| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iooinlbub | Structured version Visualization version GIF version | ||
| Description: An open interval has empty intersection with its bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| iooinlbub | ⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjr 4450 | . 2 ⊢ (((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ ↔ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ (𝐴(,)𝐵)) | |
| 2 | elpri 4648 | . . 3 ⊢ (𝑥 ∈ {𝐴, 𝐵} → (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) | |
| 3 | lbioo 13419 | . . . . 5 ⊢ ¬ 𝐴 ∈ (𝐴(,)𝐵) | |
| 4 | eleq1 2828 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵))) | |
| 5 | 3, 4 | mtbiri 327 | . . . 4 ⊢ (𝑥 = 𝐴 → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
| 6 | ubioo 13420 | . . . . 5 ⊢ ¬ 𝐵 ∈ (𝐴(,)𝐵) | |
| 7 | eleq1 2828 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐵 ∈ (𝐴(,)𝐵))) | |
| 8 | 6, 7 | mtbiri 327 | . . . 4 ⊢ (𝑥 = 𝐵 → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
| 9 | 5, 8 | jaoi 857 | . . 3 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
| 10 | 2, 9 | syl 17 | . 2 ⊢ (𝑥 ∈ {𝐴, 𝐵} → ¬ 𝑥 ∈ (𝐴(,)𝐵)) |
| 11 | 1, 10 | mprgbir 3067 | 1 ⊢ ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∩ cin 3949 ∅c0 4332 {cpr 4627 (class class class)co 7432 (,)cioo 13388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-ioo 13392 |
| This theorem is referenced by: iccdifioo 45533 iccdifprioo 45534 |
| Copyright terms: Public domain | W3C validator |