![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iooinlbub | Structured version Visualization version GIF version |
Description: An open interval has empty intersection with its bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iooinlbub | ⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjr 4217 | . 2 ⊢ (((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ ↔ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ (𝐴(,)𝐵)) | |
2 | elpri 4394 | . . 3 ⊢ (𝑥 ∈ {𝐴, 𝐵} → (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) | |
3 | lbioo 12459 | . . . . 5 ⊢ ¬ 𝐴 ∈ (𝐴(,)𝐵) | |
4 | eleq1 2870 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵))) | |
5 | 3, 4 | mtbiri 319 | . . . 4 ⊢ (𝑥 = 𝐴 → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
6 | ubioo 12460 | . . . . 5 ⊢ ¬ 𝐵 ∈ (𝐴(,)𝐵) | |
7 | eleq1 2870 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐵 ∈ (𝐴(,)𝐵))) | |
8 | 6, 7 | mtbiri 319 | . . . 4 ⊢ (𝑥 = 𝐵 → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
9 | 5, 8 | jaoi 884 | . . 3 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
10 | 2, 9 | syl 17 | . 2 ⊢ (𝑥 ∈ {𝐴, 𝐵} → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
11 | 1, 10 | mprgbir 3112 | 1 ⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 874 = wceq 1653 ∈ wcel 2157 ∩ cin 3772 ∅c0 4119 {cpr 4374 (class class class)co 6882 (,)cioo 12428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 ax-un 7187 ax-cnex 10284 ax-resscn 10285 ax-pre-lttri 10302 ax-pre-lttrn 10303 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ne 2976 df-nel 3079 df-ral 3098 df-rex 3099 df-rab 3102 df-v 3391 df-sbc 3638 df-csb 3733 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-nul 4120 df-if 4282 df-pw 4355 df-sn 4373 df-pr 4375 df-op 4379 df-uni 4633 df-iun 4716 df-br 4848 df-opab 4910 df-mpt 4927 df-id 5224 df-po 5237 df-so 5238 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-rn 5327 df-res 5328 df-ima 5329 df-iota 6068 df-fun 6107 df-fn 6108 df-f 6109 df-f1 6110 df-fo 6111 df-f1o 6112 df-fv 6113 df-ov 6885 df-oprab 6886 df-mpt2 6887 df-1st 7405 df-2nd 7406 df-er 7986 df-en 8200 df-dom 8201 df-sdom 8202 df-pnf 10369 df-mnf 10370 df-xr 10371 df-ltxr 10372 df-ioo 12432 |
This theorem is referenced by: iccdifioo 40490 iccdifprioo 40491 |
Copyright terms: Public domain | W3C validator |