MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccntr Structured version   Visualization version   GIF version

Theorem iccntr 24659
Description: The interior of a closed interval in the standard topology on is the corresponding open interval. (Contributed by Mario Carneiro, 1-Sep-2014.)
Assertion
Ref Expression
iccntr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))

Proof of Theorem iccntr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rexr 11257 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 11257 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 icc0 13369 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
41, 2, 3syl2an 595 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
54biimpar 477 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
65fveq2d 6885 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = ((int‘(topGen‘ran (,)))‘∅))
7 retop 24600 . . . . . . 7 (topGen‘ran (,)) ∈ Top
8 ntr0 22907 . . . . . . 7 ((topGen‘ran (,)) ∈ Top → ((int‘(topGen‘ran (,)))‘∅) = ∅)
97, 8ax-mp 5 . . . . . 6 ((int‘(topGen‘ran (,)))‘∅) = ∅
10 0ss 4388 . . . . . 6 ∅ ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))
119, 10eqsstri 4008 . . . . 5 ((int‘(topGen‘ran (,)))‘∅) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))
126, 11eqsstrdi 4028 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
13 iccssre 13403 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
14 uniretop 24601 . . . . . . . 8 ℝ = (topGen‘ran (,))
1514ntrss2 22883 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
167, 13, 15sylancr 586 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
1716adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
181, 2anim12i 612 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
19 uncom 4145 . . . . . . . 8 ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})
20 prunioo 13455 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2119, 20eqtrid 2776 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
22213expa 1115 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
2318, 22sylan 579 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
2417, 23sseqtrrd 4015 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
25 simpr 484 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
26 simpl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2712, 24, 25, 26ltlecasei 11319 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
2814ntropn 22875 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)))
297, 13, 28sylancr 586 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)))
30 eqid 2724 . . . . . . . . . 10 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3130rexmet 24629 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
32 eqid 2724 . . . . . . . . . . 11 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
3330, 32tgioo 24634 . . . . . . . . . 10 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
3433mopni2 24324 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3531, 34mp3an1 1444 . . . . . . . 8 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3629, 35sylan 579 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3726ad2antrr 723 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ)
38 rphalfcl 12998 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
3938adantl 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
4037, 39ltsubrpd 13045 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) < 𝐴)
4139rpred 13013 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
4237, 41resubcld 11639 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ ℝ)
4342, 37ltnled 11358 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐴 − (𝑥 / 2))))
4440, 43mpbid 231 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ 𝐴 ≤ (𝐴 − (𝑥 / 2)))
45 rpre 12979 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4645adantl 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
47 rphalflt 13000 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 / 2) < 𝑥)
4847adantl 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) < 𝑥)
4941, 46, 37, 48ltsub2dd 11824 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) < (𝐴 − (𝑥 / 2)))
5037, 46readdcld 11240 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 + 𝑥) ∈ ℝ)
51 ltaddrp 13008 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝐴 < (𝐴 + 𝑥))
5237, 51sylancom 587 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐴 < (𝐴 + 𝑥))
5342, 37, 50, 40, 52lttrd 11372 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))
5437, 46resubcld 11639 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) ∈ ℝ)
5554rexrd 11261 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) ∈ ℝ*)
5650rexrd 11261 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 + 𝑥) ∈ ℝ*)
57 elioo2 13362 . . . . . . . . . . . . . 14 (((𝐴𝑥) ∈ ℝ* ∧ (𝐴 + 𝑥) ∈ ℝ*) → ((𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ (𝐴𝑥) < (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))))
5855, 56, 57syl2anc 583 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ (𝐴𝑥) < (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))))
5942, 49, 53, 58mpbir3and 1339 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6030bl2ioo 24630 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6137, 46, 60syl2anc 583 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6259, 61eleqtrrd 2828 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥))
63 ssel 3967 . . . . . . . . . . 11 ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) → (𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
6462, 63syl5com 31 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
6516ad2antrr 723 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
6665sseld 3973 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵)))
67 elicc2 13386 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) ≤ 𝐵)))
68 simp2 1134 . . . . . . . . . . . 12 (((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) ≤ 𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2)))
6967, 68syl6bi 253 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7069ad2antrr 723 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7164, 66, 703syld 60 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7244, 71mtod 197 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7372nrexdv 3141 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ¬ ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7436, 73pm2.65da 814 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7533mopni2 24324 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7631, 75mp3an1 1444 . . . . . . . 8 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7729, 76sylan 579 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7825ad2antrr 723 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
7938adantl 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
8078, 79ltaddrpd 13046 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐵 < (𝐵 + (𝑥 / 2)))
8179rpred 13013 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
8278, 81readdcld 11240 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ ℝ)
8378, 82ltnled 11358 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 < (𝐵 + (𝑥 / 2)) ↔ ¬ (𝐵 + (𝑥 / 2)) ≤ 𝐵))
8480, 83mpbid 231 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐵 + (𝑥 / 2)) ≤ 𝐵)
8545adantl 481 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
8678, 85resubcld 11639 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) ∈ ℝ)
87 ltsubrp 13007 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < 𝐵)
8878, 87sylancom 587 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < 𝐵)
8986, 78, 82, 88, 80lttrd 11372 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < (𝐵 + (𝑥 / 2)))
9047adantl 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) < 𝑥)
9181, 85, 78, 90ltadd2dd 11370 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))
9286rexrd 11261 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) ∈ ℝ*)
9378, 85readdcld 11240 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
9493rexrd 11261 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
95 elioo2 13362 . . . . . . . . . . . . . 14 (((𝐵𝑥) ∈ ℝ* ∧ (𝐵 + 𝑥) ∈ ℝ*) → ((𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ (𝐵𝑥) < (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))))
9692, 94, 95syl2anc 583 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ (𝐵𝑥) < (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))))
9782, 89, 91, 96mpbir3and 1339 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)))
9830bl2ioo 24630 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐵𝑥)(,)(𝐵 + 𝑥)))
9978, 85, 98syl2anc 583 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐵𝑥)(,)(𝐵 + 𝑥)))
10097, 99eleqtrrd 2828 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥))
101 ssel 3967 . . . . . . . . . . 11 ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → ((𝐵 + (𝑥 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) → (𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
102100, 101syl5com 31 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
10316ad2antrr 723 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
104103sseld 3973 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵)))
105 elicc2 13386 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) ≤ 𝐵)))
106 simp3 1135 . . . . . . . . . . . 12 (((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) ≤ 𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵)
107105, 106syl6bi 253 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
108107ad2antrr 723 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
109102, 104, 1083syld 60 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
11084, 109mtod 197 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
111110nrexdv 3141 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ¬ ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
11277, 111pm2.65da 814 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
113 eleq1 2813 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
114113notbid 318 . . . . . . 7 (𝑥 = 𝐴 → (¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ ¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
115 eleq1 2813 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
116115notbid 318 . . . . . . 7 (𝑥 = 𝐵 → (¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
117114, 116ralprg 4690 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ (¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∧ ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))))
11874, 112, 117mpbir2and 710 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
119 disjr 4441 . . . . 5 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅ ↔ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
120118, 119sylibr 233 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅)
121 disjssun 4459 . . . 4 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅ → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵)))
122120, 121syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵)))
12327, 122mpbid 231 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵))
124 iooretop 24604 . . . 4 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
125 ioossicc 13407 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
12614ssntr 22884 . . . 4 ((((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
127124, 125, 126mpanr12 702 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
1287, 13, 127sylancr 586 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
129123, 128eqssd 3991 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  wrex 3062  cun 3938  cin 3939  wss 3940  c0 4314  {cpr 4622   class class class wbr 5138   × cxp 5664  ran crn 5667  cres 5668  ccom 5670  cfv 6533  (class class class)co 7401  cr 11105   + caddc 11109  *cxr 11244   < clt 11245  cle 11246  cmin 11441   / cdiv 11868  2c2 12264  +crp 12971  (,)cioo 13321  [,]cicc 13324  abscabs 15178  topGenctg 17382  ∞Metcxmet 21213  ballcbl 21215  MetOpencmopn 21218  Topctop 22717  intcnt 22843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ico 13327  df-icc 13328  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-topgen 17388  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-top 22718  df-topon 22735  df-bases 22771  df-ntr 22846
This theorem is referenced by:  dvmptresicc  25767  rolle  25844  cmvth  25845  cmvthOLD  25846  mvth  25847  dvlip  25848  dvlipcn  25849  dvlip2  25850  c1liplem1  25851  dvgt0lem1  25857  dvle  25862  lhop1lem  25868  dvcnvrelem1  25872  dvcvx  25875  dvfsumabs  25879  ftc1cn  25900  ftc2  25901  ftc2ditglem  25902  itgparts  25904  itgsubstlem  25905  itgpowd  25907  efcvx  26303  pige3ALT  26371  logccv  26513  lgamgulmlem2  26878  ftc2re  34099  ftc1cnnc  37050  ftc2nc  37060  areacirc  37071  dvrelog2  41422  lhe4.4ex1a  43577  dvbdfbdioolem1  45129  itgsin0pilem1  45151  itgsinexplem1  45155  itgcoscmulx  45170  itgiccshift  45181  itgperiod  45182  itgsbtaddcnst  45183  dirkeritg  45303  fourierdlem39  45347  fourierdlem73  45380  etransclem46  45481
  Copyright terms: Public domain W3C validator