MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccntr Structured version   Visualization version   GIF version

Theorem iccntr 23890
Description: The interior of a closed interval in the standard topology on is the corresponding open interval. (Contributed by Mario Carneiro, 1-Sep-2014.)
Assertion
Ref Expression
iccntr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))

Proof of Theorem iccntr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rexr 10952 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 10952 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 icc0 13056 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
41, 2, 3syl2an 595 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
54biimpar 477 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
65fveq2d 6760 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = ((int‘(topGen‘ran (,)))‘∅))
7 retop 23831 . . . . . . 7 (topGen‘ran (,)) ∈ Top
8 ntr0 22140 . . . . . . 7 ((topGen‘ran (,)) ∈ Top → ((int‘(topGen‘ran (,)))‘∅) = ∅)
97, 8ax-mp 5 . . . . . 6 ((int‘(topGen‘ran (,)))‘∅) = ∅
10 0ss 4327 . . . . . 6 ∅ ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))
119, 10eqsstri 3951 . . . . 5 ((int‘(topGen‘ran (,)))‘∅) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))
126, 11eqsstrdi 3971 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
13 iccssre 13090 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
14 uniretop 23832 . . . . . . . 8 ℝ = (topGen‘ran (,))
1514ntrss2 22116 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
167, 13, 15sylancr 586 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
1716adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
181, 2anim12i 612 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
19 uncom 4083 . . . . . . . 8 ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})
20 prunioo 13142 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2119, 20eqtrid 2790 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
22213expa 1116 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
2318, 22sylan 579 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
2417, 23sseqtrrd 3958 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
25 simpr 484 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
26 simpl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2712, 24, 25, 26ltlecasei 11013 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
2814ntropn 22108 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)))
297, 13, 28sylancr 586 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)))
30 eqid 2738 . . . . . . . . . 10 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3130rexmet 23860 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
32 eqid 2738 . . . . . . . . . . 11 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
3330, 32tgioo 23865 . . . . . . . . . 10 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
3433mopni2 23555 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3531, 34mp3an1 1446 . . . . . . . 8 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3629, 35sylan 579 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3726ad2antrr 722 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ)
38 rphalfcl 12686 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
3938adantl 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
4037, 39ltsubrpd 12733 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) < 𝐴)
4139rpred 12701 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
4237, 41resubcld 11333 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ ℝ)
4342, 37ltnled 11052 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐴 − (𝑥 / 2))))
4440, 43mpbid 231 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ 𝐴 ≤ (𝐴 − (𝑥 / 2)))
45 rpre 12667 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4645adantl 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
47 rphalflt 12688 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 / 2) < 𝑥)
4847adantl 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) < 𝑥)
4941, 46, 37, 48ltsub2dd 11518 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) < (𝐴 − (𝑥 / 2)))
5037, 46readdcld 10935 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 + 𝑥) ∈ ℝ)
51 ltaddrp 12696 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝐴 < (𝐴 + 𝑥))
5237, 51sylancom 587 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐴 < (𝐴 + 𝑥))
5342, 37, 50, 40, 52lttrd 11066 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))
5437, 46resubcld 11333 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) ∈ ℝ)
5554rexrd 10956 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) ∈ ℝ*)
5650rexrd 10956 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 + 𝑥) ∈ ℝ*)
57 elioo2 13049 . . . . . . . . . . . . . 14 (((𝐴𝑥) ∈ ℝ* ∧ (𝐴 + 𝑥) ∈ ℝ*) → ((𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ (𝐴𝑥) < (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))))
5855, 56, 57syl2anc 583 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ (𝐴𝑥) < (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))))
5942, 49, 53, 58mpbir3and 1340 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6030bl2ioo 23861 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6137, 46, 60syl2anc 583 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6259, 61eleqtrrd 2842 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥))
63 ssel 3910 . . . . . . . . . . 11 ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) → (𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
6462, 63syl5com 31 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
6516ad2antrr 722 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
6665sseld 3916 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵)))
67 elicc2 13073 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) ≤ 𝐵)))
68 simp2 1135 . . . . . . . . . . . 12 (((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) ≤ 𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2)))
6967, 68syl6bi 252 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7069ad2antrr 722 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7164, 66, 703syld 60 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7244, 71mtod 197 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7372nrexdv 3197 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ¬ ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7436, 73pm2.65da 813 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7533mopni2 23555 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7631, 75mp3an1 1446 . . . . . . . 8 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7729, 76sylan 579 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7825ad2antrr 722 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
7938adantl 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
8078, 79ltaddrpd 12734 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐵 < (𝐵 + (𝑥 / 2)))
8179rpred 12701 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
8278, 81readdcld 10935 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ ℝ)
8378, 82ltnled 11052 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 < (𝐵 + (𝑥 / 2)) ↔ ¬ (𝐵 + (𝑥 / 2)) ≤ 𝐵))
8480, 83mpbid 231 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐵 + (𝑥 / 2)) ≤ 𝐵)
8545adantl 481 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
8678, 85resubcld 11333 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) ∈ ℝ)
87 ltsubrp 12695 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < 𝐵)
8878, 87sylancom 587 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < 𝐵)
8986, 78, 82, 88, 80lttrd 11066 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < (𝐵 + (𝑥 / 2)))
9047adantl 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) < 𝑥)
9181, 85, 78, 90ltadd2dd 11064 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))
9286rexrd 10956 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) ∈ ℝ*)
9378, 85readdcld 10935 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
9493rexrd 10956 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
95 elioo2 13049 . . . . . . . . . . . . . 14 (((𝐵𝑥) ∈ ℝ* ∧ (𝐵 + 𝑥) ∈ ℝ*) → ((𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ (𝐵𝑥) < (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))))
9692, 94, 95syl2anc 583 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ (𝐵𝑥) < (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))))
9782, 89, 91, 96mpbir3and 1340 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)))
9830bl2ioo 23861 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐵𝑥)(,)(𝐵 + 𝑥)))
9978, 85, 98syl2anc 583 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐵𝑥)(,)(𝐵 + 𝑥)))
10097, 99eleqtrrd 2842 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥))
101 ssel 3910 . . . . . . . . . . 11 ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → ((𝐵 + (𝑥 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) → (𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
102100, 101syl5com 31 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
10316ad2antrr 722 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
104103sseld 3916 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵)))
105 elicc2 13073 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) ≤ 𝐵)))
106 simp3 1136 . . . . . . . . . . . 12 (((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) ≤ 𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵)
107105, 106syl6bi 252 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
108107ad2antrr 722 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
109102, 104, 1083syld 60 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
11084, 109mtod 197 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
111110nrexdv 3197 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ¬ ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
11277, 111pm2.65da 813 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
113 eleq1 2826 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
114113notbid 317 . . . . . . 7 (𝑥 = 𝐴 → (¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ ¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
115 eleq1 2826 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
116115notbid 317 . . . . . . 7 (𝑥 = 𝐵 → (¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
117114, 116ralprg 4627 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ (¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∧ ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))))
11874, 112, 117mpbir2and 709 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
119 disjr 4380 . . . . 5 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅ ↔ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
120118, 119sylibr 233 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅)
121 disjssun 4398 . . . 4 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅ → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵)))
122120, 121syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵)))
12327, 122mpbid 231 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵))
124 iooretop 23835 . . . 4 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
125 ioossicc 13094 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
12614ssntr 22117 . . . 4 ((((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
127124, 125, 126mpanr12 701 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
1287, 13, 127sylancr 586 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
129123, 128eqssd 3934 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cun 3881  cin 3882  wss 3883  c0 4253  {cpr 4560   class class class wbr 5070   × cxp 5578  ran crn 5581  cres 5582  ccom 5584  cfv 6418  (class class class)co 7255  cr 10801   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  +crp 12659  (,)cioo 13008  [,]cicc 13011  abscabs 14873  topGenctg 17065  ∞Metcxmet 20495  ballcbl 20497  MetOpencmopn 20500  Topctop 21950  intcnt 22076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-ntr 22079
This theorem is referenced by:  dvmptresicc  24985  rolle  25059  cmvth  25060  mvth  25061  dvlip  25062  dvlipcn  25063  dvlip2  25064  c1liplem1  25065  dvgt0lem1  25071  dvle  25076  lhop1lem  25082  dvcnvrelem1  25086  dvcvx  25089  dvfsumabs  25092  ftc1cn  25112  ftc2  25113  ftc2ditglem  25114  itgparts  25116  itgsubstlem  25117  itgpowd  25119  efcvx  25513  pige3ALT  25581  logccv  25723  lgamgulmlem2  26084  ftc2re  32478  ftc1cnnc  35776  ftc2nc  35786  areacirc  35797  dvrelog2  40000  lhe4.4ex1a  41836  dvbdfbdioolem1  43359  itgsin0pilem1  43381  itgsinexplem1  43385  itgcoscmulx  43400  itgiccshift  43411  itgperiod  43412  itgsbtaddcnst  43413  dirkeritg  43533  fourierdlem39  43577  fourierdlem73  43610  etransclem46  43711
  Copyright terms: Public domain W3C validator