| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iooinlbub | Structured version Visualization version GIF version | ||
| Description: An open interval has empty intersection with its bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| iooinlbub | ⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjr 4414 | . 2 ⊢ (((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ ↔ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ (𝐴(,)𝐵)) | |
| 2 | elpri 4613 | . . 3 ⊢ (𝑥 ∈ {𝐴, 𝐵} → (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) | |
| 3 | lbioo 13337 | . . . . 5 ⊢ ¬ 𝐴 ∈ (𝐴(,)𝐵) | |
| 4 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵))) | |
| 5 | 3, 4 | mtbiri 327 | . . . 4 ⊢ (𝑥 = 𝐴 → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
| 6 | ubioo 13338 | . . . . 5 ⊢ ¬ 𝐵 ∈ (𝐴(,)𝐵) | |
| 7 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐵 ∈ (𝐴(,)𝐵))) | |
| 8 | 6, 7 | mtbiri 327 | . . . 4 ⊢ (𝑥 = 𝐵 → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
| 9 | 5, 8 | jaoi 857 | . . 3 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
| 10 | 2, 9 | syl 17 | . 2 ⊢ (𝑥 ∈ {𝐴, 𝐵} → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
| 11 | 1, 10 | mprgbir 3051 | 1 ⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ∅c0 4296 {cpr 4591 (class class class)co 7387 (,)cioo 13306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-ioo 13310 |
| This theorem is referenced by: iccdifioo 45513 iccdifprioo 45514 |
| Copyright terms: Public domain | W3C validator |