| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjr | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| disjr | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4159 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
| 2 | 1 | eqeq1i 2736 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅) |
| 3 | disj 4400 | . 2 ⊢ ((𝐵 ∩ 𝐴) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ cin 3901 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-dif 3905 df-in 3909 df-nul 4284 |
| This theorem is referenced by: kqdisj 23648 iccntr 24738 numedglnl 29123 fmlasucdisj 35441 ntrneicls11 44129 iooinlbub 45547 stoweidlem57 46101 |
| Copyright terms: Public domain | W3C validator |