| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frlmssuvc1 | Structured version Visualization version GIF version | ||
| Description: A scalar multiple of a unit vector included in a support-restriction subspace is included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
| Ref | Expression |
|---|---|
| frlmssuvc1.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| frlmssuvc1.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| frlmssuvc1.b | ⊢ 𝐵 = (Base‘𝐹) |
| frlmssuvc1.k | ⊢ 𝐾 = (Base‘𝑅) |
| frlmssuvc1.t | ⊢ · = ( ·𝑠 ‘𝐹) |
| frlmssuvc1.z | ⊢ 0 = (0g‘𝑅) |
| frlmssuvc1.c | ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} |
| frlmssuvc1.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| frlmssuvc1.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| frlmssuvc1.j | ⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
| frlmssuvc1.l | ⊢ (𝜑 → 𝐿 ∈ 𝐽) |
| frlmssuvc1.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| frlmssuvc1 | ⊢ (𝜑 → (𝑋 · (𝑈‘𝐿)) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmssuvc1.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | frlmssuvc1.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 3 | frlmssuvc1.f | . . . 4 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 4 | 3 | frlmlmod 21634 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝐹 ∈ LMod) |
| 5 | 1, 2, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐹 ∈ LMod) |
| 6 | frlmssuvc1.j | . . 3 ⊢ (𝜑 → 𝐽 ⊆ 𝐼) | |
| 7 | eqid 2729 | . . . 4 ⊢ (LSubSp‘𝐹) = (LSubSp‘𝐹) | |
| 8 | frlmssuvc1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
| 9 | frlmssuvc1.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 10 | frlmssuvc1.c | . . . 4 ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} | |
| 11 | 3, 7, 8, 9, 10 | frlmsslss2 21660 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ (LSubSp‘𝐹)) |
| 12 | 1, 2, 6, 11 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝐶 ∈ (LSubSp‘𝐹)) |
| 13 | frlmssuvc1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 14 | frlmssuvc1.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 15 | 3 | frlmsca 21638 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑅 = (Scalar‘𝐹)) |
| 16 | 1, 2, 15 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) |
| 17 | 16 | fveq2d 6844 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹))) |
| 18 | 14, 17 | eqtrid 2776 | . . 3 ⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝐹))) |
| 19 | 13, 18 | eleqtrd 2830 | . 2 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝐹))) |
| 20 | frlmssuvc1.u | . . . . . 6 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
| 21 | 20, 3, 8 | uvcff 21676 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑈:𝐼⟶𝐵) |
| 22 | 1, 2, 21 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑈:𝐼⟶𝐵) |
| 23 | frlmssuvc1.l | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ 𝐽) | |
| 24 | 6, 23 | sseldd 3944 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ 𝐼) |
| 25 | 22, 24 | ffvelcdmd 7039 | . . 3 ⊢ (𝜑 → (𝑈‘𝐿) ∈ 𝐵) |
| 26 | 3, 14, 8 | frlmbasf 21645 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ (𝑈‘𝐿) ∈ 𝐵) → (𝑈‘𝐿):𝐼⟶𝐾) |
| 27 | 2, 25, 26 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑈‘𝐿):𝐼⟶𝐾) |
| 28 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → 𝑅 ∈ Ring) |
| 29 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → 𝐼 ∈ 𝑉) |
| 30 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → 𝐿 ∈ 𝐼) |
| 31 | eldifi 4090 | . . . . . 6 ⊢ (𝑥 ∈ (𝐼 ∖ 𝐽) → 𝑥 ∈ 𝐼) | |
| 32 | 31 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → 𝑥 ∈ 𝐼) |
| 33 | disjdif 4431 | . . . . . 6 ⊢ (𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅ | |
| 34 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → 𝑥 ∈ (𝐼 ∖ 𝐽)) | |
| 35 | disjne 4414 | . . . . . 6 ⊢ (((𝐽 ∩ (𝐼 ∖ 𝐽)) = ∅ ∧ 𝐿 ∈ 𝐽 ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → 𝐿 ≠ 𝑥) | |
| 36 | 33, 23, 34, 35 | mp3an2ani 1470 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → 𝐿 ≠ 𝑥) |
| 37 | 20, 28, 29, 30, 32, 36, 9 | uvcvv0 21675 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ 𝐽)) → ((𝑈‘𝐿)‘𝑥) = 0 ) |
| 38 | 27, 37 | suppss 8150 | . . 3 ⊢ (𝜑 → ((𝑈‘𝐿) supp 0 ) ⊆ 𝐽) |
| 39 | oveq1 7376 | . . . . 5 ⊢ (𝑥 = (𝑈‘𝐿) → (𝑥 supp 0 ) = ((𝑈‘𝐿) supp 0 )) | |
| 40 | 39 | sseq1d 3975 | . . . 4 ⊢ (𝑥 = (𝑈‘𝐿) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ ((𝑈‘𝐿) supp 0 ) ⊆ 𝐽)) |
| 41 | 40, 10 | elrab2 3659 | . . 3 ⊢ ((𝑈‘𝐿) ∈ 𝐶 ↔ ((𝑈‘𝐿) ∈ 𝐵 ∧ ((𝑈‘𝐿) supp 0 ) ⊆ 𝐽)) |
| 42 | 25, 38, 41 | sylanbrc 583 | . 2 ⊢ (𝜑 → (𝑈‘𝐿) ∈ 𝐶) |
| 43 | eqid 2729 | . . 3 ⊢ (Scalar‘𝐹) = (Scalar‘𝐹) | |
| 44 | frlmssuvc1.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐹) | |
| 45 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹)) | |
| 46 | 43, 44, 45, 7 | lssvscl 20837 | . 2 ⊢ (((𝐹 ∈ LMod ∧ 𝐶 ∈ (LSubSp‘𝐹)) ∧ (𝑋 ∈ (Base‘(Scalar‘𝐹)) ∧ (𝑈‘𝐿) ∈ 𝐶)) → (𝑋 · (𝑈‘𝐿)) ∈ 𝐶) |
| 47 | 5, 12, 19, 42, 46 | syl22anc 838 | 1 ⊢ (𝜑 → (𝑋 · (𝑈‘𝐿)) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3402 ∖ cdif 3908 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 supp csupp 8116 Basecbs 17155 Scalarcsca 17199 ·𝑠 cvsca 17200 0gc0g 17378 Ringcrg 20118 LModclmod 20742 LSubSpclss 20813 freeLMod cfrlm 21631 unitVec cuvc 21667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-prds 17386 df-pws 17388 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-ghm 19121 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-subrg 20455 df-lmod 20744 df-lss 20814 df-lmhm 20905 df-sra 21056 df-rgmod 21057 df-dsmm 21617 df-frlm 21632 df-uvc 21668 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |