Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem57 Structured version   Visualization version   GIF version

Theorem stoweidlem57 46048
Description: There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. In this theorem, it is proven the non-trivial case (the closed set D is nonempty). Here D is used to represent A in the paper, because the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem57.1 𝑡𝐷
stoweidlem57.2 𝑡𝑈
stoweidlem57.3 𝑡𝜑
stoweidlem57.4 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem57.5 𝑉 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
stoweidlem57.6 𝐾 = (topGen‘ran (,))
stoweidlem57.7 𝑇 = 𝐽
stoweidlem57.8 𝐶 = (𝐽 Cn 𝐾)
stoweidlem57.9 𝑈 = (𝑇𝐵)
stoweidlem57.10 (𝜑𝐽 ∈ Comp)
stoweidlem57.11 (𝜑𝐴𝐶)
stoweidlem57.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem57.13 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem57.14 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
stoweidlem57.15 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem57.16 (𝜑𝐵 ∈ (Clsd‘𝐽))
stoweidlem57.17 (𝜑𝐷 ∈ (Clsd‘𝐽))
stoweidlem57.18 (𝜑 → (𝐵𝐷) = ∅)
stoweidlem57.19 (𝜑𝐷 ≠ ∅)
stoweidlem57.20 (𝜑𝐸 ∈ ℝ+)
stoweidlem57.21 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem57 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝐴,𝑎,𝑓,𝑞,𝑟   𝑇,𝑟,𝑤   𝑈,𝑔   𝑔,𝑉   𝑡,𝐾   𝜑,𝑟   𝑔,,𝜑   𝑓,𝑉,𝑟   𝑇,𝑎,𝑒   𝑇,,𝑥   𝑤,𝑌   𝑔,𝐽,,𝑡   𝑤,𝐽   𝑈,𝑒,,𝑤   𝑒,𝐸,𝑤   𝑓,𝐸,𝑔,𝑡,𝑥   𝑈,𝑎,𝑓,𝑞,𝑟   𝜑,𝑎,𝑓,𝑞   𝐵,𝑓,𝑔,𝑥   𝐷,𝑎,𝑓,𝑞,𝑟   𝑤,𝐷,   𝑥,𝐷   𝑓,   𝜑,𝑒,𝑤   ,𝐸,𝑟,𝑡,𝑤   𝐵,𝑟,𝑤   𝑇,𝑓,𝑔,𝑞,𝑡   𝐴,𝑒,𝑡,𝑎   𝐷,𝑒,𝑔,𝑓   𝐴,𝑔,,𝑥   𝑓,𝑌,𝑔,𝑟   𝑤,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑡)   𝐵(𝑡,𝑒,,𝑞,𝑎)   𝐶(𝑥,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑟,𝑞,𝑎)   𝐷(𝑡)   𝑈(𝑥,𝑡)   𝐸(𝑞,𝑎)   𝐽(𝑥,𝑒,𝑓,𝑟,𝑞,𝑎)   𝐾(𝑥,𝑤,𝑒,𝑓,𝑔,,𝑟,𝑞,𝑎)   𝑉(𝑥,𝑤,𝑡,𝑒,,𝑞,𝑎)   𝑌(𝑥,𝑡,𝑒,,𝑞,𝑎)

Proof of Theorem stoweidlem57
Dummy variables 𝑠 𝑖 𝑦 𝑘 𝑢 𝑚 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem57.2 . . . . . . . . . 10 𝑡𝑈
2 stoweidlem57.3 . . . . . . . . . . 11 𝑡𝜑
3 stoweidlem57.1 . . . . . . . . . . . 12 𝑡𝐷
43nfcri 2883 . . . . . . . . . . 11 𝑡 𝑠𝐷
52, 4nfan 1899 . . . . . . . . . 10 𝑡(𝜑𝑠𝐷)
6 stoweidlem57.6 . . . . . . . . . 10 𝐾 = (topGen‘ran (,))
7 stoweidlem57.10 . . . . . . . . . . 11 (𝜑𝐽 ∈ Comp)
87adantr 480 . . . . . . . . . 10 ((𝜑𝑠𝐷) → 𝐽 ∈ Comp)
9 stoweidlem57.7 . . . . . . . . . 10 𝑇 = 𝐽
10 stoweidlem57.8 . . . . . . . . . 10 𝐶 = (𝐽 Cn 𝐾)
11 stoweidlem57.11 . . . . . . . . . . 11 (𝜑𝐴𝐶)
1211adantr 480 . . . . . . . . . 10 ((𝜑𝑠𝐷) → 𝐴𝐶)
13 stoweidlem57.12 . . . . . . . . . . 11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
14133adant1r 1178 . . . . . . . . . 10 (((𝜑𝑠𝐷) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
15 stoweidlem57.13 . . . . . . . . . . 11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
16153adant1r 1178 . . . . . . . . . 10 (((𝜑𝑠𝐷) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
17 stoweidlem57.14 . . . . . . . . . . 11 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
1817adantlr 715 . . . . . . . . . 10 (((𝜑𝑠𝐷) ∧ 𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
19 stoweidlem57.15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
2019adantlr 715 . . . . . . . . . 10 (((𝜑𝑠𝐷) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
21 stoweidlem57.9 . . . . . . . . . . . 12 𝑈 = (𝑇𝐵)
22 stoweidlem57.16 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (Clsd‘𝐽))
23 cmptop 23280 . . . . . . . . . . . . . . 15 (𝐽 ∈ Comp → 𝐽 ∈ Top)
249iscld 22912 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top → (𝐵 ∈ (Clsd‘𝐽) ↔ (𝐵𝑇 ∧ (𝑇𝐵) ∈ 𝐽)))
257, 23, 243syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 ∈ (Clsd‘𝐽) ↔ (𝐵𝑇 ∧ (𝑇𝐵) ∈ 𝐽)))
2622, 25mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝑇 ∧ (𝑇𝐵) ∈ 𝐽))
2726simprd 495 . . . . . . . . . . . 12 (𝜑 → (𝑇𝐵) ∈ 𝐽)
2821, 27eqeltrid 2832 . . . . . . . . . . 11 (𝜑𝑈𝐽)
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑠𝐷) → 𝑈𝐽)
30 stoweidlem57.17 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ (Clsd‘𝐽))
319cldss 22914 . . . . . . . . . . . . . 14 (𝐷 ∈ (Clsd‘𝐽) → 𝐷𝑇)
3230, 31syl 17 . . . . . . . . . . . . 13 (𝜑𝐷𝑇)
3332sselda 3935 . . . . . . . . . . . 12 ((𝜑𝑠𝐷) → 𝑠𝑇)
34 stoweidlem57.18 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐷) = ∅)
35 disjr 4402 . . . . . . . . . . . . . 14 ((𝐵𝐷) = ∅ ↔ ∀𝑠𝐷 ¬ 𝑠𝐵)
3634, 35sylib 218 . . . . . . . . . . . . 13 (𝜑 → ∀𝑠𝐷 ¬ 𝑠𝐵)
3736r19.21bi 3221 . . . . . . . . . . . 12 ((𝜑𝑠𝐷) → ¬ 𝑠𝐵)
3833, 37eldifd 3914 . . . . . . . . . . 11 ((𝜑𝑠𝐷) → 𝑠 ∈ (𝑇𝐵))
3938, 21eleqtrrdi 2839 . . . . . . . . . 10 ((𝜑𝑠𝐷) → 𝑠𝑈)
401, 5, 6, 8, 9, 10, 12, 14, 16, 18, 20, 29, 39stoweidlem56 46047 . . . . . . . . 9 ((𝜑𝑠𝐷) → ∃𝑤𝐽 ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))))
41 simpl 482 . . . . . . . . . . 11 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → 𝑤𝐽)
42 simprll 778 . . . . . . . . . . 11 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → 𝑠𝑤)
43 simprr 772 . . . . . . . . . . . 12 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))
44 stoweidlem57.5 . . . . . . . . . . . . 13 𝑉 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
4544reqabi 3418 . . . . . . . . . . . 12 (𝑤𝑉 ↔ (𝑤𝐽 ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))))
4641, 43, 45sylanbrc 583 . . . . . . . . . . 11 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → 𝑤𝑉)
4741, 42, 46jca32 515 . . . . . . . . . 10 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → (𝑤𝐽 ∧ (𝑠𝑤𝑤𝑉)))
4847reximi2 3062 . . . . . . . . 9 (∃𝑤𝐽 ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))) → ∃𝑤𝐽 (𝑠𝑤𝑤𝑉))
49 rexex 3059 . . . . . . . . 9 (∃𝑤𝐽 (𝑠𝑤𝑤𝑉) → ∃𝑤(𝑠𝑤𝑤𝑉))
5040, 48, 493syl 18 . . . . . . . 8 ((𝜑𝑠𝐷) → ∃𝑤(𝑠𝑤𝑤𝑉))
51 nfcv 2891 . . . . . . . . 9 𝑤𝑠
52 nfrab1 3415 . . . . . . . . . 10 𝑤{𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
5344, 52nfcxfr 2889 . . . . . . . . 9 𝑤𝑉
5451, 53elunif 45004 . . . . . . . 8 (𝑠 𝑉 ↔ ∃𝑤(𝑠𝑤𝑤𝑉))
5550, 54sylibr 234 . . . . . . 7 ((𝜑𝑠𝐷) → 𝑠 𝑉)
5655ex 412 . . . . . 6 (𝜑 → (𝑠𝐷𝑠 𝑉))
5756ssrdv 3941 . . . . 5 (𝜑𝐷 𝑉)
58 cmpcld 23287 . . . . . . . 8 ((𝐽 ∈ Comp ∧ 𝐷 ∈ (Clsd‘𝐽)) → (𝐽t 𝐷) ∈ Comp)
597, 30, 58syl2anc 584 . . . . . . 7 (𝜑 → (𝐽t 𝐷) ∈ Comp)
607, 23syl 17 . . . . . . . 8 (𝜑𝐽 ∈ Top)
619cmpsub 23285 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐷𝑇) → ((𝐽t 𝐷) ∈ Comp ↔ ∀𝑘 ∈ 𝒫 𝐽(𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢)))
6260, 32, 61syl2anc 584 . . . . . . 7 (𝜑 → ((𝐽t 𝐷) ∈ Comp ↔ ∀𝑘 ∈ 𝒫 𝐽(𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢)))
6359, 62mpbid 232 . . . . . 6 (𝜑 → ∀𝑘 ∈ 𝒫 𝐽(𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢))
64 ssrab2 4031 . . . . . . . 8 {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))} ⊆ 𝐽
6544, 64eqsstri 3982 . . . . . . 7 𝑉𝐽
6644, 7rabexd 5279 . . . . . . . 8 (𝜑𝑉 ∈ V)
67 elpwg 4554 . . . . . . . 8 (𝑉 ∈ V → (𝑉 ∈ 𝒫 𝐽𝑉𝐽))
6866, 67syl 17 . . . . . . 7 (𝜑 → (𝑉 ∈ 𝒫 𝐽𝑉𝐽))
6965, 68mpbiri 258 . . . . . 6 (𝜑𝑉 ∈ 𝒫 𝐽)
70 unieq 4869 . . . . . . . . 9 (𝑘 = 𝑉 𝑘 = 𝑉)
7170sseq2d 3968 . . . . . . . 8 (𝑘 = 𝑉 → (𝐷 𝑘𝐷 𝑉))
72 pweq 4565 . . . . . . . . . 10 (𝑘 = 𝑉 → 𝒫 𝑘 = 𝒫 𝑉)
7372ineq1d 4170 . . . . . . . . 9 (𝑘 = 𝑉 → (𝒫 𝑘 ∩ Fin) = (𝒫 𝑉 ∩ Fin))
7473rexeqdv 3290 . . . . . . . 8 (𝑘 = 𝑉 → (∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢 ↔ ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢))
7571, 74imbi12d 344 . . . . . . 7 (𝑘 = 𝑉 → ((𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢) ↔ (𝐷 𝑉 → ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢)))
7675rspccva 3576 . . . . . 6 ((∀𝑘 ∈ 𝒫 𝐽(𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢) ∧ 𝑉 ∈ 𝒫 𝐽) → (𝐷 𝑉 → ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢))
7763, 69, 76syl2anc 584 . . . . 5 (𝜑 → (𝐷 𝑉 → ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢))
7857, 77mpd 15 . . . 4 (𝜑 → ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢)
79 elinel1 4152 . . . . . . . . 9 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → 𝑢 ∈ 𝒫 𝑉)
80 elpwi 4558 . . . . . . . . . . 11 (𝑢 ∈ 𝒫 𝑉𝑢𝑉)
8180ssdifssd 4098 . . . . . . . . . 10 (𝑢 ∈ 𝒫 𝑉 → (𝑢 ∖ {∅}) ⊆ 𝑉)
82 vex 3440 . . . . . . . . . . . 12 𝑢 ∈ V
83 difexg 5268 . . . . . . . . . . . 12 (𝑢 ∈ V → (𝑢 ∖ {∅}) ∈ V)
8482, 83ax-mp 5 . . . . . . . . . . 11 (𝑢 ∖ {∅}) ∈ V
8584elpw 4555 . . . . . . . . . 10 ((𝑢 ∖ {∅}) ∈ 𝒫 𝑉 ↔ (𝑢 ∖ {∅}) ⊆ 𝑉)
8681, 85sylibr 234 . . . . . . . . 9 (𝑢 ∈ 𝒫 𝑉 → (𝑢 ∖ {∅}) ∈ 𝒫 𝑉)
8779, 86syl 17 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → (𝑢 ∖ {∅}) ∈ 𝒫 𝑉)
88 elinel2 4153 . . . . . . . . 9 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → 𝑢 ∈ Fin)
89 diffi 9089 . . . . . . . . 9 (𝑢 ∈ Fin → (𝑢 ∖ {∅}) ∈ Fin)
9088, 89syl 17 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → (𝑢 ∖ {∅}) ∈ Fin)
9187, 90elind 4151 . . . . . . 7 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → (𝑢 ∖ {∅}) ∈ (𝒫 𝑉 ∩ Fin))
92913ad2ant2 1134 . . . . . 6 ((𝜑𝑢 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝐷 𝑢) → (𝑢 ∖ {∅}) ∈ (𝒫 𝑉 ∩ Fin))
93 unidif0 5299 . . . . . . . . 9 (𝑢 ∖ {∅}) = 𝑢
9493sseq2i 3965 . . . . . . . 8 (𝐷 (𝑢 ∖ {∅}) ↔ 𝐷 𝑢)
9594biimpri 228 . . . . . . 7 (𝐷 𝑢𝐷 (𝑢 ∖ {∅}))
96953ad2ant3 1135 . . . . . 6 ((𝜑𝑢 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝐷 𝑢) → 𝐷 (𝑢 ∖ {∅}))
97 eldifsni 4741 . . . . . . . 8 (𝑤 ∈ (𝑢 ∖ {∅}) → 𝑤 ≠ ∅)
9897rgen 3046 . . . . . . 7 𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅
9998a1i 11 . . . . . 6 ((𝜑𝑢 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝐷 𝑢) → ∀𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅)
100 unieq 4869 . . . . . . . . 9 (𝑟 = (𝑢 ∖ {∅}) → 𝑟 = (𝑢 ∖ {∅}))
101100sseq2d 3968 . . . . . . . 8 (𝑟 = (𝑢 ∖ {∅}) → (𝐷 𝑟𝐷 (𝑢 ∖ {∅})))
102 raleq 3286 . . . . . . . 8 (𝑟 = (𝑢 ∖ {∅}) → (∀𝑤𝑟 𝑤 ≠ ∅ ↔ ∀𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅))
103101, 102anbi12d 632 . . . . . . 7 (𝑟 = (𝑢 ∖ {∅}) → ((𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅) ↔ (𝐷 (𝑢 ∖ {∅}) ∧ ∀𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅)))
104103rspcev 3577 . . . . . 6 (((𝑢 ∖ {∅}) ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 (𝑢 ∖ {∅}) ∧ ∀𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅)) → ∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
10592, 96, 99, 104syl12anc 836 . . . . 5 ((𝜑𝑢 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝐷 𝑢) → ∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
106105rexlimdv3a 3134 . . . 4 (𝜑 → (∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢 → ∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)))
10778, 106mpd 15 . . 3 (𝜑 → ∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
108 nfv 1914 . . . . . 6 𝜑
109 nfcv 2891 . . . . . . . . . . . 12 +
110 nfre1 3254 . . . . . . . . . . . 12 𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
111109, 110nfralw 3276 . . . . . . . . . . 11 𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
112 nfcv 2891 . . . . . . . . . . 11 𝐽
113111, 112nfrabw 3432 . . . . . . . . . 10 {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
11444, 113nfcxfr 2889 . . . . . . . . 9 𝑉
115114nfpw 4570 . . . . . . . 8 𝒫 𝑉
116 nfcv 2891 . . . . . . . 8 Fin
117115, 116nfin 4175 . . . . . . 7 (𝒫 𝑉 ∩ Fin)
118117nfcri 2883 . . . . . 6 𝑟 ∈ (𝒫 𝑉 ∩ Fin)
119 nfv 1914 . . . . . 6 (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)
120108, 118, 119nf3an 1901 . . . . 5 (𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
121 nfcv 2891 . . . . . . . . . . . 12 𝑡+
122 nfcv 2891 . . . . . . . . . . . . 13 𝑡𝐴
123 nfra1 3253 . . . . . . . . . . . . . 14 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
124 nfra1 3253 . . . . . . . . . . . . . 14 𝑡𝑡𝑤 (𝑡) < 𝑒
125 nfra1 3253 . . . . . . . . . . . . . 14 𝑡𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)
126123, 124, 125nf3an 1901 . . . . . . . . . . . . 13 𝑡(∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
127122, 126nfrexw 3277 . . . . . . . . . . . 12 𝑡𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
128121, 127nfralw 3276 . . . . . . . . . . 11 𝑡𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
129 nfcv 2891 . . . . . . . . . . 11 𝑡𝐽
130128, 129nfrabw 3432 . . . . . . . . . 10 𝑡{𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
13144, 130nfcxfr 2889 . . . . . . . . 9 𝑡𝑉
132131nfpw 4570 . . . . . . . 8 𝑡𝒫 𝑉
133 nfcv 2891 . . . . . . . 8 𝑡Fin
134132, 133nfin 4175 . . . . . . 7 𝑡(𝒫 𝑉 ∩ Fin)
135134nfcri 2883 . . . . . 6 𝑡 𝑟 ∈ (𝒫 𝑉 ∩ Fin)
136 nfcv 2891 . . . . . . . 8 𝑡 𝑟
1373, 136nfss 3928 . . . . . . 7 𝑡 𝐷 𝑟
138 nfv 1914 . . . . . . 7 𝑡𝑤𝑟 𝑤 ≠ ∅
139137, 138nfan 1899 . . . . . 6 𝑡(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)
1402, 135, 139nf3an 1901 . . . . 5 𝑡(𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
141 nfv 1914 . . . . . 6 𝑤𝜑
14253nfpw 4570 . . . . . . . 8 𝑤𝒫 𝑉
143 nfcv 2891 . . . . . . . 8 𝑤Fin
144142, 143nfin 4175 . . . . . . 7 𝑤(𝒫 𝑉 ∩ Fin)
145144nfcri 2883 . . . . . 6 𝑤 𝑟 ∈ (𝒫 𝑉 ∩ Fin)
146 nfv 1914 . . . . . . 7 𝑤 𝐷 𝑟
147 nfra1 3253 . . . . . . 7 𝑤𝑤𝑟 𝑤 ≠ ∅
148146, 147nfan 1899 . . . . . 6 𝑤(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)
149141, 145, 148nf3an 1901 . . . . 5 𝑤(𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
150 stoweidlem57.4 . . . . 5 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
151 simp2 1137 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝑟 ∈ (𝒫 𝑉 ∩ Fin))
152 simp3l 1202 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐷 𝑟)
153 stoweidlem57.19 . . . . . 6 (𝜑𝐷 ≠ ∅)
1541533ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐷 ≠ ∅)
155 stoweidlem57.20 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
1561553ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐸 ∈ ℝ+)
15726simpld 494 . . . . . 6 (𝜑𝐵𝑇)
1581573ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐵𝑇)
159663ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝑉 ∈ V)
160 retop 24647 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
1616, 160eqeltri 2824 . . . . . . . 8 𝐾 ∈ Top
162 cnfex 45016 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
16360, 161, 162sylancl 586 . . . . . . 7 (𝜑 → (𝐽 Cn 𝐾) ∈ V)
16411, 10sseqtrdi 3976 . . . . . . 7 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
165163, 164ssexd 5263 . . . . . 6 (𝜑𝐴 ∈ V)
1661653ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐴 ∈ V)
167120, 140, 149, 21, 150, 44, 151, 152, 154, 156, 158, 159, 166stoweidlem39 46030 . . . 4 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
168167rexlimdv3a 3134 . . 3 (𝜑 → (∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅) → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))))
169107, 168mpd 15 . 2 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
170 nfv 1914 . . . . . . 7 𝑖(𝜑𝑚 ∈ ℕ)
171 nfv 1914 . . . . . . . 8 𝑖 𝑣:(1...𝑚)⟶𝑉
172 nfv 1914 . . . . . . . 8 𝑖 𝐷 ran 𝑣
173 nfv 1914 . . . . . . . . . 10 𝑖 𝑦:(1...𝑚)⟶𝑌
174 nfra1 3253 . . . . . . . . . 10 𝑖𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))
175173, 174nfan 1899 . . . . . . . . 9 𝑖(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
176175nfex 2323 . . . . . . . 8 𝑖𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
177171, 172, 176nf3an 1901 . . . . . . 7 𝑖(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
178170, 177nfan 1899 . . . . . 6 𝑖((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
179 nfv 1914 . . . . . . . 8 𝑡 𝑚 ∈ ℕ
1802, 179nfan 1899 . . . . . . 7 𝑡(𝜑𝑚 ∈ ℕ)
181 nfcv 2891 . . . . . . . . 9 𝑡𝑣
182 nfcv 2891 . . . . . . . . 9 𝑡(1...𝑚)
183181, 182, 131nff 6648 . . . . . . . 8 𝑡 𝑣:(1...𝑚)⟶𝑉
184 nfcv 2891 . . . . . . . . 9 𝑡 ran 𝑣
1853, 184nfss 3928 . . . . . . . 8 𝑡 𝐷 ran 𝑣
186 nfcv 2891 . . . . . . . . . . 11 𝑡𝑦
187123, 122nfrabw 3432 . . . . . . . . . . . 12 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
188150, 187nfcxfr 2889 . . . . . . . . . . 11 𝑡𝑌
189186, 182, 188nff 6648 . . . . . . . . . 10 𝑡 𝑦:(1...𝑚)⟶𝑌
190 nfra1 3253 . . . . . . . . . . . 12 𝑡𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚)
191 nfra1 3253 . . . . . . . . . . . 12 𝑡𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)
192190, 191nfan 1899 . . . . . . . . . . 11 𝑡(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))
193182, 192nfralw 3276 . . . . . . . . . 10 𝑡𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))
194189, 193nfan 1899 . . . . . . . . 9 𝑡(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
195194nfex 2323 . . . . . . . 8 𝑡𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
196183, 185, 195nf3an 1901 . . . . . . 7 𝑡(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
197180, 196nfan 1899 . . . . . 6 𝑡((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
198 nfv 1914 . . . . . . 7 𝑦(𝜑𝑚 ∈ ℕ)
199 nfv 1914 . . . . . . . 8 𝑦 𝑣:(1...𝑚)⟶𝑉
200 nfv 1914 . . . . . . . 8 𝑦 𝐷 ran 𝑣
201 nfe1 2151 . . . . . . . 8 𝑦𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
202199, 200, 201nf3an 1901 . . . . . . 7 𝑦(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
203198, 202nfan 1899 . . . . . 6 𝑦((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
204 nfv 1914 . . . . . . 7 𝑤(𝜑𝑚 ∈ ℕ)
205 nfcv 2891 . . . . . . . . 9 𝑤𝑣
206 nfcv 2891 . . . . . . . . 9 𝑤(1...𝑚)
207205, 206, 53nff 6648 . . . . . . . 8 𝑤 𝑣:(1...𝑚)⟶𝑉
208 nfv 1914 . . . . . . . 8 𝑤 𝐷 ran 𝑣
209 nfv 1914 . . . . . . . 8 𝑤𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
210207, 208, 209nf3an 1901 . . . . . . 7 𝑤(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
211204, 210nfan 1899 . . . . . 6 𝑤((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
212 eqid 2729 . . . . . 6 {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
213 eqid 2729 . . . . . 6 (𝑓 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}, 𝑔 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))) = (𝑓 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}, 𝑔 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
214 eqid 2729 . . . . . 6 (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑚) ↦ ((𝑦𝑖)‘𝑡))) = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑚) ↦ ((𝑦𝑖)‘𝑡)))
215 eqid 2729 . . . . . 6 (𝑡𝑇 ↦ (seq1( · , ((𝑡𝑇 ↦ (𝑖 ∈ (1...𝑚) ↦ ((𝑦𝑖)‘𝑡)))‘𝑡))‘𝑚)) = (𝑡𝑇 ↦ (seq1( · , ((𝑡𝑇 ↦ (𝑖 ∈ (1...𝑚) ↦ ((𝑦𝑖)‘𝑡)))‘𝑡))‘𝑚))
216 simp1ll 1237 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) ∧ 𝑓𝐴𝑔𝐴) → 𝜑)
217216, 15syld3an1 1412 . . . . . 6 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
21811sselda 3935 . . . . . . . 8 ((𝜑𝑓𝐴) → 𝑓𝐶)
2196, 9, 10, 218fcnre 45013 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
220219ad4ant14 752 . . . . . 6 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
221 simplr 768 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝑚 ∈ ℕ)
222 simpr1 1195 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝑣:(1...𝑚)⟶𝑉)
2239cldss 22914 . . . . . . . 8 (𝐵 ∈ (Clsd‘𝐽) → 𝐵𝑇)
22422, 223syl 17 . . . . . . 7 (𝜑𝐵𝑇)
225224ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐵𝑇)
226 simpr2 1196 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐷 ran 𝑣)
22732ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐷𝑇)
228 feq3 6632 . . . . . . . . . . . 12 (𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} → (𝑦:(1...𝑚)⟶𝑌𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}))
229150, 228ax-mp 5 . . . . . . . . . . 11 (𝑦:(1...𝑚)⟶𝑌𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
230229biimpi 216 . . . . . . . . . 10 (𝑦:(1...𝑚)⟶𝑌𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
231230anim1i 615 . . . . . . . . 9 ((𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))) → (𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
232231eximi 1835 . . . . . . . 8 (∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))) → ∃𝑦(𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
2332323ad2ant3 1135 . . . . . . 7 ((𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑦(𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
234233adantl 481 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → ∃𝑦(𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
2357uniexd 7678 . . . . . . . 8 (𝜑 𝐽 ∈ V)
2369, 235eqeltrid 2832 . . . . . . 7 (𝜑𝑇 ∈ V)
237236ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝑇 ∈ V)
238155ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐸 ∈ ℝ+)
239 stoweidlem57.21 . . . . . . 7 (𝜑𝐸 < (1 / 3))
240239ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐸 < (1 / 3))
241178, 197, 203, 211, 9, 212, 213, 214, 215, 44, 217, 220, 221, 222, 225, 226, 227, 234, 237, 238, 240stoweidlem54 46045 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
242241ex 412 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
243242exlimdv 1933 . . 3 ((𝜑𝑚 ∈ ℕ) → (∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
244243rexlimdva 3130 . 2 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
245169, 244mpd 15 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wnfc 2876  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  cin 3902  wss 3903  c0 4284  𝒫 cpw 4551  {csn 4577   cuni 4858   class class class wbr 5092  cmpt 5173  ran crn 5620  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  Fincfn 8872  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  3c3 12184  +crp 12893  (,)cioo 13248  ...cfz 13410  seqcseq 13908  t crest 17324  topGenctg 17341  Topctop 22778  Clsdccld 22901   Cn ccn 23109  Compccmp 23271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-cn 23112  df-cnp 23113  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208
This theorem is referenced by:  stoweidlem58  46049
  Copyright terms: Public domain W3C validator