Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem57 Structured version   Visualization version   GIF version

Theorem stoweidlem57 44288
Description: There exists a function x as in the proof of Lemma 2 in [BrosowskiDeutsh] p. 91. In this theorem, it is proven the non-trivial case (the closed set D is nonempty). Here D is used to represent A in the paper, because the variable A is used for the subalgebra of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem57.1 𝑡𝐷
stoweidlem57.2 𝑡𝑈
stoweidlem57.3 𝑡𝜑
stoweidlem57.4 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
stoweidlem57.5 𝑉 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
stoweidlem57.6 𝐾 = (topGen‘ran (,))
stoweidlem57.7 𝑇 = 𝐽
stoweidlem57.8 𝐶 = (𝐽 Cn 𝐾)
stoweidlem57.9 𝑈 = (𝑇𝐵)
stoweidlem57.10 (𝜑𝐽 ∈ Comp)
stoweidlem57.11 (𝜑𝐴𝐶)
stoweidlem57.12 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem57.13 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem57.14 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
stoweidlem57.15 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem57.16 (𝜑𝐵 ∈ (Clsd‘𝐽))
stoweidlem57.17 (𝜑𝐷 ∈ (Clsd‘𝐽))
stoweidlem57.18 (𝜑 → (𝐵𝐷) = ∅)
stoweidlem57.19 (𝜑𝐷 ≠ ∅)
stoweidlem57.20 (𝜑𝐸 ∈ ℝ+)
stoweidlem57.21 (𝜑𝐸 < (1 / 3))
Assertion
Ref Expression
stoweidlem57 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑒,𝑎,𝑓,𝑡   𝑞,𝑎,𝑟,𝑓,𝑡,𝐴   𝐴,𝑒,𝑓,𝑡   𝐷,𝑎,𝑒,𝑓   𝑇,𝑎,𝑒,𝑓,𝑡   𝑈,𝑎,𝑒,𝑓   𝜑,𝑎,𝑒,𝑓   𝑒,𝑔,,𝑓,𝑡,𝐴   𝑤,𝑒,,𝑡,𝐴   𝑒,𝐸,𝑓,𝑔,,𝑡   𝑔,𝑟,,𝐴   𝑥,𝑓,𝑔,,𝑡,𝐴   𝐵,𝑓,𝑔,𝑟   𝑓,𝑉,𝑔,𝑟   𝑓,𝑌,𝑔,𝑟   𝑔,𝑞,𝐷   𝐷,,𝑟   𝑔,𝐽,,𝑡   𝑇,𝑔,,𝑟   𝑈,𝑔,,𝑟   𝜑,𝑔,,𝑟   𝑤,𝑟,𝐸   𝐴,𝑞   𝐷,𝑞   𝑇,𝑞   𝑈,𝑞   𝜑,𝑞   𝑤,𝐷   𝑤,𝐵   𝑡,𝐾   𝜑,𝑤   𝑤,𝐽   𝑤,𝑇   𝑤,𝑈   𝑤,𝑌   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑡)   𝐵(𝑡,𝑒,,𝑞,𝑎)   𝐶(𝑥,𝑤,𝑡,𝑒,𝑓,𝑔,,𝑟,𝑞,𝑎)   𝐷(𝑡)   𝑈(𝑥,𝑡)   𝐸(𝑞,𝑎)   𝐽(𝑥,𝑒,𝑓,𝑟,𝑞,𝑎)   𝐾(𝑥,𝑤,𝑒,𝑓,𝑔,,𝑟,𝑞,𝑎)   𝑉(𝑥,𝑤,𝑡,𝑒,,𝑞,𝑎)   𝑌(𝑥,𝑡,𝑒,,𝑞,𝑎)

Proof of Theorem stoweidlem57
Dummy variables 𝑠 𝑚 𝑖 𝑣 𝑦 𝑢 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem57.2 . . . . . . . . . 10 𝑡𝑈
2 stoweidlem57.3 . . . . . . . . . . 11 𝑡𝜑
3 stoweidlem57.1 . . . . . . . . . . . 12 𝑡𝐷
43nfcri 2894 . . . . . . . . . . 11 𝑡 𝑠𝐷
52, 4nfan 1902 . . . . . . . . . 10 𝑡(𝜑𝑠𝐷)
6 stoweidlem57.6 . . . . . . . . . 10 𝐾 = (topGen‘ran (,))
7 stoweidlem57.10 . . . . . . . . . . 11 (𝜑𝐽 ∈ Comp)
87adantr 481 . . . . . . . . . 10 ((𝜑𝑠𝐷) → 𝐽 ∈ Comp)
9 stoweidlem57.7 . . . . . . . . . 10 𝑇 = 𝐽
10 stoweidlem57.8 . . . . . . . . . 10 𝐶 = (𝐽 Cn 𝐾)
11 stoweidlem57.11 . . . . . . . . . . 11 (𝜑𝐴𝐶)
1211adantr 481 . . . . . . . . . 10 ((𝜑𝑠𝐷) → 𝐴𝐶)
13 stoweidlem57.12 . . . . . . . . . . 11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
14133adant1r 1177 . . . . . . . . . 10 (((𝜑𝑠𝐷) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
15 stoweidlem57.13 . . . . . . . . . . 11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
16153adant1r 1177 . . . . . . . . . 10 (((𝜑𝑠𝐷) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
17 stoweidlem57.14 . . . . . . . . . . 11 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
1817adantlr 713 . . . . . . . . . 10 (((𝜑𝑠𝐷) ∧ 𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
19 stoweidlem57.15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
2019adantlr 713 . . . . . . . . . 10 (((𝜑𝑠𝐷) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
21 stoweidlem57.9 . . . . . . . . . . . 12 𝑈 = (𝑇𝐵)
22 stoweidlem57.16 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ (Clsd‘𝐽))
23 cmptop 22746 . . . . . . . . . . . . . . 15 (𝐽 ∈ Comp → 𝐽 ∈ Top)
249iscld 22378 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top → (𝐵 ∈ (Clsd‘𝐽) ↔ (𝐵𝑇 ∧ (𝑇𝐵) ∈ 𝐽)))
257, 23, 243syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 ∈ (Clsd‘𝐽) ↔ (𝐵𝑇 ∧ (𝑇𝐵) ∈ 𝐽)))
2622, 25mpbid 231 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝑇 ∧ (𝑇𝐵) ∈ 𝐽))
2726simprd 496 . . . . . . . . . . . 12 (𝜑 → (𝑇𝐵) ∈ 𝐽)
2821, 27eqeltrid 2842 . . . . . . . . . . 11 (𝜑𝑈𝐽)
2928adantr 481 . . . . . . . . . 10 ((𝜑𝑠𝐷) → 𝑈𝐽)
30 stoweidlem57.17 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ (Clsd‘𝐽))
319cldss 22380 . . . . . . . . . . . . . 14 (𝐷 ∈ (Clsd‘𝐽) → 𝐷𝑇)
3230, 31syl 17 . . . . . . . . . . . . 13 (𝜑𝐷𝑇)
3332sselda 3944 . . . . . . . . . . . 12 ((𝜑𝑠𝐷) → 𝑠𝑇)
34 stoweidlem57.18 . . . . . . . . . . . . . 14 (𝜑 → (𝐵𝐷) = ∅)
35 disjr 4409 . . . . . . . . . . . . . 14 ((𝐵𝐷) = ∅ ↔ ∀𝑠𝐷 ¬ 𝑠𝐵)
3634, 35sylib 217 . . . . . . . . . . . . 13 (𝜑 → ∀𝑠𝐷 ¬ 𝑠𝐵)
3736r19.21bi 3234 . . . . . . . . . . . 12 ((𝜑𝑠𝐷) → ¬ 𝑠𝐵)
3833, 37eldifd 3921 . . . . . . . . . . 11 ((𝜑𝑠𝐷) → 𝑠 ∈ (𝑇𝐵))
3938, 21eleqtrrdi 2849 . . . . . . . . . 10 ((𝜑𝑠𝐷) → 𝑠𝑈)
401, 5, 6, 8, 9, 10, 12, 14, 16, 18, 20, 29, 39stoweidlem56 44287 . . . . . . . . 9 ((𝜑𝑠𝐷) → ∃𝑤𝐽 ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))))
41 simpl 483 . . . . . . . . . . 11 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → 𝑤𝐽)
42 simprll 777 . . . . . . . . . . 11 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → 𝑠𝑤)
43 simprr 771 . . . . . . . . . . . 12 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))
44 stoweidlem57.5 . . . . . . . . . . . . 13 𝑉 = {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
4544reqabi 3429 . . . . . . . . . . . 12 (𝑤𝑉 ↔ (𝑤𝐽 ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))))
4641, 43, 45sylanbrc 583 . . . . . . . . . . 11 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → 𝑤𝑉)
4741, 42, 46jca32 516 . . . . . . . . . 10 ((𝑤𝐽 ∧ ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)))) → (𝑤𝐽 ∧ (𝑠𝑤𝑤𝑉)))
4847reximi2 3082 . . . . . . . . 9 (∃𝑤𝐽 ((𝑠𝑤𝑤𝑈) ∧ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))) → ∃𝑤𝐽 (𝑠𝑤𝑤𝑉))
49 rexex 3079 . . . . . . . . 9 (∃𝑤𝐽 (𝑠𝑤𝑤𝑉) → ∃𝑤(𝑠𝑤𝑤𝑉))
5040, 48, 493syl 18 . . . . . . . 8 ((𝜑𝑠𝐷) → ∃𝑤(𝑠𝑤𝑤𝑉))
51 nfcv 2907 . . . . . . . . 9 𝑤𝑠
52 nfrab1 3426 . . . . . . . . . 10 𝑤{𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
5344, 52nfcxfr 2905 . . . . . . . . 9 𝑤𝑉
5451, 53elunif 43211 . . . . . . . 8 (𝑠 𝑉 ↔ ∃𝑤(𝑠𝑤𝑤𝑉))
5550, 54sylibr 233 . . . . . . 7 ((𝜑𝑠𝐷) → 𝑠 𝑉)
5655ex 413 . . . . . 6 (𝜑 → (𝑠𝐷𝑠 𝑉))
5756ssrdv 3950 . . . . 5 (𝜑𝐷 𝑉)
58 cmpcld 22753 . . . . . . . 8 ((𝐽 ∈ Comp ∧ 𝐷 ∈ (Clsd‘𝐽)) → (𝐽t 𝐷) ∈ Comp)
597, 30, 58syl2anc 584 . . . . . . 7 (𝜑 → (𝐽t 𝐷) ∈ Comp)
607, 23syl 17 . . . . . . . 8 (𝜑𝐽 ∈ Top)
619cmpsub 22751 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐷𝑇) → ((𝐽t 𝐷) ∈ Comp ↔ ∀𝑘 ∈ 𝒫 𝐽(𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢)))
6260, 32, 61syl2anc 584 . . . . . . 7 (𝜑 → ((𝐽t 𝐷) ∈ Comp ↔ ∀𝑘 ∈ 𝒫 𝐽(𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢)))
6359, 62mpbid 231 . . . . . 6 (𝜑 → ∀𝑘 ∈ 𝒫 𝐽(𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢))
64 ssrab2 4037 . . . . . . . 8 {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))} ⊆ 𝐽
6544, 64eqsstri 3978 . . . . . . 7 𝑉𝐽
6644, 7rabexd 5290 . . . . . . . 8 (𝜑𝑉 ∈ V)
67 elpwg 4563 . . . . . . . 8 (𝑉 ∈ V → (𝑉 ∈ 𝒫 𝐽𝑉𝐽))
6866, 67syl 17 . . . . . . 7 (𝜑 → (𝑉 ∈ 𝒫 𝐽𝑉𝐽))
6965, 68mpbiri 257 . . . . . 6 (𝜑𝑉 ∈ 𝒫 𝐽)
70 unieq 4876 . . . . . . . . 9 (𝑘 = 𝑉 𝑘 = 𝑉)
7170sseq2d 3976 . . . . . . . 8 (𝑘 = 𝑉 → (𝐷 𝑘𝐷 𝑉))
72 pweq 4574 . . . . . . . . . 10 (𝑘 = 𝑉 → 𝒫 𝑘 = 𝒫 𝑉)
7372ineq1d 4171 . . . . . . . . 9 (𝑘 = 𝑉 → (𝒫 𝑘 ∩ Fin) = (𝒫 𝑉 ∩ Fin))
7473rexeqdv 3314 . . . . . . . 8 (𝑘 = 𝑉 → (∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢 ↔ ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢))
7571, 74imbi12d 344 . . . . . . 7 (𝑘 = 𝑉 → ((𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢) ↔ (𝐷 𝑉 → ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢)))
7675rspccva 3580 . . . . . 6 ((∀𝑘 ∈ 𝒫 𝐽(𝐷 𝑘 → ∃𝑢 ∈ (𝒫 𝑘 ∩ Fin)𝐷 𝑢) ∧ 𝑉 ∈ 𝒫 𝐽) → (𝐷 𝑉 → ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢))
7763, 69, 76syl2anc 584 . . . . 5 (𝜑 → (𝐷 𝑉 → ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢))
7857, 77mpd 15 . . . 4 (𝜑 → ∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢)
79 elinel1 4155 . . . . . . . . 9 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → 𝑢 ∈ 𝒫 𝑉)
80 elpwi 4567 . . . . . . . . . . 11 (𝑢 ∈ 𝒫 𝑉𝑢𝑉)
8180ssdifssd 4102 . . . . . . . . . 10 (𝑢 ∈ 𝒫 𝑉 → (𝑢 ∖ {∅}) ⊆ 𝑉)
82 vex 3449 . . . . . . . . . . . 12 𝑢 ∈ V
83 difexg 5284 . . . . . . . . . . . 12 (𝑢 ∈ V → (𝑢 ∖ {∅}) ∈ V)
8482, 83ax-mp 5 . . . . . . . . . . 11 (𝑢 ∖ {∅}) ∈ V
8584elpw 4564 . . . . . . . . . 10 ((𝑢 ∖ {∅}) ∈ 𝒫 𝑉 ↔ (𝑢 ∖ {∅}) ⊆ 𝑉)
8681, 85sylibr 233 . . . . . . . . 9 (𝑢 ∈ 𝒫 𝑉 → (𝑢 ∖ {∅}) ∈ 𝒫 𝑉)
8779, 86syl 17 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → (𝑢 ∖ {∅}) ∈ 𝒫 𝑉)
88 elinel2 4156 . . . . . . . . 9 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → 𝑢 ∈ Fin)
89 diffi 9123 . . . . . . . . 9 (𝑢 ∈ Fin → (𝑢 ∖ {∅}) ∈ Fin)
9088, 89syl 17 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → (𝑢 ∖ {∅}) ∈ Fin)
9187, 90elind 4154 . . . . . . 7 (𝑢 ∈ (𝒫 𝑉 ∩ Fin) → (𝑢 ∖ {∅}) ∈ (𝒫 𝑉 ∩ Fin))
92913ad2ant2 1134 . . . . . 6 ((𝜑𝑢 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝐷 𝑢) → (𝑢 ∖ {∅}) ∈ (𝒫 𝑉 ∩ Fin))
93 unidif0 5315 . . . . . . . . 9 (𝑢 ∖ {∅}) = 𝑢
9493sseq2i 3973 . . . . . . . 8 (𝐷 (𝑢 ∖ {∅}) ↔ 𝐷 𝑢)
9594biimpri 227 . . . . . . 7 (𝐷 𝑢𝐷 (𝑢 ∖ {∅}))
96953ad2ant3 1135 . . . . . 6 ((𝜑𝑢 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝐷 𝑢) → 𝐷 (𝑢 ∖ {∅}))
97 eldifsni 4750 . . . . . . . 8 (𝑤 ∈ (𝑢 ∖ {∅}) → 𝑤 ≠ ∅)
9897rgen 3066 . . . . . . 7 𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅
9998a1i 11 . . . . . 6 ((𝜑𝑢 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝐷 𝑢) → ∀𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅)
100 unieq 4876 . . . . . . . . 9 (𝑟 = (𝑢 ∖ {∅}) → 𝑟 = (𝑢 ∖ {∅}))
101100sseq2d 3976 . . . . . . . 8 (𝑟 = (𝑢 ∖ {∅}) → (𝐷 𝑟𝐷 (𝑢 ∖ {∅})))
102 raleq 3309 . . . . . . . 8 (𝑟 = (𝑢 ∖ {∅}) → (∀𝑤𝑟 𝑤 ≠ ∅ ↔ ∀𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅))
103101, 102anbi12d 631 . . . . . . 7 (𝑟 = (𝑢 ∖ {∅}) → ((𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅) ↔ (𝐷 (𝑢 ∖ {∅}) ∧ ∀𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅)))
104103rspcev 3581 . . . . . 6 (((𝑢 ∖ {∅}) ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 (𝑢 ∖ {∅}) ∧ ∀𝑤 ∈ (𝑢 ∖ {∅})𝑤 ≠ ∅)) → ∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
10592, 96, 99, 104syl12anc 835 . . . . 5 ((𝜑𝑢 ∈ (𝒫 𝑉 ∩ Fin) ∧ 𝐷 𝑢) → ∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
106105rexlimdv3a 3156 . . . 4 (𝜑 → (∃𝑢 ∈ (𝒫 𝑉 ∩ Fin)𝐷 𝑢 → ∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)))
10778, 106mpd 15 . . 3 (𝜑 → ∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
108 nfv 1917 . . . . . 6 𝜑
109 nfcv 2907 . . . . . . . . . . . 12 +
110 nfre1 3268 . . . . . . . . . . . 12 𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
111109, 110nfralw 3294 . . . . . . . . . . 11 𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
112 nfcv 2907 . . . . . . . . . . 11 𝐽
113111, 112nfrabw 3440 . . . . . . . . . 10 {𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
11444, 113nfcxfr 2905 . . . . . . . . 9 𝑉
115114nfpw 4579 . . . . . . . 8 𝒫 𝑉
116 nfcv 2907 . . . . . . . 8 Fin
117115, 116nfin 4176 . . . . . . 7 (𝒫 𝑉 ∩ Fin)
118117nfcri 2894 . . . . . 6 𝑟 ∈ (𝒫 𝑉 ∩ Fin)
119 nfv 1917 . . . . . 6 (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)
120108, 118, 119nf3an 1904 . . . . 5 (𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
121 nfcv 2907 . . . . . . . . . . . 12 𝑡+
122 nfcv 2907 . . . . . . . . . . . . 13 𝑡𝐴
123 nfra1 3267 . . . . . . . . . . . . . 14 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
124 nfra1 3267 . . . . . . . . . . . . . 14 𝑡𝑡𝑤 (𝑡) < 𝑒
125 nfra1 3267 . . . . . . . . . . . . . 14 𝑡𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡)
126123, 124, 125nf3an 1904 . . . . . . . . . . . . 13 𝑡(∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
127122, 126nfrexw 3296 . . . . . . . . . . . 12 𝑡𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
128121, 127nfralw 3294 . . . . . . . . . . 11 𝑡𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))
129 nfcv 2907 . . . . . . . . . . 11 𝑡𝐽
130128, 129nfrabw 3440 . . . . . . . . . 10 𝑡{𝑤𝐽 ∣ ∀𝑒 ∈ ℝ+𝐴 (∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1) ∧ ∀𝑡𝑤 (𝑡) < 𝑒 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 − 𝑒) < (𝑡))}
13144, 130nfcxfr 2905 . . . . . . . . 9 𝑡𝑉
132131nfpw 4579 . . . . . . . 8 𝑡𝒫 𝑉
133 nfcv 2907 . . . . . . . 8 𝑡Fin
134132, 133nfin 4176 . . . . . . 7 𝑡(𝒫 𝑉 ∩ Fin)
135134nfcri 2894 . . . . . 6 𝑡 𝑟 ∈ (𝒫 𝑉 ∩ Fin)
136 nfcv 2907 . . . . . . . 8 𝑡 𝑟
1373, 136nfss 3936 . . . . . . 7 𝑡 𝐷 𝑟
138 nfv 1917 . . . . . . 7 𝑡𝑤𝑟 𝑤 ≠ ∅
139137, 138nfan 1902 . . . . . 6 𝑡(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)
1402, 135, 139nf3an 1904 . . . . 5 𝑡(𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
141 nfv 1917 . . . . . 6 𝑤𝜑
14253nfpw 4579 . . . . . . . 8 𝑤𝒫 𝑉
143 nfcv 2907 . . . . . . . 8 𝑤Fin
144142, 143nfin 4176 . . . . . . 7 𝑤(𝒫 𝑉 ∩ Fin)
145144nfcri 2894 . . . . . 6 𝑤 𝑟 ∈ (𝒫 𝑉 ∩ Fin)
146 nfv 1917 . . . . . . 7 𝑤 𝐷 𝑟
147 nfra1 3267 . . . . . . 7 𝑤𝑤𝑟 𝑤 ≠ ∅
148146, 147nfan 1902 . . . . . 6 𝑤(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)
149141, 145, 148nf3an 1904 . . . . 5 𝑤(𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅))
150 stoweidlem57.4 . . . . 5 𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
151 simp2 1137 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝑟 ∈ (𝒫 𝑉 ∩ Fin))
152 simp3l 1201 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐷 𝑟)
153 stoweidlem57.19 . . . . . 6 (𝜑𝐷 ≠ ∅)
1541533ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐷 ≠ ∅)
155 stoweidlem57.20 . . . . . 6 (𝜑𝐸 ∈ ℝ+)
1561553ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐸 ∈ ℝ+)
15726simpld 495 . . . . . 6 (𝜑𝐵𝑇)
1581573ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐵𝑇)
159663ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝑉 ∈ V)
160 retop 24125 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
1616, 160eqeltri 2834 . . . . . . . 8 𝐾 ∈ Top
162 cnfex 43223 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V)
16360, 161, 162sylancl 586 . . . . . . 7 (𝜑 → (𝐽 Cn 𝐾) ∈ V)
16411, 10sseqtrdi 3994 . . . . . . 7 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
165163, 164ssexd 5281 . . . . . 6 (𝜑𝐴 ∈ V)
1661653ad2ant1 1133 . . . . 5 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → 𝐴 ∈ V)
167120, 140, 149, 21, 150, 44, 151, 152, 154, 156, 158, 159, 166stoweidlem39 44270 . . . 4 ((𝜑𝑟 ∈ (𝒫 𝑉 ∩ Fin) ∧ (𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅)) → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
168167rexlimdv3a 3156 . . 3 (𝜑 → (∃𝑟 ∈ (𝒫 𝑉 ∩ Fin)(𝐷 𝑟 ∧ ∀𝑤𝑟 𝑤 ≠ ∅) → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))))
169107, 168mpd 15 . 2 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
170 nfv 1917 . . . . . . 7 𝑖(𝜑𝑚 ∈ ℕ)
171 nfv 1917 . . . . . . . 8 𝑖 𝑣:(1...𝑚)⟶𝑉
172 nfv 1917 . . . . . . . 8 𝑖 𝐷 ran 𝑣
173 nfv 1917 . . . . . . . . . 10 𝑖 𝑦:(1...𝑚)⟶𝑌
174 nfra1 3267 . . . . . . . . . 10 𝑖𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))
175173, 174nfan 1902 . . . . . . . . 9 𝑖(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
176175nfex 2317 . . . . . . . 8 𝑖𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
177171, 172, 176nf3an 1904 . . . . . . 7 𝑖(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
178170, 177nfan 1902 . . . . . 6 𝑖((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
179 nfv 1917 . . . . . . . 8 𝑡 𝑚 ∈ ℕ
1802, 179nfan 1902 . . . . . . 7 𝑡(𝜑𝑚 ∈ ℕ)
181 nfcv 2907 . . . . . . . . 9 𝑡𝑣
182 nfcv 2907 . . . . . . . . 9 𝑡(1...𝑚)
183181, 182, 131nff 6664 . . . . . . . 8 𝑡 𝑣:(1...𝑚)⟶𝑉
184 nfcv 2907 . . . . . . . . 9 𝑡 ran 𝑣
1853, 184nfss 3936 . . . . . . . 8 𝑡 𝐷 ran 𝑣
186 nfcv 2907 . . . . . . . . . . 11 𝑡𝑦
187123, 122nfrabw 3440 . . . . . . . . . . . 12 𝑡{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
188150, 187nfcxfr 2905 . . . . . . . . . . 11 𝑡𝑌
189186, 182, 188nff 6664 . . . . . . . . . 10 𝑡 𝑦:(1...𝑚)⟶𝑌
190 nfra1 3267 . . . . . . . . . . . 12 𝑡𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚)
191 nfra1 3267 . . . . . . . . . . . 12 𝑡𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)
192190, 191nfan 1902 . . . . . . . . . . 11 𝑡(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))
193182, 192nfralw 3294 . . . . . . . . . 10 𝑡𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))
194189, 193nfan 1902 . . . . . . . . 9 𝑡(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
195194nfex 2317 . . . . . . . 8 𝑡𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
196183, 185, 195nf3an 1904 . . . . . . 7 𝑡(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
197180, 196nfan 1902 . . . . . 6 𝑡((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
198 nfv 1917 . . . . . . 7 𝑦(𝜑𝑚 ∈ ℕ)
199 nfv 1917 . . . . . . . 8 𝑦 𝑣:(1...𝑚)⟶𝑉
200 nfv 1917 . . . . . . . 8 𝑦 𝐷 ran 𝑣
201 nfe1 2147 . . . . . . . 8 𝑦𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
202199, 200, 201nf3an 1904 . . . . . . 7 𝑦(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
203198, 202nfan 1902 . . . . . 6 𝑦((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
204 nfv 1917 . . . . . . 7 𝑤(𝜑𝑚 ∈ ℕ)
205 nfcv 2907 . . . . . . . . 9 𝑤𝑣
206 nfcv 2907 . . . . . . . . 9 𝑤(1...𝑚)
207205, 206, 53nff 6664 . . . . . . . 8 𝑤 𝑣:(1...𝑚)⟶𝑉
208 nfv 1917 . . . . . . . 8 𝑤 𝐷 ran 𝑣
209 nfv 1917 . . . . . . . 8 𝑤𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))
210207, 208, 209nf3an 1904 . . . . . . 7 𝑤(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
211204, 210nfan 1902 . . . . . 6 𝑤((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))))
212 eqid 2736 . . . . . 6 {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}
213 eqid 2736 . . . . . 6 (𝑓 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}, 𝑔 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))) = (𝑓 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}, 𝑔 ∈ {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
214 eqid 2736 . . . . . 6 (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑚) ↦ ((𝑦𝑖)‘𝑡))) = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑚) ↦ ((𝑦𝑖)‘𝑡)))
215 eqid 2736 . . . . . 6 (𝑡𝑇 ↦ (seq1( · , ((𝑡𝑇 ↦ (𝑖 ∈ (1...𝑚) ↦ ((𝑦𝑖)‘𝑡)))‘𝑡))‘𝑚)) = (𝑡𝑇 ↦ (seq1( · , ((𝑡𝑇 ↦ (𝑖 ∈ (1...𝑚) ↦ ((𝑦𝑖)‘𝑡)))‘𝑡))‘𝑚))
216 simp1ll 1236 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) ∧ 𝑓𝐴𝑔𝐴) → 𝜑)
217216, 15syld3an1 1410 . . . . . 6 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
21811sselda 3944 . . . . . . . 8 ((𝜑𝑓𝐴) → 𝑓𝐶)
2196, 9, 10, 218fcnre 43220 . . . . . . 7 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
220219ad4ant14 750 . . . . . 6 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) ∧ 𝑓𝐴) → 𝑓:𝑇⟶ℝ)
221 simplr 767 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝑚 ∈ ℕ)
222 simpr1 1194 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝑣:(1...𝑚)⟶𝑉)
2239cldss 22380 . . . . . . . 8 (𝐵 ∈ (Clsd‘𝐽) → 𝐵𝑇)
22422, 223syl 17 . . . . . . 7 (𝜑𝐵𝑇)
225224ad2antrr 724 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐵𝑇)
226 simpr2 1195 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐷 ran 𝑣)
22732ad2antrr 724 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐷𝑇)
228 feq3 6651 . . . . . . . . . . . 12 (𝑌 = {𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} → (𝑦:(1...𝑚)⟶𝑌𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)}))
229150, 228ax-mp 5 . . . . . . . . . . 11 (𝑦:(1...𝑚)⟶𝑌𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
230229biimpi 215 . . . . . . . . . 10 (𝑦:(1...𝑚)⟶𝑌𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)})
231230anim1i 615 . . . . . . . . 9 ((𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))) → (𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
232231eximi 1837 . . . . . . . 8 (∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))) → ∃𝑦(𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
2332323ad2ant3 1135 . . . . . . 7 ((𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑦(𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
234233adantl 482 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → ∃𝑦(𝑦:(1...𝑚)⟶{𝐴 ∣ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)} ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))
2357uniexd 7679 . . . . . . . 8 (𝜑 𝐽 ∈ V)
2369, 235eqeltrid 2842 . . . . . . 7 (𝜑𝑇 ∈ V)
237236ad2antrr 724 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝑇 ∈ V)
238155ad2antrr 724 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐸 ∈ ℝ+)
239 stoweidlem57.21 . . . . . . 7 (𝜑𝐸 < (1 / 3))
240239ad2antrr 724 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → 𝐸 < (1 / 3))
241178, 197, 203, 211, 9, 212, 213, 214, 215, 44, 217, 220, 221, 222, 225, 226, 227, 234, 237, 238, 240stoweidlem54 44285 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡))))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
242241ex 413 . . . 4 ((𝜑𝑚 ∈ ℕ) → ((𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
243242exlimdv 1936 . . 3 ((𝜑𝑚 ∈ ℕ) → (∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
244243rexlimdva 3152 . 2 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑣(𝑣:(1...𝑚)⟶𝑉𝐷 ran 𝑣 ∧ ∃𝑦(𝑦:(1...𝑚)⟶𝑌 ∧ ∀𝑖 ∈ (1...𝑚)(∀𝑡 ∈ (𝑣𝑖)((𝑦𝑖)‘𝑡) < (𝐸 / 𝑚) ∧ ∀𝑡𝐵 (1 − (𝐸 / 𝑚)) < ((𝑦𝑖)‘𝑡)))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡))))
245169, 244mpd 15 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wnf 1785  wcel 2106  wnfc 2887  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cdif 3907  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   cuni 4865   class class class wbr 5105  cmpt 5188  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  Fincfn 8883  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  3c3 12209  +crp 12915  (,)cioo 13264  ...cfz 13424  seqcseq 13906  t crest 17302  topGenctg 17319  Topctop 22242  Clsdccld 22367   Cn ccn 22575  Compccmp 22737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-cn 22578  df-cnp 22579  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675
This theorem is referenced by:  stoweidlem58  44289
  Copyright terms: Public domain W3C validator