MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccntr Structured version   Visualization version   GIF version

Theorem iccntr 24184
Description: The interior of a closed interval in the standard topology on is the corresponding open interval. (Contributed by Mario Carneiro, 1-Sep-2014.)
Assertion
Ref Expression
iccntr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))

Proof of Theorem iccntr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rexr 11201 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 11201 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 icc0 13312 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
41, 2, 3syl2an 596 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
54biimpar 478 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴[,]𝐵) = ∅)
65fveq2d 6846 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = ((int‘(topGen‘ran (,)))‘∅))
7 retop 24125 . . . . . . 7 (topGen‘ran (,)) ∈ Top
8 ntr0 22432 . . . . . . 7 ((topGen‘ran (,)) ∈ Top → ((int‘(topGen‘ran (,)))‘∅) = ∅)
97, 8ax-mp 5 . . . . . 6 ((int‘(topGen‘ran (,)))‘∅) = ∅
10 0ss 4356 . . . . . 6 ∅ ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))
119, 10eqsstri 3978 . . . . 5 ((int‘(topGen‘ran (,)))‘∅) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))
126, 11eqsstrdi 3998 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
13 iccssre 13346 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
14 uniretop 24126 . . . . . . . 8 ℝ = (topGen‘ran (,))
1514ntrss2 22408 . . . . . . 7 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
167, 13, 15sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
1716adantr 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
181, 2anim12i 613 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
19 uncom 4113 . . . . . . . 8 ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = ((𝐴(,)𝐵) ∪ {𝐴, 𝐵})
20 prunioo 13398 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
2119, 20eqtrid 2788 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
22213expa 1118 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
2318, 22sylan 580 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) = (𝐴[,]𝐵))
2417, 23sseqtrrd 3985 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
25 simpr 485 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
26 simpl 483 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2712, 24, 25, 26ltlecasei 11263 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
2814ntropn 22400 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)))
297, 13, 28sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)))
30 eqid 2736 . . . . . . . . . 10 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3130rexmet 24154 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
32 eqid 2736 . . . . . . . . . . 11 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
3330, 32tgioo 24159 . . . . . . . . . 10 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
3433mopni2 23849 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3531, 34mp3an1 1448 . . . . . . . 8 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3629, 35sylan 580 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
3726ad2antrr 724 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℝ)
38 rphalfcl 12942 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
3938adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
4037, 39ltsubrpd 12989 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) < 𝐴)
4139rpred 12957 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
4237, 41resubcld 11583 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ ℝ)
4342, 37ltnled 11302 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) < 𝐴 ↔ ¬ 𝐴 ≤ (𝐴 − (𝑥 / 2))))
4440, 43mpbid 231 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ 𝐴 ≤ (𝐴 − (𝑥 / 2)))
45 rpre 12923 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
4645adantl 482 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
47 rphalflt 12944 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 / 2) < 𝑥)
4847adantl 482 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) < 𝑥)
4941, 46, 37, 48ltsub2dd 11768 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) < (𝐴 − (𝑥 / 2)))
5037, 46readdcld 11184 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 + 𝑥) ∈ ℝ)
51 ltaddrp 12952 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → 𝐴 < (𝐴 + 𝑥))
5237, 51sylancom 588 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐴 < (𝐴 + 𝑥))
5342, 37, 50, 40, 52lttrd 11316 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))
5437, 46resubcld 11583 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) ∈ ℝ)
5554rexrd 11205 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴𝑥) ∈ ℝ*)
5650rexrd 11205 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 + 𝑥) ∈ ℝ*)
57 elioo2 13305 . . . . . . . . . . . . . 14 (((𝐴𝑥) ∈ ℝ* ∧ (𝐴 + 𝑥) ∈ ℝ*) → ((𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ (𝐴𝑥) < (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))))
5855, 56, 57syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ (𝐴𝑥) < (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) < (𝐴 + 𝑥))))
5942, 49, 53, 58mpbir3and 1342 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6030bl2ioo 24155 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6137, 46, 60syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐴𝑥)(,)(𝐴 + 𝑥)))
6259, 61eleqtrrd 2841 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐴 − (𝑥 / 2)) ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥))
63 ssel 3937 . . . . . . . . . . 11 ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) → (𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
6462, 63syl5com 31 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
6516ad2antrr 724 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
6665sseld 3943 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵)))
67 elicc2 13329 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) ↔ ((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) ≤ 𝐵)))
68 simp2 1137 . . . . . . . . . . . 12 (((𝐴 − (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐴 − (𝑥 / 2)) ∧ (𝐴 − (𝑥 / 2)) ≤ 𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2)))
6967, 68syl6bi 252 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7069ad2antrr 724 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴 − (𝑥 / 2)) ∈ (𝐴[,]𝐵) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7164, 66, 703syld 60 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → 𝐴 ≤ (𝐴 − (𝑥 / 2))))
7244, 71mtod 197 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7372nrexdv 3146 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ¬ ∃𝑥 ∈ ℝ+ (𝐴(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7436, 73pm2.65da 815 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7533mopni2 23849 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7631, 75mp3an1 1448 . . . . . . . 8 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∈ (topGen‘ran (,)) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7729, 76sylan 580 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
7825ad2antrr 724 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℝ)
7938adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
8078, 79ltaddrpd 12990 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝐵 < (𝐵 + (𝑥 / 2)))
8179rpred 12957 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ)
8278, 81readdcld 11184 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ ℝ)
8378, 82ltnled 11302 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 < (𝐵 + (𝑥 / 2)) ↔ ¬ (𝐵 + (𝑥 / 2)) ≤ 𝐵))
8480, 83mpbid 231 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐵 + (𝑥 / 2)) ≤ 𝐵)
8545adantl 482 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
8678, 85resubcld 11583 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) ∈ ℝ)
87 ltsubrp 12951 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < 𝐵)
8878, 87sylancom 588 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < 𝐵)
8986, 78, 82, 88, 80lttrd 11316 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) < (𝐵 + (𝑥 / 2)))
9047adantl 482 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) < 𝑥)
9181, 85, 78, 90ltadd2dd 11314 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))
9286rexrd 11205 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵𝑥) ∈ ℝ*)
9378, 85readdcld 11184 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ)
9493rexrd 11205 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + 𝑥) ∈ ℝ*)
95 elioo2 13305 . . . . . . . . . . . . . 14 (((𝐵𝑥) ∈ ℝ* ∧ (𝐵 + 𝑥) ∈ ℝ*) → ((𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ (𝐵𝑥) < (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))))
9692, 94, 95syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ (𝐵𝑥) < (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) < (𝐵 + 𝑥))))
9782, 89, 91, 96mpbir3and 1342 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ ((𝐵𝑥)(,)(𝐵 + 𝑥)))
9830bl2ioo 24155 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐵𝑥)(,)(𝐵 + 𝑥)))
9978, 85, 98syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) = ((𝐵𝑥)(,)(𝐵 + 𝑥)))
10097, 99eleqtrrd 2841 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → (𝐵 + (𝑥 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥))
101 ssel 3937 . . . . . . . . . . 11 ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → ((𝐵 + (𝑥 / 2)) ∈ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) → (𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
102100, 101syl5com 31 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
10316ad2antrr 724 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵))
104103sseld 3943 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵)))
105 elicc2 13329 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) ↔ ((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) ≤ 𝐵)))
106 simp3 1138 . . . . . . . . . . . 12 (((𝐵 + (𝑥 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝐵 + (𝑥 / 2)) ∧ (𝐵 + (𝑥 / 2)) ≤ 𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵)
107105, 106syl6bi 252 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
108107ad2antrr 724 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵 + (𝑥 / 2)) ∈ (𝐴[,]𝐵) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
109102, 104, 1083syld 60 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ((𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) → (𝐵 + (𝑥 / 2)) ≤ 𝐵))
11084, 109mtod 197 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) ∧ 𝑥 ∈ ℝ+) → ¬ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
111110nrexdv 3146 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) → ¬ ∃𝑥 ∈ ℝ+ (𝐵(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑥) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
11277, 111pm2.65da 815 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
113 eleq1 2825 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
114113notbid 317 . . . . . . 7 (𝑥 = 𝐴 → (¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ ¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
115 eleq1 2825 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
116115notbid 317 . . . . . . 7 (𝑥 = 𝐵 → (¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
117114, 116ralprg 4655 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ↔ (¬ 𝐴 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∧ ¬ 𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))))
11874, 112, 117mpbir2and 711 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
119 disjr 4409 . . . . 5 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅ ↔ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑥 ∈ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
120118, 119sylibr 233 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅)
121 disjssun 4427 . . . 4 ((((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ∩ {𝐴, 𝐵}) = ∅ → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵)))
122120, 121syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵)))
12327, 122mpbid 231 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) ⊆ (𝐴(,)𝐵))
124 iooretop 24129 . . . 4 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
125 ioossicc 13350 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
12614ssntr 22409 . . . 4 ((((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) ∧ ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ∧ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
127124, 125, 126mpanr12 703 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
1287, 13, 127sylancr 587 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
129123, 128eqssd 3961 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  cun 3908  cin 3909  wss 3910  c0 4282  {cpr 4588   class class class wbr 5105   × cxp 5631  ran crn 5634  cres 5635  ccom 5637  cfv 6496  (class class class)co 7357  cr 11050   + caddc 11054  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  2c2 12208  +crp 12915  (,)cioo 13264  [,]cicc 13267  abscabs 15119  topGenctg 17319  ∞Metcxmet 20781  ballcbl 20783  MetOpencmopn 20786  Topctop 22242  intcnt 22368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-ntr 22371
This theorem is referenced by:  dvmptresicc  25280  rolle  25354  cmvth  25355  mvth  25356  dvlip  25357  dvlipcn  25358  dvlip2  25359  c1liplem1  25360  dvgt0lem1  25366  dvle  25371  lhop1lem  25377  dvcnvrelem1  25381  dvcvx  25384  dvfsumabs  25387  ftc1cn  25407  ftc2  25408  ftc2ditglem  25409  itgparts  25411  itgsubstlem  25412  itgpowd  25414  efcvx  25808  pige3ALT  25876  logccv  26018  lgamgulmlem2  26379  ftc2re  33211  ftc1cnnc  36150  ftc2nc  36160  areacirc  36171  dvrelog2  40521  lhe4.4ex1a  42599  dvbdfbdioolem1  44159  itgsin0pilem1  44181  itgsinexplem1  44185  itgcoscmulx  44200  itgiccshift  44211  itgperiod  44212  itgsbtaddcnst  44213  dirkeritg  44333  fourierdlem39  44377  fourierdlem73  44410  etransclem46  44511
  Copyright terms: Public domain W3C validator