Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjr | Structured version Visualization version GIF version |
Description: Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
disjr | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4139 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
2 | 1 | eqeq1i 2744 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅) |
3 | disj 4386 | . 2 ⊢ ((𝐵 ∩ 𝐴) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴) | |
4 | 2, 3 | bitri 274 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∩ cin 3890 ∅c0 4261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rab 3074 df-dif 3894 df-in 3898 df-nul 4262 |
This theorem is referenced by: kqdisj 22864 iccntr 23965 numedglnl 27495 fmlasucdisj 33340 ntrneicls11 41653 iooinlbub 42993 stoweidlem57 43552 |
Copyright terms: Public domain | W3C validator |