![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlmssuvc1 | Structured version Visualization version GIF version |
Description: A scalar multiple of a unit vector included in a support-restriction subspace is included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
Ref | Expression |
---|---|
frlmssuvc1.f | β’ πΉ = (π freeLMod πΌ) |
frlmssuvc1.u | β’ π = (π unitVec πΌ) |
frlmssuvc1.b | β’ π΅ = (BaseβπΉ) |
frlmssuvc1.k | β’ πΎ = (Baseβπ ) |
frlmssuvc1.t | β’ Β· = ( Β·π βπΉ) |
frlmssuvc1.z | β’ 0 = (0gβπ ) |
frlmssuvc1.c | β’ πΆ = {π₯ β π΅ β£ (π₯ supp 0 ) β π½} |
frlmssuvc1.r | β’ (π β π β Ring) |
frlmssuvc1.i | β’ (π β πΌ β π) |
frlmssuvc1.j | β’ (π β π½ β πΌ) |
frlmssuvc1.l | β’ (π β πΏ β π½) |
frlmssuvc1.x | β’ (π β π β πΎ) |
Ref | Expression |
---|---|
frlmssuvc1 | β’ (π β (π Β· (πβπΏ)) β πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmssuvc1.r | . . 3 β’ (π β π β Ring) | |
2 | frlmssuvc1.i | . . 3 β’ (π β πΌ β π) | |
3 | frlmssuvc1.f | . . . 4 β’ πΉ = (π freeLMod πΌ) | |
4 | 3 | frlmlmod 21687 | . . 3 β’ ((π β Ring β§ πΌ β π) β πΉ β LMod) |
5 | 1, 2, 4 | syl2anc 582 | . 2 β’ (π β πΉ β LMod) |
6 | frlmssuvc1.j | . . 3 β’ (π β π½ β πΌ) | |
7 | eqid 2725 | . . . 4 β’ (LSubSpβπΉ) = (LSubSpβπΉ) | |
8 | frlmssuvc1.b | . . . 4 β’ π΅ = (BaseβπΉ) | |
9 | frlmssuvc1.z | . . . 4 β’ 0 = (0gβπ ) | |
10 | frlmssuvc1.c | . . . 4 β’ πΆ = {π₯ β π΅ β£ (π₯ supp 0 ) β π½} | |
11 | 3, 7, 8, 9, 10 | frlmsslss2 21713 | . . 3 β’ ((π β Ring β§ πΌ β π β§ π½ β πΌ) β πΆ β (LSubSpβπΉ)) |
12 | 1, 2, 6, 11 | syl3anc 1368 | . 2 β’ (π β πΆ β (LSubSpβπΉ)) |
13 | frlmssuvc1.x | . . 3 β’ (π β π β πΎ) | |
14 | frlmssuvc1.k | . . . 4 β’ πΎ = (Baseβπ ) | |
15 | 3 | frlmsca 21691 | . . . . . 6 β’ ((π β Ring β§ πΌ β π) β π = (ScalarβπΉ)) |
16 | 1, 2, 15 | syl2anc 582 | . . . . 5 β’ (π β π = (ScalarβπΉ)) |
17 | 16 | fveq2d 6896 | . . . 4 β’ (π β (Baseβπ ) = (Baseβ(ScalarβπΉ))) |
18 | 14, 17 | eqtrid 2777 | . . 3 β’ (π β πΎ = (Baseβ(ScalarβπΉ))) |
19 | 13, 18 | eleqtrd 2827 | . 2 β’ (π β π β (Baseβ(ScalarβπΉ))) |
20 | frlmssuvc1.u | . . . . . 6 β’ π = (π unitVec πΌ) | |
21 | 20, 3, 8 | uvcff 21729 | . . . . 5 β’ ((π β Ring β§ πΌ β π) β π:πΌβΆπ΅) |
22 | 1, 2, 21 | syl2anc 582 | . . . 4 β’ (π β π:πΌβΆπ΅) |
23 | frlmssuvc1.l | . . . . 5 β’ (π β πΏ β π½) | |
24 | 6, 23 | sseldd 3973 | . . . 4 β’ (π β πΏ β πΌ) |
25 | 22, 24 | ffvelcdmd 7090 | . . 3 β’ (π β (πβπΏ) β π΅) |
26 | 3, 14, 8 | frlmbasf 21698 | . . . . 5 β’ ((πΌ β π β§ (πβπΏ) β π΅) β (πβπΏ):πΌβΆπΎ) |
27 | 2, 25, 26 | syl2anc 582 | . . . 4 β’ (π β (πβπΏ):πΌβΆπΎ) |
28 | 1 | adantr 479 | . . . . 5 β’ ((π β§ π₯ β (πΌ β π½)) β π β Ring) |
29 | 2 | adantr 479 | . . . . 5 β’ ((π β§ π₯ β (πΌ β π½)) β πΌ β π) |
30 | 24 | adantr 479 | . . . . 5 β’ ((π β§ π₯ β (πΌ β π½)) β πΏ β πΌ) |
31 | eldifi 4119 | . . . . . 6 β’ (π₯ β (πΌ β π½) β π₯ β πΌ) | |
32 | 31 | adantl 480 | . . . . 5 β’ ((π β§ π₯ β (πΌ β π½)) β π₯ β πΌ) |
33 | disjdif 4467 | . . . . . 6 β’ (π½ β© (πΌ β π½)) = β | |
34 | simpr 483 | . . . . . 6 β’ ((π β§ π₯ β (πΌ β π½)) β π₯ β (πΌ β π½)) | |
35 | disjne 4450 | . . . . . 6 β’ (((π½ β© (πΌ β π½)) = β β§ πΏ β π½ β§ π₯ β (πΌ β π½)) β πΏ β π₯) | |
36 | 33, 23, 34, 35 | mp3an2ani 1464 | . . . . 5 β’ ((π β§ π₯ β (πΌ β π½)) β πΏ β π₯) |
37 | 20, 28, 29, 30, 32, 36, 9 | uvcvv0 21728 | . . . 4 β’ ((π β§ π₯ β (πΌ β π½)) β ((πβπΏ)βπ₯) = 0 ) |
38 | 27, 37 | suppss 8197 | . . 3 β’ (π β ((πβπΏ) supp 0 ) β π½) |
39 | oveq1 7423 | . . . . 5 β’ (π₯ = (πβπΏ) β (π₯ supp 0 ) = ((πβπΏ) supp 0 )) | |
40 | 39 | sseq1d 4004 | . . . 4 β’ (π₯ = (πβπΏ) β ((π₯ supp 0 ) β π½ β ((πβπΏ) supp 0 ) β π½)) |
41 | 40, 10 | elrab2 3677 | . . 3 β’ ((πβπΏ) β πΆ β ((πβπΏ) β π΅ β§ ((πβπΏ) supp 0 ) β π½)) |
42 | 25, 38, 41 | sylanbrc 581 | . 2 β’ (π β (πβπΏ) β πΆ) |
43 | eqid 2725 | . . 3 β’ (ScalarβπΉ) = (ScalarβπΉ) | |
44 | frlmssuvc1.t | . . 3 β’ Β· = ( Β·π βπΉ) | |
45 | eqid 2725 | . . 3 β’ (Baseβ(ScalarβπΉ)) = (Baseβ(ScalarβπΉ)) | |
46 | 43, 44, 45, 7 | lssvscl 20843 | . 2 β’ (((πΉ β LMod β§ πΆ β (LSubSpβπΉ)) β§ (π β (Baseβ(ScalarβπΉ)) β§ (πβπΏ) β πΆ)) β (π Β· (πβπΏ)) β πΆ) |
47 | 5, 12, 19, 42, 46 | syl22anc 837 | 1 β’ (π β (π Β· (πβπΏ)) β πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 {crab 3419 β cdif 3936 β© cin 3938 β wss 3939 β c0 4318 βΆwf 6539 βcfv 6543 (class class class)co 7416 supp csupp 8163 Basecbs 17179 Scalarcsca 17235 Β·π cvsca 17236 0gc0g 17420 Ringcrg 20177 LModclmod 20747 LSubSpclss 20819 freeLMod cfrlm 21684 unitVec cuvc 21720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7991 df-2nd 7992 df-supp 8164 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-ixp 8915 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fsupp 9386 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-hom 17256 df-cco 17257 df-0g 17422 df-prds 17428 df-pws 17430 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-submnd 18740 df-grp 18897 df-minusg 18898 df-sbg 18899 df-subg 19082 df-ghm 19172 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-subrg 20512 df-lmod 20749 df-lss 20820 df-lmhm 20911 df-sra 21062 df-rgmod 21063 df-dsmm 21670 df-frlm 21685 df-uvc 21721 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |