 98 | expr 460 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ 𝑥 ∈ 𝑧) → ((𝑓‘𝑥) ∈ 𝐶 → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
100 | 99 | ralimdva 3108 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → (∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶 → ∀𝑥 ∈ 𝑧 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
101 | 100 | imp 410 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ∀𝑥 ∈ 𝑧 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
102 | 101 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → ∀𝑥 ∈ 𝑧 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
103 | 77 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → 𝑈 ∈ ∪ 𝐽) |
104 | 73 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) = 𝑈) |
105 | | incom 4108 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐼 ∖ 𝑧) ∩ 𝑧) = (𝑧 ∩ (𝐼 ∖ 𝑧)) |
106 | | disjdif 4371 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 ∩ (𝐼 ∖ 𝑧)) = ∅ |
107 | 105, 106 | eqtri 2781 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐼 ∖ 𝑧) ∩ 𝑧) = ∅ |
108 | 107 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → ((𝐼 ∖ 𝑧) ∩ 𝑧) = ∅) |
109 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → 𝑥 ∈ (𝐼 ∖ 𝑧)) |
110 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → 𝑦 ∈ 𝑧) |
111 | | disjne 4354 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐼 ∖ 𝑧) ∩ 𝑧) = ∅ ∧ 𝑥 ∈ (𝐼 ∖ 𝑧) ∧ 𝑦 ∈ 𝑧) → 𝑥 ≠ 𝑦) |
112 | 108, 109,
110, 111 | syl3anc 1368 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → 𝑥 ≠ 𝑦) |
113 | 112 | neneqd 2956 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → ¬ 𝑥 = 𝑦) |
114 | 113 | iffalsed 4434 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) = ∪
𝐽) |
115 | 103, 104,
114 | 3eltr4d 2867 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑧) ∧ 𝑥 ∈ (𝐼 ∖ 𝑧)) → if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
116 | 115 | ralrimiva 3113 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑧) → ∀𝑥 ∈ (𝐼 ∖ 𝑧)if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
117 | 116 | adantlr 714 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ 𝑦 ∈ 𝑧) → ∀𝑥 ∈ (𝐼 ∖ 𝑧)if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
118 | 117 | adantlr 714 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → ∀𝑥 ∈ (𝐼 ∖ 𝑧)if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
119 | | ralun 4099 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑥 ∈
𝑧 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ∧ ∀𝑥 ∈ (𝐼 ∖ 𝑧)if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) → ∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
120 | 102, 118,
119 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → ∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
121 | 85 | raleqdv 3329 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → (∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
122 | 121 | ad2antrr 725 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → (∀𝑥 ∈ (𝑧 ∪ (𝐼 ∖ 𝑧))if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
123 | 120, 122 | mpbid 235 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
124 | 19 | ad3antrrr 729 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → 𝐼 ∈ V) |
125 | | mptelixpg 8522 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 ∈ V → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
126 | 124, 125 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ↔ ∀𝑥 ∈ 𝐼 if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
127 | 123, 126 | mpbird 260 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) ∧ 𝑦 ∈ 𝑧) → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
128 | 127 | ralrimiva 3113 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ∀𝑦 ∈ 𝑧 (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
129 | | mptexg 6980 |
. . . . . . . . . . . . . . 15
⊢ (𝐼 ∈ V → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ V) |
130 | 19, 129 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ V) |
131 | 130 | ad2antrr 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ V) |
132 | | eliin 4891 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ V → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ ∩ 𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ↔ ∀𝑦 ∈ 𝑧 (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
133 | 131, 132 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ ∩ 𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽) ↔ ∀𝑦 ∈ 𝑧 (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
134 | 128, 133 | mpbird 260 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ ∩ 𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) |
135 | 92, 134 | elind 4101 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝑧, (𝑓‘𝑥), 𝑈)) ∈ (X𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽))) |
136 | 135 | ne0d 4236 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (X𝑥 ∈ 𝐼 ∪ 𝐽 ∩ ∩ 𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) ≠
∅) |
137 | 59, 136 | eqnetrd 3018 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶) → (∪
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∩ ∩
𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) ≠
∅) |
138 | 137 | adantrl 715 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) ∧ (𝑓:𝑧⟶V ∧ ∀𝑥 ∈ 𝑧 (𝑓‘𝑥) ∈ 𝐶)) → (∪
(∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∩ ∩
𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) ≠
∅) |
139 | 56, 138 | exlimddv 1936 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ⊆ 𝐼 ∧ 𝑧 ∈ Fin)) → (∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∩ ∩
𝑦 ∈ 𝑧 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) ≠
∅) |
140 | 25, 8, 30, 139 | cmpfiiin 40039 |
. . . . 5
⊢ (𝜑 → (∪ (∏t‘(𝑥 ∈ 𝐼 ↦ 𝐽)) ∩ ∩
𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) ≠
∅) |
141 | 24, 140 | eqnetrd 3018 |
. . . 4
⊢ (𝜑 → (X𝑥 ∈
𝐼 ∪ 𝐽
∩ ∩ 𝑦 ∈ 𝐼 X𝑥 ∈ 𝐼 if(𝑥 = 𝑦, 𝐶, ∪ 𝐽)) ≠
∅) |
142 | 7, 141 | eqnetrd 3018 |
. . 3
⊢ (𝜑 → X𝑥 ∈
𝐼 𝐶 ≠ ∅) |
143 | | n0 4247 |
. . 3
⊢ (X𝑥 ∈
𝐼 𝐶 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ X𝑥 ∈ 𝐼 𝐶) |
144 | 142, 143 | sylib 221 |
. 2
⊢ (𝜑 → ∃𝑦 𝑦 ∈ X𝑥 ∈ 𝐼 𝐶) |
145 | | elixp2 8488 |
. . . . . 6
⊢ (𝑦 ∈ X𝑥 ∈
𝐼 𝐶 ↔ (𝑦 ∈ V ∧ 𝑦 Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ 𝐶)) |
146 | 145 | simp3bi 1144 |
. . . . 5
⊢ (𝑦 ∈ X𝑥 ∈
𝐼 𝐶 → ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ 𝐶) |
147 | | f1ocnv 6618 |
. . . . . . . 8
⊢ (𝐵:𝑆–1-1-onto→𝐶 → ◡𝐵:𝐶–1-1-onto→𝑆) |
148 | | f1of 6606 |
. . . . . . . 8
⊢ (◡𝐵:𝐶–1-1-onto→𝑆 → ◡𝐵:𝐶⟶𝑆) |
149 | | ffvelrn 6845 |
. . . . . . . . 9
⊢ ((◡𝐵:𝐶⟶𝑆 ∧ (𝑦‘𝑥) ∈ 𝐶) → (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆) |
150 | 149 | ex 416 |
. . . . . . . 8
⊢ (◡𝐵:𝐶⟶𝑆 → ((𝑦‘𝑥) ∈ 𝐶 → (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆)) |
151 | 32, 147, 148, 150 | 4syl 19 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑦‘𝑥) ∈ 𝐶 → (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆)) |
152 | 151 | ralimdva 3108 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ 𝐶 → ∀𝑥 ∈ 𝐼 (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆)) |
153 | 152 | imp 410 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐼 (𝑦‘𝑥) ∈ 𝐶) → ∀𝑥 ∈ 𝐼 (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆) |
154 | 146, 153 | sylan2 595 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ X𝑥 ∈ 𝐼 𝐶) → ∀𝑥 ∈ 𝐼 (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆) |
155 | | mptelixpg 8522 |
. . . . . 6
⊢ (𝐼 ∈ V → ((𝑥 ∈ 𝐼 ↦ (◡𝐵‘(𝑦‘𝑥))) ∈ X𝑥 ∈ 𝐼 𝑆 ↔ ∀𝑥 ∈ 𝐼 (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆)) |
156 | 19, 155 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (◡𝐵‘(𝑦‘𝑥))) ∈ X𝑥 ∈ 𝐼 𝑆 ↔ ∀𝑥 ∈ 𝐼 (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆)) |
157 | 156 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ X𝑥 ∈ 𝐼 𝐶) → ((𝑥 ∈ 𝐼 ↦ (◡𝐵‘(𝑦‘𝑥))) ∈ X𝑥 ∈ 𝐼 𝑆 ↔ ∀𝑥 ∈ 𝐼 (◡𝐵‘(𝑦‘𝑥)) ∈ 𝑆)) |
158 | 154, 157 | mpbird 260 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ X𝑥 ∈ 𝐼 𝐶) → (𝑥 ∈ 𝐼 ↦ (◡𝐵‘(𝑦‘𝑥))) ∈ X𝑥 ∈ 𝐼 𝑆) |
159 | 158 | ne0d 4236 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ X𝑥 ∈ 𝐼 𝐶) → X𝑥 ∈ 𝐼 𝑆 ≠ ∅) |
160 | 144, 159 | exlimddv 1936 |
1
⊢ (𝜑 → X𝑥 ∈
𝐼 𝑆 ≠ ∅) |