![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iooinlbub | Structured version Visualization version GIF version |
Description: An open interval has empty intersection with its bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
iooinlbub | ⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjr 4410 | . 2 ⊢ (((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ ↔ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ (𝐴(,)𝐵)) | |
2 | elpri 4609 | . . 3 ⊢ (𝑥 ∈ {𝐴, 𝐵} → (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) | |
3 | lbioo 13296 | . . . . 5 ⊢ ¬ 𝐴 ∈ (𝐴(,)𝐵) | |
4 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵))) | |
5 | 3, 4 | mtbiri 327 | . . . 4 ⊢ (𝑥 = 𝐴 → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
6 | ubioo 13297 | . . . . 5 ⊢ ¬ 𝐵 ∈ (𝐴(,)𝐵) | |
7 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐵 ∈ (𝐴(,)𝐵))) | |
8 | 6, 7 | mtbiri 327 | . . . 4 ⊢ (𝑥 = 𝐵 → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
9 | 5, 8 | jaoi 856 | . . 3 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
10 | 2, 9 | syl 17 | . 2 ⊢ (𝑥 ∈ {𝐴, 𝐵} → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
11 | 1, 10 | mprgbir 3072 | 1 ⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ∩ cin 3910 ∅c0 4283 {cpr 4589 (class class class)co 7358 (,)cioo 13265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-pre-lttri 11126 ax-pre-lttrn 11127 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-ioo 13269 |
This theorem is referenced by: iccdifioo 43760 iccdifprioo 43761 |
Copyright terms: Public domain | W3C validator |