Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooinlbub Structured version   Visualization version   GIF version

Theorem iooinlbub 45499
Description: An open interval has empty intersection with its bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iooinlbub ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅

Proof of Theorem iooinlbub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 disjr 4414 . 2 (((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅ ↔ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ (𝐴(,)𝐵))
2 elpri 4613 . . 3 (𝑥 ∈ {𝐴, 𝐵} → (𝑥 = 𝐴𝑥 = 𝐵))
3 lbioo 13337 . . . . 5 ¬ 𝐴 ∈ (𝐴(,)𝐵)
4 eleq1 2816 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵)))
53, 4mtbiri 327 . . . 4 (𝑥 = 𝐴 → ¬ 𝑥 ∈ (𝐴(,)𝐵))
6 ubioo 13338 . . . . 5 ¬ 𝐵 ∈ (𝐴(,)𝐵)
7 eleq1 2816 . . . . 5 (𝑥 = 𝐵 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐵 ∈ (𝐴(,)𝐵)))
86, 7mtbiri 327 . . . 4 (𝑥 = 𝐵 → ¬ 𝑥 ∈ (𝐴(,)𝐵))
95, 8jaoi 857 . . 3 ((𝑥 = 𝐴𝑥 = 𝐵) → ¬ 𝑥 ∈ (𝐴(,)𝐵))
102, 9syl 17 . 2 (𝑥 ∈ {𝐴, 𝐵} → ¬ 𝑥 ∈ (𝐴(,)𝐵))
111, 10mprgbir 3051 1 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2109  cin 3913  c0 4296  {cpr 4591  (class class class)co 7387  (,)cioo 13306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-ioo 13310
This theorem is referenced by:  iccdifioo  45513  iccdifprioo  45514
  Copyright terms: Public domain W3C validator