MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmssuvc1 Structured version   Visualization version   GIF version

Theorem frlmssuvc1 20937
Description: A scalar multiple of a unit vector included in a support-restriction subspace is included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.)
Hypotheses
Ref Expression
frlmssuvc1.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmssuvc1.u 𝑈 = (𝑅 unitVec 𝐼)
frlmssuvc1.b 𝐵 = (Base‘𝐹)
frlmssuvc1.k 𝐾 = (Base‘𝑅)
frlmssuvc1.t · = ( ·𝑠𝐹)
frlmssuvc1.z 0 = (0g𝑅)
frlmssuvc1.c 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
frlmssuvc1.r (𝜑𝑅 ∈ Ring)
frlmssuvc1.i (𝜑𝐼𝑉)
frlmssuvc1.j (𝜑𝐽𝐼)
frlmssuvc1.l (𝜑𝐿𝐽)
frlmssuvc1.x (𝜑𝑋𝐾)
Assertion
Ref Expression
frlmssuvc1 (𝜑 → (𝑋 · (𝑈𝐿)) ∈ 𝐶)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐼   𝑥,𝐽   𝑥,𝐾   𝑥,𝐿   𝑥,𝑅   𝑥, 0   𝜑,𝑥   𝑥,𝑈   𝑥,𝑉   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frlmssuvc1
StepHypRef Expression
1 frlmssuvc1.r . . 3 (𝜑𝑅 ∈ Ring)
2 frlmssuvc1.i . . 3 (𝜑𝐼𝑉)
3 frlmssuvc1.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
43frlmlmod 20892 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝐹 ∈ LMod)
51, 2, 4syl2anc 586 . 2 (𝜑𝐹 ∈ LMod)
6 frlmssuvc1.j . . 3 (𝜑𝐽𝐼)
7 eqid 2821 . . . 4 (LSubSp‘𝐹) = (LSubSp‘𝐹)
8 frlmssuvc1.b . . . 4 𝐵 = (Base‘𝐹)
9 frlmssuvc1.z . . . 4 0 = (0g𝑅)
10 frlmssuvc1.c . . . 4 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
113, 7, 8, 9, 10frlmsslss2 20918 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐽𝐼) → 𝐶 ∈ (LSubSp‘𝐹))
121, 2, 6, 11syl3anc 1367 . 2 (𝜑𝐶 ∈ (LSubSp‘𝐹))
13 frlmssuvc1.x . . 3 (𝜑𝑋𝐾)
14 frlmssuvc1.k . . . 4 𝐾 = (Base‘𝑅)
153frlmsca 20896 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 = (Scalar‘𝐹))
161, 2, 15syl2anc 586 . . . . 5 (𝜑𝑅 = (Scalar‘𝐹))
1716fveq2d 6673 . . . 4 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
1814, 17syl5eq 2868 . . 3 (𝜑𝐾 = (Base‘(Scalar‘𝐹)))
1913, 18eleqtrd 2915 . 2 (𝜑𝑋 ∈ (Base‘(Scalar‘𝐹)))
20 frlmssuvc1.u . . . . . 6 𝑈 = (𝑅 unitVec 𝐼)
2120, 3, 8uvcff 20934 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑈:𝐼𝐵)
221, 2, 21syl2anc 586 . . . 4 (𝜑𝑈:𝐼𝐵)
23 frlmssuvc1.l . . . . 5 (𝜑𝐿𝐽)
246, 23sseldd 3967 . . . 4 (𝜑𝐿𝐼)
2522, 24ffvelrnd 6851 . . 3 (𝜑 → (𝑈𝐿) ∈ 𝐵)
263, 14, 8frlmbasf 20903 . . . . 5 ((𝐼𝑉 ∧ (𝑈𝐿) ∈ 𝐵) → (𝑈𝐿):𝐼𝐾)
272, 25, 26syl2anc 586 . . . 4 (𝜑 → (𝑈𝐿):𝐼𝐾)
281adantr 483 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐽)) → 𝑅 ∈ Ring)
292adantr 483 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐽)) → 𝐼𝑉)
3024adantr 483 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐽)) → 𝐿𝐼)
31 eldifi 4102 . . . . . 6 (𝑥 ∈ (𝐼𝐽) → 𝑥𝐼)
3231adantl 484 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐽)) → 𝑥𝐼)
33 disjdif 4420 . . . . . 6 (𝐽 ∩ (𝐼𝐽)) = ∅
34 simpr 487 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐽)) → 𝑥 ∈ (𝐼𝐽))
35 disjne 4403 . . . . . 6 (((𝐽 ∩ (𝐼𝐽)) = ∅ ∧ 𝐿𝐽𝑥 ∈ (𝐼𝐽)) → 𝐿𝑥)
3633, 23, 34, 35mp3an2ani 1464 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐽)) → 𝐿𝑥)
3720, 28, 29, 30, 32, 36, 9uvcvv0 20933 . . . 4 ((𝜑𝑥 ∈ (𝐼𝐽)) → ((𝑈𝐿)‘𝑥) = 0 )
3827, 37suppss 7859 . . 3 (𝜑 → ((𝑈𝐿) supp 0 ) ⊆ 𝐽)
39 oveq1 7162 . . . . 5 (𝑥 = (𝑈𝐿) → (𝑥 supp 0 ) = ((𝑈𝐿) supp 0 ))
4039sseq1d 3997 . . . 4 (𝑥 = (𝑈𝐿) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ ((𝑈𝐿) supp 0 ) ⊆ 𝐽))
4140, 10elrab2 3682 . . 3 ((𝑈𝐿) ∈ 𝐶 ↔ ((𝑈𝐿) ∈ 𝐵 ∧ ((𝑈𝐿) supp 0 ) ⊆ 𝐽))
4225, 38, 41sylanbrc 585 . 2 (𝜑 → (𝑈𝐿) ∈ 𝐶)
43 eqid 2821 . . 3 (Scalar‘𝐹) = (Scalar‘𝐹)
44 frlmssuvc1.t . . 3 · = ( ·𝑠𝐹)
45 eqid 2821 . . 3 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
4643, 44, 45, 7lssvscl 19726 . 2 (((𝐹 ∈ LMod ∧ 𝐶 ∈ (LSubSp‘𝐹)) ∧ (𝑋 ∈ (Base‘(Scalar‘𝐹)) ∧ (𝑈𝐿) ∈ 𝐶)) → (𝑋 · (𝑈𝐿)) ∈ 𝐶)
475, 12, 19, 42, 46syl22anc 836 1 (𝜑 → (𝑋 · (𝑈𝐿)) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  {crab 3142  cdif 3932  cin 3934  wss 3935  c0 4290  wf 6350  cfv 6354  (class class class)co 7155   supp csupp 7829  Basecbs 16482  Scalarcsca 16567   ·𝑠 cvsca 16568  0gc0g 16712  Ringcrg 19296  LModclmod 19633  LSubSpclss 19702   freeLMod cfrlm 20889   unitVec cuvc 20925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-hom 16588  df-cco 16589  df-0g 16714  df-prds 16720  df-pws 16722  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-subg 18275  df-ghm 18355  df-mgp 19239  df-ur 19251  df-ring 19298  df-subrg 19532  df-lmod 19635  df-lss 19703  df-lmhm 19793  df-sra 19943  df-rgmod 19944  df-dsmm 20875  df-frlm 20890  df-uvc 20926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator