Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooinlbub Structured version   Visualization version   GIF version

Theorem iooinlbub 45419
Description: An open interval has empty intersection with its bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iooinlbub ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅

Proof of Theorem iooinlbub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 disjr 4474 . 2 (((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ ↔ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ (𝐴(,)𝐵))
2 elpri 4671 . . 3 (𝑥 ∈ {𝐴, 𝐵} → (𝑥 = 𝐴𝑥 = 𝐵))
3 lbioo 13438 . . . . 5 ¬ 𝐴 ∈ (𝐴(,)𝐵)
4 eleq1 2832 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵)))
53, 4mtbiri 327 . . . 4 (𝑥 = 𝐴 → ¬ 𝑥 ∈ (𝐴(,)𝐵))
6 ubioo 13439 . . . . 5 ¬ 𝐵 ∈ (𝐴(,)𝐵)
7 eleq1 2832 . . . . 5 (𝑥 = 𝐵 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐵 ∈ (𝐴(,)𝐵)))
86, 7mtbiri 327 . . . 4 (𝑥 = 𝐵 → ¬ 𝑥 ∈ (𝐴(,)𝐵))
95, 8jaoi 856 . . 3 ((𝑥 = 𝐴𝑥 = 𝐵) → ¬ 𝑥 ∈ (𝐴(,)𝐵))
102, 9syl 17 . 2 (𝑥 ∈ {𝐴, 𝐵} → ¬ 𝑥 ∈ (𝐴(,)𝐵))
111, 10mprgbir 3074 1 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 846   = wceq 1537  wcel 2108  cin 3975  c0 4352  {cpr 4650  (class class class)co 7448  (,)cioo 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-ioo 13411
This theorem is referenced by:  iccdifioo  45433  iccdifprioo  45434
  Copyright terms: Public domain W3C validator