MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmssuvc1 Structured version   Visualization version   GIF version

Theorem frlmssuvc1 20507
Description: A scalar multiple of a unit vector included in a support-restriction subspace is included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.)
Hypotheses
Ref Expression
frlmssuvc1.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmssuvc1.u 𝑈 = (𝑅 unitVec 𝐼)
frlmssuvc1.b 𝐵 = (Base‘𝐹)
frlmssuvc1.k 𝐾 = (Base‘𝑅)
frlmssuvc1.t · = ( ·𝑠𝐹)
frlmssuvc1.z 0 = (0g𝑅)
frlmssuvc1.c 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
frlmssuvc1.r (𝜑𝑅 ∈ Ring)
frlmssuvc1.i (𝜑𝐼𝑉)
frlmssuvc1.j (𝜑𝐽𝐼)
frlmssuvc1.l (𝜑𝐿𝐽)
frlmssuvc1.x (𝜑𝑋𝐾)
Assertion
Ref Expression
frlmssuvc1 (𝜑 → (𝑋 · (𝑈𝐿)) ∈ 𝐶)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐼   𝑥,𝐽   𝑥,𝐾   𝑥,𝐿   𝑥,𝑅   𝑥, 0   𝜑,𝑥   𝑥,𝑈   𝑥,𝑉   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frlmssuvc1
StepHypRef Expression
1 frlmssuvc1.r . . 3 (𝜑𝑅 ∈ Ring)
2 frlmssuvc1.i . . 3 (𝜑𝐼𝑉)
3 frlmssuvc1.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
43frlmlmod 20463 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝐹 ∈ LMod)
51, 2, 4syl2anc 579 . 2 (𝜑𝐹 ∈ LMod)
6 frlmssuvc1.j . . 3 (𝜑𝐽𝐼)
7 eqid 2825 . . . 4 (LSubSp‘𝐹) = (LSubSp‘𝐹)
8 frlmssuvc1.b . . . 4 𝐵 = (Base‘𝐹)
9 frlmssuvc1.z . . . 4 0 = (0g𝑅)
10 frlmssuvc1.c . . . 4 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
113, 7, 8, 9, 10frlmsslss2 20488 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶 ∈ (LSubSp‘𝐹))
121, 2, 6, 11syl3anc 1494 . 2 (𝜑𝐶 ∈ (LSubSp‘𝐹))
13 frlmssuvc1.x . . 3 (𝜑𝑋𝐾)
14 frlmssuvc1.k . . . 4 𝐾 = (Base‘𝑅)
153frlmsca 20467 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 = (Scalar‘𝐹))
161, 2, 15syl2anc 579 . . . . 5 (𝜑𝑅 = (Scalar‘𝐹))
1716fveq2d 6441 . . . 4 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
1814, 17syl5eq 2873 . . 3 (𝜑𝐾 = (Base‘(Scalar‘𝐹)))
1913, 18eleqtrd 2908 . 2 (𝜑𝑋 ∈ (Base‘(Scalar‘𝐹)))
20 frlmssuvc1.u . . . . . 6 𝑈 = (𝑅 unitVec 𝐼)
2120, 3, 8uvcff 20504 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑈:𝐼𝐵)
221, 2, 21syl2anc 579 . . . 4 (𝜑𝑈:𝐼𝐵)
23 frlmssuvc1.l . . . . 5 (𝜑𝐿𝐽)
246, 23sseldd 3828 . . . 4 (𝜑𝐿𝐼)
2522, 24ffvelrnd 6614 . . 3 (𝜑 → (𝑈𝐿) ∈ 𝐵)
263, 14, 8frlmbasf 20474 . . . . 5 ((𝐼𝑉 ∧ (𝑈𝐿) ∈ 𝐵) → (𝑈𝐿):𝐼𝐾)
272, 25, 26syl2anc 579 . . . 4 (𝜑 → (𝑈𝐿):𝐼𝐾)
281adantr 474 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐽)) → 𝑅 ∈ Ring)
292adantr 474 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐽)) → 𝐼𝑉)
3024adantr 474 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐽)) → 𝐿𝐼)
31 eldifi 3961 . . . . . 6 (𝑥 ∈ (𝐼𝐽) → 𝑥𝐼)
3231adantl 475 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐽)) → 𝑥𝐼)
33 disjdif 4265 . . . . . . 7 (𝐽 ∩ (𝐼𝐽)) = ∅
3433a1i 11 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐽)) → (𝐽 ∩ (𝐼𝐽)) = ∅)
3523adantr 474 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐽)) → 𝐿𝐽)
36 simpr 479 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐽)) → 𝑥 ∈ (𝐼𝐽))
37 disjne 4248 . . . . . 6 (((𝐽 ∩ (𝐼𝐽)) = ∅ ∧ 𝐿𝐽𝑥 ∈ (𝐼𝐽)) → 𝐿𝑥)
3834, 35, 36, 37syl3anc 1494 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐽)) → 𝐿𝑥)
3920, 28, 29, 30, 32, 38, 9uvcvv0 20503 . . . 4 ((𝜑𝑥 ∈ (𝐼𝐽)) → ((𝑈𝐿)‘𝑥) = 0 )
4027, 39suppss 7595 . . 3 (𝜑 → ((𝑈𝐿) supp 0 ) ⊆ 𝐽)
41 oveq1 6917 . . . . 5 (𝑥 = (𝑈𝐿) → (𝑥 supp 0 ) = ((𝑈𝐿) supp 0 ))
4241sseq1d 3857 . . . 4 (𝑥 = (𝑈𝐿) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ ((𝑈𝐿) supp 0 ) ⊆ 𝐽))
4342, 10elrab2 3589 . . 3 ((𝑈𝐿) ∈ 𝐶 ↔ ((𝑈𝐿) ∈ 𝐵 ∧ ((𝑈𝐿) supp 0 ) ⊆ 𝐽))
4425, 40, 43sylanbrc 578 . 2 (𝜑 → (𝑈𝐿) ∈ 𝐶)
45 eqid 2825 . . 3 (Scalar‘𝐹) = (Scalar‘𝐹)
46 frlmssuvc1.t . . 3 · = ( ·𝑠𝐹)
47 eqid 2825 . . 3 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
4845, 46, 47, 7lssvscl 19321 . 2 (((𝐹 ∈ LMod ∧ 𝐶 ∈ (LSubSp‘𝐹)) ∧ (𝑋 ∈ (Base‘(Scalar‘𝐹)) ∧ (𝑈𝐿) ∈ 𝐶)) → (𝑋 · (𝑈𝐿)) ∈ 𝐶)
495, 12, 19, 44, 48syl22anc 872 1 (𝜑 → (𝑋 · (𝑈𝐿)) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wne 2999  {crab 3121  cdif 3795  cin 3797  wss 3798  c0 4146  wf 6123  cfv 6127  (class class class)co 6910   supp csupp 7564  Basecbs 16229  Scalarcsca 16315   ·𝑠 cvsca 16316  0gc0g 16460  Ringcrg 18908  LModclmod 19226  LSubSpclss 19295   freeLMod cfrlm 20460   unitVec cuvc 20495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-sup 8623  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-hom 16336  df-cco 16337  df-0g 16462  df-prds 16468  df-pws 16470  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-mhm 17695  df-submnd 17696  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-ghm 18016  df-mgp 18851  df-ur 18863  df-ring 18910  df-subrg 19141  df-lmod 19228  df-lss 19296  df-lmhm 19388  df-sra 19540  df-rgmod 19541  df-dsmm 20446  df-frlm 20461  df-uvc 20496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator