Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjr | Structured version Visualization version GIF version |
Description: Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
disjr | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4141 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | 1 | eqeq1i 2741 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅) |
3 | disj 4387 | . 2 ⊢ ((𝐵 ∩ 𝐴) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴) | |
4 | 2, 3 | bitri 275 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ∩ cin 3891 ∅c0 4262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rab 3306 df-dif 3895 df-in 3899 df-nul 4263 |
This theorem is referenced by: kqdisj 22932 iccntr 24033 numedglnl 27563 fmlasucdisj 33410 ntrneicls11 41913 iooinlbub 43268 stoweidlem57 43827 |
Copyright terms: Public domain | W3C validator |