MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccntr Structured version   Visualization version   GIF version

Theorem iccntr 23424
Description: The interior of a closed interval in the standard topology on is the corresponding open interval. (Contributed by Mario Carneiro, 1-Sep-2014.)
Assertion
Ref Expression
iccntr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))

Proof of Theorem iccntr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rexr 10676 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 10676 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 icc0 12774 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
41, 2, 3syl2an 598 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
54biimpar 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
65fveq2d 6656 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = ((int‘(topGen‘ran (,)))‘∅))
7 retop 23365 . . . . . . 7 (topGen‘ran (,)) ∈ Top
8 ntr0 21684 . . . . . . 7 ((topGen‘ran (,)) ∈ Top → ((int‘(topGen‘ran (,)))‘∅) = ∅)
97, 8ax-mp 5 . . . . . 6 ((int‘(topGen‘ran (,)))‘∅) = ∅
10 0ss 4322 . . . . . 6 ∅ ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))
119, 10eqsstri 3976 . . . . 5 ((int‘(topGen‘ran (,)))‘∅) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))
126, 11eqsstrdi 3996 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
13 iccssre 12807 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
14 uniretop 23366 . . . . . . . 8 ℝ = (topGen‘ran (,))
1514ntrss2 21660 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
167, 13, 15sylancr 590 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
1716adantr 484 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
181, 2anim12i 615 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
19 uncom 4104 . . . . . . . 8 ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})
20 prunioo 12859 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2119, 20syl5eq 2869 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
22213expa 1115 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
2318, 22sylan 583 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
2417, 23sseqtrrd 3983 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
25 simpr 488 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
26 simpl 486 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2712, 24, 25, 26ltlecasei 10737 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
2814ntropn 21652 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)))
297, 13, 28sylancr 590 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)))
30 eqid 2822 . . . . . . . . . 10 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3130rexmet 23394 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
32 eqid 2822 . . . . . . . . . . 11 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
3330, 32tgioo 23399 . . . . . . . . . 10 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
3433mopni2 23098 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3531, 34mp3an1 1445 . . . . . . . 8 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3629, 35sylan 583 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3726ad2antrr 725 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ)
38 rphalfcl 12404 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
3938adantl 485 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
4037, 39ltsubrpd 12451 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) < 𝐴)
4139rpred 12419 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
4237, 41resubcld 11057 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ ℝ)
4342, 37ltnled 10776 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐴 − (𝑥 / 2))))
4440, 43mpbid 235 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ 𝐴 ≤ (𝐴 − (𝑥 / 2)))
45 rpre 12385 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4645adantl 485 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
47 rphalflt 12406 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 / 2) < 𝑥)
4847adantl 485 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) < 𝑥)
4941, 46, 37, 48ltsub2dd 11242 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) < (𝐴 − (𝑥 / 2)))
5037, 46readdcld 10659 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 + 𝑥) ∈ ℝ)
51 ltaddrp 12414 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝐴 < (𝐴 + 𝑥))
5237, 51sylancom 591 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐴 < (𝐴 + 𝑥))
5342, 37, 50, 40, 52lttrd 10790 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))
5437, 46resubcld 11057 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) ∈ ℝ)
5554rexrd 10680 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) ∈ ℝ*)
5650rexrd 10680 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 + 𝑥) ∈ ℝ*)
57 elioo2 12767 . . . . . . . . . . . . . 14 (((𝐴𝑥) ∈ ℝ* ∧ (𝐴 + 𝑥) ∈ ℝ*) → ((𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ (𝐴𝑥) < (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))))
5855, 56, 57syl2anc 587 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ (𝐴𝑥) < (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))))
5942, 49, 53, 58mpbir3and 1339 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6030bl2ioo 23395 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6137, 46, 60syl2anc 587 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6259, 61eleqtrrd 2917 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥))
63 ssel 3935 . . . . . . . . . . 11 ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) → (𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
6462, 63syl5com 31 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
6516ad2antrr 725 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
6665sseld 3941 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵)))
67 elicc2 12790 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) ≤ 𝐵)))
68 simp2 1134 . . . . . . . . . . . 12 (((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) ≤ 𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2)))
6967, 68syl6bi 256 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7069ad2antrr 725 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7164, 66, 703syld 60 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7244, 71mtod 201 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7372nrexdv 3256 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ¬ ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7436, 73pm2.65da 816 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7533mopni2 23098 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7631, 75mp3an1 1445 . . . . . . . 8 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7729, 76sylan 583 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7825ad2antrr 725 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
7938adantl 485 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
8078, 79ltaddrpd 12452 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐵 < (𝐵 + (𝑥 / 2)))
8179rpred 12419 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
8278, 81readdcld 10659 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ ℝ)
8378, 82ltnled 10776 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 < (𝐵 + (𝑥 / 2)) ↔ ¬ (𝐵 + (𝑥 / 2)) ≤ 𝐵))
8480, 83mpbid 235 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐵 + (𝑥 / 2)) ≤ 𝐵)
8545adantl 485 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
8678, 85resubcld 11057 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) ∈ ℝ)
87 ltsubrp 12413 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < 𝐵)
8878, 87sylancom 591 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < 𝐵)
8986, 78, 82, 88, 80lttrd 10790 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < (𝐵 + (𝑥 / 2)))
9047adantl 485 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) < 𝑥)
9181, 85, 78, 90ltadd2dd 10788 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))
9286rexrd 10680 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) ∈ ℝ*)
9378, 85readdcld 10659 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
9493rexrd 10680 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
95 elioo2 12767 . . . . . . . . . . . . . 14 (((𝐵𝑥) ∈ ℝ* ∧ (𝐵 + 𝑥) ∈ ℝ*) → ((𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ (𝐵𝑥) < (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))))
9692, 94, 95syl2anc 587 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ (𝐵𝑥) < (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))))
9782, 89, 91, 96mpbir3and 1339 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)))
9830bl2ioo 23395 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐵𝑥)(,)(𝐵 + 𝑥)))
9978, 85, 98syl2anc 587 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐵𝑥)(,)(𝐵 + 𝑥)))
10097, 99eleqtrrd 2917 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥))
101 ssel 3935 . . . . . . . . . . 11 ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → ((𝐵 + (𝑥 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) → (𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
102100, 101syl5com 31 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
10316ad2antrr 725 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
104103sseld 3941 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵)))
105 elicc2 12790 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) ≤ 𝐵)))
106 simp3 1135 . . . . . . . . . . . 12 (((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) ≤ 𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵)
107105, 106syl6bi 256 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
108107ad2antrr 725 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
109102, 104, 1083syld 60 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
11084, 109mtod 201 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
111110nrexdv 3256 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ¬ ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
11277, 111pm2.65da 816 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
113 eleq1 2901 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
114113notbid 321 . . . . . . 7 (𝑥 = 𝐴 → (¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ ¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
115 eleq1 2901 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
116115notbid 321 . . . . . . 7 (𝑥 = 𝐵 → (¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
117114, 116ralprg 4606 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ (¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∧ ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))))
11874, 112, 117mpbir2and 712 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
119 disjr 4372 . . . . 5 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅ ↔ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
120118, 119sylibr 237 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅)
121 disjssun 4389 . . . 4 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅ → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵)))
122120, 121syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵)))
12327, 122mpbid 235 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵))
124 iooretop 23369 . . . 4 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
125 ioossicc 12811 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
12614ssntr 21661 . . . 4 ((((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
127124, 125, 126mpanr12 704 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
1287, 13, 127sylancr 590 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
129123, 128eqssd 3959 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  wral 3130  wrex 3131  cun 3906  cin 3907  wss 3908  c0 4265  {cpr 4541   class class class wbr 5042   × cxp 5530  ran crn 5533  cres 5534  ccom 5536  cfv 6334  (class class class)co 7140  cr 10525   + caddc 10529  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  +crp 12377  (,)cioo 12726  [,]cicc 12729  abscabs 14584  topGenctg 16702  ∞Metcxmet 20074  ballcbl 20076  MetOpencmopn 20079  Topctop 21496  intcnt 21620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-topgen 16708  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-top 21497  df-topon 21514  df-bases 21549  df-ntr 21623
This theorem is referenced by:  dvmptresicc  24517  rolle  24591  cmvth  24592  mvth  24593  dvlip  24594  dvlipcn  24595  dvlip2  24596  c1liplem1  24597  dvgt0lem1  24603  dvle  24608  lhop1lem  24614  dvcnvrelem1  24618  dvcvx  24621  dvfsumabs  24624  ftc1cn  24644  ftc2  24645  ftc2ditglem  24646  itgparts  24648  itgsubstlem  24649  itgpowd  24651  efcvx  25042  pige3ALT  25110  logccv  25252  lgamgulmlem2  25613  ftc2re  31943  ftc1cnnc  35087  ftc2nc  35097  areacirc  35108  lhe4.4ex1a  40967  dvbdfbdioolem1  42509  itgsin0pilem1  42531  itgsinexplem1  42535  itgcoscmulx  42550  itgiccshift  42561  itgperiod  42562  itgsbtaddcnst  42563  dirkeritg  42683  fourierdlem39  42727  fourierdlem73  42760  etransclem46  42861
  Copyright terms: Public domain W3C validator