MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjr Structured version   Visualization version   GIF version

Theorem disjr 4417
Description: Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
disjr ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐵 ¬ 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disjr
StepHypRef Expression
1 incom 4175 . . 3 (𝐴𝐵) = (𝐵𝐴)
21eqeq1i 2735 . 2 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
3 disj 4416 . 2 ((𝐵𝐴) = ∅ ↔ ∀𝑥𝐵 ¬ 𝑥𝐴)
42, 3bitri 275 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐵 ¬ 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wral 3045  cin 3916  c0 4299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-dif 3920  df-in 3924  df-nul 4300
This theorem is referenced by:  kqdisj  23626  iccntr  24717  numedglnl  29078  fmlasucdisj  35393  ntrneicls11  44086  iooinlbub  45506  stoweidlem57  46062
  Copyright terms: Public domain W3C validator