Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem57 Structured version   Visualization version   GIF version

Theorem stoweidlem57 46048
Description: There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. In this theorem, it is proven the non-trivial case (the closed set D is nonempty). Here D is used to represent A in the paper, because the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem57.1 𝑡𝐷
stoweidlem57.2 𝑡𝑈
stoweidlem57.3 𝑡𝜑
stoweidlem57.4 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem57.5 𝑉 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
stoweidlem57.6 𝐾 = (topGen‘ran (,))
stoweidlem57.7 𝑇 = 𝐽
stoweidlem57.8 𝐶 = (𝐽 Cn 𝐾)
stoweidlem57.9 𝑈 = (𝑇𝐵)
stoweidlem57.10 (𝜑𝐽 ∈ Comp)
stoweidlem57.11 (𝜑𝐴𝐶)
stoweidlem57.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem57.13 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem57.14 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
stoweidlem57.15 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem57.16 (𝜑𝐵 ∈ (Clsd‘𝐽))
stoweidlem57.17 (𝜑𝐷 ∈ (Clsd‘𝐽))
stoweidlem57.18 (𝜑 → (𝐵𝐷) = ∅)
stoweidlem57.19 (𝜑𝐷 ≠ ∅)
stoweidlem57.20 (𝜑𝐸 ∈ ℝ+)
stoweidlem57.21 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem57 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝐴,𝑎,𝑓,𝑞,𝑟   𝑇,𝑟,𝑤   𝑈,𝑔   𝑔,𝑉   𝑡,𝐾   𝜑,𝑟   𝑔,,𝜑   𝑓,𝑉,𝑟   𝑇,𝑎,𝑒   𝑇,,𝑥   𝑤,𝑌   𝑔,𝐽,,𝑡   𝑤,𝐽   𝑈,𝑒,,𝑤   𝑒,𝐸,𝑤   𝑓,𝐸,𝑔,𝑡,𝑥   𝑈,𝑎,𝑓,𝑞,𝑟   𝜑,𝑎,𝑓,𝑞   𝐵,𝑓,𝑔,𝑥   𝐷,𝑎,𝑓,𝑞,𝑟   𝑤,𝐷,   𝑥,𝐷   𝑓,   𝜑,𝑒,𝑤   ,𝐸,𝑟,𝑡,𝑤   𝐵,𝑟,𝑤   𝑇,𝑓,𝑔,𝑞,𝑡   𝐴,𝑒,𝑡,𝑎   𝐷,𝑒,𝑔,𝑓   𝐴,𝑔,,𝑥   𝑓,𝑌,𝑔,𝑟   𝑤,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑡)   𝐵(𝑡,𝑒,,𝑞,𝑎)   𝐶(𝑥,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑟,𝑞,𝑎)   𝐷(𝑡)   𝑈(𝑥,𝑡)   𝐸(𝑞,𝑎)   𝐽(𝑥,𝑒,𝑓,𝑟,𝑞,𝑎)   𝐾(𝑥,𝑤,𝑒,𝑓,𝑔,,𝑟,𝑞,𝑎)   𝑉(𝑥,𝑤,𝑡,𝑒,,𝑞,𝑎)   𝑌(𝑥,𝑡,𝑒,,𝑞,𝑎)

Proof of Theorem stoweidlem57
Dummy variables 𝑠 𝑖 𝑦 𝑘 𝑢 𝑚 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem57.2 . . . . . . . . . 10 𝑡𝑈
2 stoweidlem57.3 . . . . . . . . . . 11 𝑡𝜑
3 stoweidlem57.1 . . . . . . . . . . . 12 𝑡𝐷
43nfcri 2883 . . . . . . . . . . 11 𝑡 𝑠𝐷
52, 4nfan 1899 . . . . . . . . . 10 𝑡(𝜑𝑠𝐷)
6 stoweidlem57.6 . . . . . . . . . 10 𝐾 = (topGen‘ran (,))
7 stoweidlem57.10 . . . . . . . . . . 11 (𝜑𝐽 ∈ Comp)
87adantr 480 . . . . . . . . . 10 ((𝜑𝑠𝐷) → 𝐽 ∈ Comp)
9 stoweidlem57.7 . . . . . . . . . 10 𝑇 = 𝐽
10 stoweidlem57.8 . . . . . . . . . 10 𝐶 = (𝐽 Cn 𝐾)
11 stoweidlem57.11 . . . . . . . . . . 11 (𝜑𝐴𝐶)
1211adantr 480 . . . . . . . . . 10 ((𝜑𝑠𝐷) → 𝐴𝐶)
13 stoweidlem57.12 . . . . . . . . . . 11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
14133adant1r 1178 . . . . . . . . . 10 (((𝜑𝑠𝐷) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
15 stoweidlem57.13 . . . . . . . . . . 11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
16153adant1r 1178 . . . . . . . . . 10 (((𝜑𝑠𝐷) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
17 stoweidlem57.14 . . . . . . . . . . 11 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
1817adantlr 715 . . . . . . . . . 10 (((𝜑𝑠𝐷) ∧ 𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
19 stoweidlem57.15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
2019adantlr 715 . . . . . . . . . 10 (((𝜑𝑠𝐷) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
21 stoweidlem57.9 . . . . . . . . . . . 12 𝑈 = (𝑇𝐵)
22 stoweidlem57.16 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (Clsd‘𝐽))
23 cmptop 23315 . . . . . . . . . . . . . . 15 (𝐽 ∈ Comp → 𝐽 ∈ Top)
249iscld 22947 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top → (𝐵 ∈ (Clsd‘𝐽) ↔ (𝐵𝑇 ∧ (𝑇𝐵) ∈ 𝐽)))
257, 23, 243syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 ∈ (Clsd‘𝐽) ↔ (𝐵𝑇 ∧ (𝑇𝐵) ∈ 𝐽)))
2622, 25mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝑇 ∧ (𝑇𝐵) ∈ 𝐽))
2726simprd 495 . . . . . . . . . . . 12 (𝜑 → (𝑇𝐵) ∈ 𝐽)
2821, 27eqeltrid 2832 . . . . . . . . . . 11 (𝜑𝑈𝐽)
2928adantr 480 . . . . . . . . . 10 ((𝜑𝑠𝐷) → 𝑈𝐽)
30 stoweidlem57.17 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ (Clsd‘𝐽))
319cldss 22949 . . . . . . . . . . . . . 14 (𝐷 ∈ (Clsd‘𝐽) → 𝐷𝑇)
3230, 31syl 17 . . . . . . . . . . . . 13 (𝜑𝐷𝑇)
3332sselda 3943 . . . . . . . . . . . 12 ((𝜑𝑠𝐷) → 𝑠𝑇)
34 stoweidlem57.18 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐷) = ∅)
35 disjr 4410 . . . . . . . . . . . . . 14 ((𝐵𝐷) = ∅ ↔ ∀𝑠𝐷 ¬ 𝑠𝐵)
3634, 35sylib 218 . . . . . . . . . . . . 13 (𝜑 → ∀𝑠𝐷 ¬ 𝑠𝐵)
3736r19.21bi 3227 . . . . . . . . . . . 12 ((𝜑𝑠𝐷) → ¬ 𝑠𝐵)
3833, 37eldifd 3922 . . . . . . . . . . 11 ((𝜑𝑠𝐷) → 𝑠 ∈ (𝑇𝐵))
3938, 21eleqtrrdi 2839 . . . . . . . . . 10 ((𝜑𝑠𝐷) → 𝑠𝑈)
401, 5, 6, 8, 9, 10, 12, 14, 16, 18, 20, 29, 39stoweidlem56 46047 . . . . . . . . 9 ((𝜑𝑠𝐷) → ∃𝑤𝐽 ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))))
41 simpl 482 . . . . . . . . . . 11 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → 𝑤𝐽)
42 simprll 778 . . . . . . . . . . 11 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → 𝑠𝑤)
43 simprr 772 . . . . . . . . . . . 12 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))
44 stoweidlem57.5 . . . . . . . . . . . . 13 𝑉 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
4544reqabi 3426 . . . . . . . . . . . 12 (𝑤𝑉 ↔ (𝑤𝐽 ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))))
4641, 43, 45sylanbrc 583 . . . . . . . . . . 11 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → 𝑤𝑉)
4741, 42, 46jca32 515 . . . . . . . . . 10 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → (𝑤𝐽 ∧ (𝑠𝑤𝑤𝑉)))
4847reximi2 3062 . . . . . . . . 9 (∃𝑤𝐽 ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))) → ∃𝑤𝐽 (𝑠𝑤𝑤𝑉))
49 rexex 3059 . . . . . . . . 9 (∃𝑤𝐽 (𝑠𝑤𝑤𝑉) → ∃𝑤(𝑠𝑤𝑤𝑉))
5040, 48, 493syl 18 . . . . . . . 8 ((𝜑𝑠𝐷) → ∃𝑤(𝑠𝑤𝑤𝑉))
51 nfcv 2891 . . . . . . . . 9 𝑤𝑠
52 nfrab1 3423 . . . . . . . . . 10 𝑤{𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
5344, 52nfcxfr 2889 . . . . . . . . 9 𝑤𝑉
5451, 53elunif 45003 . . . . . . . 8 (𝑠 𝑉 ↔ ∃𝑤(𝑠𝑤𝑤𝑉))
5550, 54sylibr 234 . . . . . . 7 ((𝜑𝑠𝐷) → 𝑠 𝑉)
5655ex 412 . . . . . 6 (𝜑 → (𝑠𝐷𝑠 𝑉))
5756ssrdv 3949 . . . . 5 (𝜑𝐷 𝑉)
58 cmpcld 23322 . . . . . . . 8 ((𝐽 ∈ Comp ∧ 𝐷 ∈ (Clsd‘𝐽)) → (𝐽t 𝐷) ∈ Comp)
597, 30, 58syl2anc 584 . . . . . . 7 (𝜑 → (𝐽t 𝐷) ∈ Comp)
607, 23syl 17 . . . . . . . 8 (𝜑𝐽 ∈ Top)
619cmpsub 23320 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐷𝑇) → ((𝐽t 𝐷) ∈ Comp ↔ ∀𝑘 ∈ 𝒫 𝐽(𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢)))
6260, 32, 61syl2anc 584 . . . . . . 7 (𝜑 → ((𝐽t 𝐷) ∈ Comp ↔ ∀𝑘 ∈ 𝒫 𝐽(𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢)))
6359, 62mpbid 232 . . . . . 6 (𝜑 → ∀𝑘 ∈ 𝒫 𝐽(𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢))
64 ssrab2 4039 . . . . . . . 8 {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))} ⊆ 𝐽
6544, 64eqsstri 3990 . . . . . . 7 𝑉𝐽
6644, 7rabexd 5290 . . . . . . . 8 (𝜑𝑉 ∈ V)
67 elpwg 4562 . . . . . . . 8 (𝑉 ∈ V → (𝑉 ∈ 𝒫 𝐽𝑉𝐽))
6866, 67syl 17 . . . . . . 7 (𝜑 → (𝑉 ∈ 𝒫 𝐽𝑉𝐽))
6965, 68mpbiri 258 . . . . . 6 (𝜑𝑉 ∈ 𝒫 𝐽)
70 unieq 4878 . . . . . . . . 9 (𝑘 = 𝑉 𝑘 = 𝑉)
7170sseq2d 3976 . . . . . . . 8 (𝑘 = 𝑉 → (𝐷 𝑘𝐷 𝑉))
72 pweq 4573 . . . . . . . . . 10 (𝑘 = 𝑉 → 𝒫 𝑘 = 𝒫 𝑉)
7372ineq1d 4178 . . . . . . . . 9 (𝑘 = 𝑉 → (𝒫 𝑘 ∩ Fin) = (𝒫 𝑉 ∩ Fin))
7473rexeqdv 3297 . . . . . . . 8 (𝑘 = 𝑉 → (∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢 ↔ ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢))
7571, 74imbi12d 344 . . . . . . 7 (𝑘 = 𝑉 → ((𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢) ↔ (𝐷 𝑉 → ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢)))
7675rspccva 3584 . . . . . 6 ((∀𝑘 ∈ 𝒫 𝐽(𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢) ∧ 𝑉 ∈ 𝒫 𝐽) → (𝐷 𝑉 → ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢))
7763, 69, 76syl2anc 584 . . . . 5 (𝜑 → (𝐷 𝑉 → ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢))
7857, 77mpd 15 . . . 4 (𝜑 → ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢)
79 elinel1 4160 . . . . . . . . 9 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → 𝑢 ∈ 𝒫 𝑉)
80 elpwi 4566 . . . . . . . . . . 11 (𝑢 ∈ 𝒫 𝑉𝑢𝑉)
8180ssdifssd 4106 . . . . . . . . . 10 (𝑢 ∈ 𝒫 𝑉 → (𝑢 ∖ {∅}) ⊆ 𝑉)
82 vex 3448 . . . . . . . . . . . 12 𝑢 ∈ V
83 difexg 5279 . . . . . . . . . . . 12 (𝑢 ∈ V → (𝑢 ∖ {∅}) ∈ V)
8482, 83ax-mp 5 . . . . . . . . . . 11 (𝑢 ∖ {∅}) ∈ V
8584elpw 4563 . . . . . . . . . 10 ((𝑢 ∖ {∅}) ∈ 𝒫 𝑉 ↔ (𝑢 ∖ {∅}) ⊆ 𝑉)
8681, 85sylibr 234 . . . . . . . . 9 (𝑢 ∈ 𝒫 𝑉 → (𝑢 ∖ {∅}) ∈ 𝒫 𝑉)
8779, 86syl 17 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → (𝑢 ∖ {∅}) ∈ 𝒫 𝑉)
88 elinel2 4161 . . . . . . . . 9 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → 𝑢 ∈ Fin)
89 diffi 9116 . . . . . . . . 9 (𝑢 ∈ Fin → (𝑢 ∖ {∅}) ∈ Fin)
9088, 89syl 17 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → (𝑢 ∖ {∅}) ∈ Fin)
9187, 90elind 4159 . . . . . . 7 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → (𝑢 ∖ {∅}) ∈ (𝒫 𝑉 ∩ Fin))
92913ad2ant2 1134 . . . . . 6 ((𝜑𝑢 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝐷 𝑢) → (𝑢 ∖ {∅}) ∈ (𝒫 𝑉 ∩ Fin))
93 unidif0 5310 . . . . . . . . 9 (𝑢 ∖ {∅}) = 𝑢
9493sseq2i 3973 . . . . . . . 8 (𝐷 (𝑢 ∖ {∅}) ↔ 𝐷 𝑢)
9594biimpri 228 . . . . . . 7 (𝐷 𝑢𝐷 (𝑢 ∖ {∅}))
96953ad2ant3 1135 . . . . . 6 ((𝜑𝑢 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝐷 𝑢) → 𝐷 (𝑢 ∖ {∅}))
97 eldifsni 4750 . . . . . . . 8 (𝑤 ∈ (𝑢 ∖ {∅}) → 𝑤 ≠ ∅)
9897rgen 3046 . . . . . . 7 𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅
9998a1i 11 . . . . . 6 ((𝜑𝑢 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝐷 𝑢) → ∀𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅)
100 unieq 4878 . . . . . . . . 9 (𝑟 = (𝑢 ∖ {∅}) → 𝑟 = (𝑢 ∖ {∅}))
101100sseq2d 3976 . . . . . . . 8 (𝑟 = (𝑢 ∖ {∅}) → (𝐷 𝑟𝐷 (𝑢 ∖ {∅})))
102 raleq 3293 . . . . . . . 8 (𝑟 = (𝑢 ∖ {∅}) → (∀𝑤𝑟 𝑤 ≠ ∅ ↔ ∀𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅))
103101, 102anbi12d 632 . . . . . . 7 (𝑟 = (𝑢 ∖ {∅}) → ((𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅) ↔ (𝐷 (𝑢 ∖ {∅}) ∧ ∀𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅)))
104103rspcev 3585 . . . . . 6 (((𝑢 ∖ {∅}) ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 (𝑢 ∖ {∅}) ∧ ∀𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅)) → ∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
10592, 96, 99, 104syl12anc 836 . . . . 5 ((𝜑𝑢 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝐷 𝑢) → ∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
106105rexlimdv3a 3138 . . . 4 (𝜑 → (∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢 → ∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)))
10778, 106mpd 15 . . 3 (𝜑 → ∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
108 nfv 1914 . . . . . 6 𝜑
109 nfcv 2891 . . . . . . . . . . . 12 +
110 nfre1 3260 . . . . . . . . . . . 12 𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
111109, 110nfralw 3283 . . . . . . . . . . 11 𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
112 nfcv 2891 . . . . . . . . . . 11 𝐽
113111, 112nfrabw 3440 . . . . . . . . . 10 {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
11444, 113nfcxfr 2889 . . . . . . . . 9 𝑉
115114nfpw 4578 . . . . . . . 8 𝒫 𝑉
116 nfcv 2891 . . . . . . . 8 Fin
117115, 116nfin 4183 . . . . . . 7 (𝒫 𝑉 ∩ Fin)
118117nfcri 2883 . . . . . 6 𝑟 ∈ (𝒫 𝑉 ∩ Fin)
119 nfv 1914 . . . . . 6 (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)
120108, 118, 119nf3an 1901 . . . . 5 (𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
121 nfcv 2891 . . . . . . . . . . . 12 𝑡+
122 nfcv 2891 . . . . . . . . . . . . 13 𝑡𝐴
123 nfra1 3259 . . . . . . . . . . . . . 14 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
124 nfra1 3259 . . . . . . . . . . . . . 14 𝑡𝑡𝑤 (𝑡) < 𝑒
125 nfra1 3259 . . . . . . . . . . . . . 14 𝑡𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)
126123, 124, 125nf3an 1901 . . . . . . . . . . . . 13 𝑡(∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
127122, 126nfrexw 3284 . . . . . . . . . . . 12 𝑡𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
128121, 127nfralw 3283 . . . . . . . . . . 11 𝑡𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
129 nfcv 2891 . . . . . . . . . . 11 𝑡𝐽
130128, 129nfrabw 3440 . . . . . . . . . 10 𝑡{𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
13144, 130nfcxfr 2889 . . . . . . . . 9 𝑡𝑉
132131nfpw 4578 . . . . . . . 8 𝑡𝒫 𝑉
133 nfcv 2891 . . . . . . . 8 𝑡Fin
134132, 133nfin 4183 . . . . . . 7 𝑡(𝒫 𝑉 ∩ Fin)
135134nfcri 2883 . . . . . 6 𝑡 𝑟 ∈ (𝒫 𝑉 ∩ Fin)
136 nfcv 2891 . . . . . . . 8 𝑡 𝑟
1373, 136nfss 3936 . . . . . . 7 𝑡 𝐷 𝑟
138 nfv 1914 . . . . . . 7 𝑡𝑤𝑟 𝑤 ≠ ∅
139137, 138nfan 1899 . . . . . 6 𝑡(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)
1402, 135, 139nf3an 1901 . . . . 5 𝑡(𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
141 nfv 1914 . . . . . 6 𝑤𝜑
14253nfpw 4578 . . . . . . . 8 𝑤𝒫 𝑉
143 nfcv 2891 . . . . . . . 8 𝑤Fin
144142, 143nfin 4183 . . . . . . 7 𝑤(𝒫 𝑉 ∩ Fin)
145144nfcri 2883 . . . . . 6 𝑤 𝑟 ∈ (𝒫 𝑉 ∩ Fin)
146 nfv 1914 . . . . . . 7 𝑤 𝐷 𝑟
147 nfra1 3259 . . . . . . 7 𝑤𝑤𝑟 𝑤 ≠ ∅
148146, 147nfan 1899 . . . . . 6 𝑤(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)
149141, 145, 148nf3an 1901 . . . . 5 𝑤(𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
150 stoweidlem57.4 . . . . 5 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
151 simp2 1137 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝑟 ∈ (𝒫 𝑉 ∩ Fin))
152 simp3l 1202 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐷 𝑟)
153 stoweidlem57.19 . . . . . 6 (𝜑𝐷 ≠ ∅)
1541533ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐷 ≠ ∅)
155 stoweidlem57.20 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
1561553ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐸 ∈ ℝ+)
15726simpld 494 . . . . . 6 (𝜑𝐵𝑇)
1581573ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐵𝑇)
159663ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝑉 ∈ V)
160 retop 24682 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
1616, 160eqeltri 2824 . . . . . . . 8 𝐾 ∈ Top
162 cnfex 45015 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
16360, 161, 162sylancl 586 . . . . . . 7 (𝜑 → (𝐽 Cn 𝐾) ∈ V)
16411, 10sseqtrdi 3984 . . . . . . 7 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
165163, 164ssexd 5274 . . . . . 6 (𝜑𝐴 ∈ V)
1661653ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐴 ∈ V)
167120, 140, 149, 21, 150, 44, 151, 152, 154, 156, 158, 159, 166stoweidlem39 46030 . . . 4 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
168167rexlimdv3a 3138 . . 3 (𝜑 → (∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅) → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))))
169107, 168mpd 15 . 2 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
170 nfv 1914 . . . . . . 7 𝑖(𝜑𝑚 ∈ ℕ)
171 nfv 1914 . . . . . . . 8 𝑖 𝑣:(1...𝑚)⟶𝑉
172 nfv 1914 . . . . . . . 8 𝑖 𝐷 ran 𝑣
173 nfv 1914 . . . . . . . . . 10 𝑖 𝑦:(1...𝑚)⟶𝑌
174 nfra1 3259 . . . . . . . . . 10 𝑖𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))
175173, 174nfan 1899 . . . . . . . . 9 𝑖(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
176175nfex 2323 . . . . . . . 8 𝑖𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
177171, 172, 176nf3an 1901 . . . . . . 7 𝑖(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
178170, 177nfan 1899 . . . . . 6 𝑖((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
179 nfv 1914 . . . . . . . 8 𝑡 𝑚 ∈ ℕ
1802, 179nfan 1899 . . . . . . 7 𝑡(𝜑𝑚 ∈ ℕ)
181 nfcv 2891 . . . . . . . . 9 𝑡𝑣
182 nfcv 2891 . . . . . . . . 9 𝑡(1...𝑚)
183181, 182, 131nff 6666 . . . . . . . 8 𝑡 𝑣:(1...𝑚)⟶𝑉
184 nfcv 2891 . . . . . . . . 9 𝑡 ran 𝑣
1853, 184nfss 3936 . . . . . . . 8 𝑡 𝐷 ran 𝑣
186 nfcv 2891 . . . . . . . . . . 11 𝑡𝑦
187123, 122nfrabw 3440 . . . . . . . . . . . 12 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
188150, 187nfcxfr 2889 . . . . . . . . . . 11 𝑡𝑌
189186, 182, 188nff 6666 . . . . . . . . . 10 𝑡 𝑦:(1...𝑚)⟶𝑌
190 nfra1 3259 . . . . . . . . . . . 12 𝑡𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚)
191 nfra1 3259 . . . . . . . . . . . 12 𝑡𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)
192190, 191nfan 1899 . . . . . . . . . . 11 𝑡(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))
193182, 192nfralw 3283 . . . . . . . . . 10 𝑡𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))
194189, 193nfan 1899 . . . . . . . . 9 𝑡(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
195194nfex 2323 . . . . . . . 8 𝑡𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
196183, 185, 195nf3an 1901 . . . . . . 7 𝑡(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
197180, 196nfan 1899 . . . . . 6 𝑡((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
198 nfv 1914 . . . . . . 7 𝑦(𝜑𝑚 ∈ ℕ)
199 nfv 1914 . . . . . . . 8 𝑦 𝑣:(1...𝑚)⟶𝑉
200 nfv 1914 . . . . . . . 8 𝑦 𝐷 ran 𝑣
201 nfe1 2151 . . . . . . . 8 𝑦𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
202199, 200, 201nf3an 1901 . . . . . . 7 𝑦(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
203198, 202nfan 1899 . . . . . 6 𝑦((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
204 nfv 1914 . . . . . . 7 𝑤(𝜑𝑚 ∈ ℕ)
205 nfcv 2891 . . . . . . . . 9 𝑤𝑣
206 nfcv 2891 . . . . . . . . 9 𝑤(1...𝑚)
207205, 206, 53nff 6666 . . . . . . . 8 𝑤 𝑣:(1...𝑚)⟶𝑉
208 nfv 1914 . . . . . . . 8 𝑤 𝐷 ran 𝑣
209 nfv 1914 . . . . . . . 8 𝑤𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
210207, 208, 209nf3an 1901 . . . . . . 7 𝑤(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
211204, 210nfan 1899 . . . . . 6 𝑤((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
212 eqid 2729 . . . . . 6 {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
213 eqid 2729 . . . . . 6 (𝑓 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}, 𝑔 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))) = (𝑓 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}, 𝑔 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
214 eqid 2729 . . . . . 6 (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑚) ↦ ((𝑦𝑖)‘𝑡))) = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑚) ↦ ((𝑦𝑖)‘𝑡)))
215 eqid 2729 . . . . . 6 (𝑡𝑇 ↦ (seq1( · , ((𝑡𝑇 ↦ (𝑖 ∈ (1...𝑚) ↦ ((𝑦𝑖)‘𝑡)))‘𝑡))‘𝑚)) = (𝑡𝑇 ↦ (seq1( · , ((𝑡𝑇 ↦ (𝑖 ∈ (1...𝑚) ↦ ((𝑦𝑖)‘𝑡)))‘𝑡))‘𝑚))
216 simp1ll 1237 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) ∧ 𝑓𝐴𝑔𝐴) → 𝜑)
217216, 15syld3an1 1412 . . . . . 6 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
21811sselda 3943 . . . . . . . 8 ((𝜑𝑓𝐴) → 𝑓𝐶)
2196, 9, 10, 218fcnre 45012 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
220219ad4ant14 752 . . . . . 6 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
221 simplr 768 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝑚 ∈ ℕ)
222 simpr1 1195 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝑣:(1...𝑚)⟶𝑉)
2239cldss 22949 . . . . . . . 8 (𝐵 ∈ (Clsd‘𝐽) → 𝐵𝑇)
22422, 223syl 17 . . . . . . 7 (𝜑𝐵𝑇)
225224ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐵𝑇)
226 simpr2 1196 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐷 ran 𝑣)
22732ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐷𝑇)
228 feq3 6650 . . . . . . . . . . . 12 (𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} → (𝑦:(1...𝑚)⟶𝑌𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}))
229150, 228ax-mp 5 . . . . . . . . . . 11 (𝑦:(1...𝑚)⟶𝑌𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
230229biimpi 216 . . . . . . . . . 10 (𝑦:(1...𝑚)⟶𝑌𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
231230anim1i 615 . . . . . . . . 9 ((𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))) → (𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
232231eximi 1835 . . . . . . . 8 (∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))) → ∃𝑦(𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
2332323ad2ant3 1135 . . . . . . 7 ((𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑦(𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
234233adantl 481 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → ∃𝑦(𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
2357uniexd 7698 . . . . . . . 8 (𝜑 𝐽 ∈ V)
2369, 235eqeltrid 2832 . . . . . . 7 (𝜑𝑇 ∈ V)
237236ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝑇 ∈ V)
238155ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐸 ∈ ℝ+)
239 stoweidlem57.21 . . . . . . 7 (𝜑𝐸 < (1 / 3))
240239ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐸 < (1 / 3))
241178, 197, 203, 211, 9, 212, 213, 214, 215, 44, 217, 220, 221, 222, 225, 226, 227, 234, 237, 238, 240stoweidlem54 46045 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
242241ex 412 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
243242exlimdv 1933 . . 3 ((𝜑𝑚 ∈ ℕ) → (∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
244243rexlimdva 3134 . 2 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
245169, 244mpd 15 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wnfc 2876  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cdif 3908  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585   cuni 4867   class class class wbr 5102  cmpt 5183  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  Fincfn 8895  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  3c3 12218  +crp 12927  (,)cioo 13282  ...cfz 13444  seqcseq 13942  t crest 17359  topGenctg 17376  Topctop 22813  Clsdccld 22936   Cn ccn 23144  Compccmp 23306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-cn 23147  df-cnp 23148  df-cmp 23307  df-tx 23482  df-hmeo 23675  df-xms 24241  df-ms 24242  df-tms 24243
This theorem is referenced by:  stoweidlem58  46049
  Copyright terms: Public domain W3C validator