| Step | Hyp | Ref
| Expression |
| 1 | | imadmres 6254 |
. . . . 5
⊢ (𝐹 “ dom (𝐹 ↾ (𝐴 ∖ 𝑈))) = (𝐹 “ (𝐴 ∖ 𝑈)) |
| 2 | | dmres 6030 |
. . . . . . 7
⊢ dom
(𝐹 ↾ (𝐴 ∖ 𝑈)) = ((𝐴 ∖ 𝑈) ∩ dom 𝐹) |
| 3 | | kqval.2 |
. . . . . . . . . . 11
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
| 4 | 3 | kqffn 23733 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋) |
| 5 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → 𝐹 Fn 𝑋) |
| 6 | 5 | fndmd 6673 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → dom 𝐹 = 𝑋) |
| 7 | 6 | ineq2d 4220 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → ((𝐴 ∖ 𝑈) ∩ dom 𝐹) = ((𝐴 ∖ 𝑈) ∩ 𝑋)) |
| 8 | 2, 7 | eqtrid 2789 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → dom (𝐹 ↾ (𝐴 ∖ 𝑈)) = ((𝐴 ∖ 𝑈) ∩ 𝑋)) |
| 9 | 8 | imaeq2d 6078 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ dom (𝐹 ↾ (𝐴 ∖ 𝑈))) = (𝐹 “ ((𝐴 ∖ 𝑈) ∩ 𝑋))) |
| 10 | 1, 9 | eqtr3id 2791 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ (𝐴 ∖ 𝑈)) = (𝐹 “ ((𝐴 ∖ 𝑈) ∩ 𝑋))) |
| 11 | | indif1 4282 |
. . . . . 6
⊢ ((𝐴 ∖ 𝑈) ∩ 𝑋) = ((𝐴 ∩ 𝑋) ∖ 𝑈) |
| 12 | | inss2 4238 |
. . . . . . 7
⊢ (𝐴 ∩ 𝑋) ⊆ 𝑋 |
| 13 | | ssdif 4144 |
. . . . . . 7
⊢ ((𝐴 ∩ 𝑋) ⊆ 𝑋 → ((𝐴 ∩ 𝑋) ∖ 𝑈) ⊆ (𝑋 ∖ 𝑈)) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . 6
⊢ ((𝐴 ∩ 𝑋) ∖ 𝑈) ⊆ (𝑋 ∖ 𝑈) |
| 15 | 11, 14 | eqsstri 4030 |
. . . . 5
⊢ ((𝐴 ∖ 𝑈) ∩ 𝑋) ⊆ (𝑋 ∖ 𝑈) |
| 16 | | imass2 6120 |
. . . . 5
⊢ (((𝐴 ∖ 𝑈) ∩ 𝑋) ⊆ (𝑋 ∖ 𝑈) → (𝐹 “ ((𝐴 ∖ 𝑈) ∩ 𝑋)) ⊆ (𝐹 “ (𝑋 ∖ 𝑈))) |
| 17 | 15, 16 | mp1i 13 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ ((𝐴 ∖ 𝑈) ∩ 𝑋)) ⊆ (𝐹 “ (𝑋 ∖ 𝑈))) |
| 18 | 10, 17 | eqsstrd 4018 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (𝐹 “ (𝐴 ∖ 𝑈)) ⊆ (𝐹 “ (𝑋 ∖ 𝑈))) |
| 19 | | sslin 4243 |
. . 3
⊢ ((𝐹 “ (𝐴 ∖ 𝑈)) ⊆ (𝐹 “ (𝑋 ∖ 𝑈)) → ((𝐹 “ 𝑈) ∩ (𝐹 “ (𝐴 ∖ 𝑈))) ⊆ ((𝐹 “ 𝑈) ∩ (𝐹 “ (𝑋 ∖ 𝑈)))) |
| 20 | 18, 19 | syl 17 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → ((𝐹 “ 𝑈) ∩ (𝐹 “ (𝐴 ∖ 𝑈))) ⊆ ((𝐹 “ 𝑈) ∩ (𝐹 “ (𝑋 ∖ 𝑈)))) |
| 21 | | eldifn 4132 |
. . . . . . 7
⊢ (𝑤 ∈ (𝑋 ∖ 𝑈) → ¬ 𝑤 ∈ 𝑈) |
| 22 | 21 | adantl 481 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) ∧ 𝑤 ∈ (𝑋 ∖ 𝑈)) → ¬ 𝑤 ∈ 𝑈) |
| 23 | | simpll 767 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) ∧ 𝑤 ∈ (𝑋 ∖ 𝑈)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 24 | | simplr 769 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) ∧ 𝑤 ∈ (𝑋 ∖ 𝑈)) → 𝑈 ∈ 𝐽) |
| 25 | | eldifi 4131 |
. . . . . . . 8
⊢ (𝑤 ∈ (𝑋 ∖ 𝑈) → 𝑤 ∈ 𝑋) |
| 26 | 25 | adantl 481 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) ∧ 𝑤 ∈ (𝑋 ∖ 𝑈)) → 𝑤 ∈ 𝑋) |
| 27 | 3 | kqfvima 23738 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽 ∧ 𝑤 ∈ 𝑋) → (𝑤 ∈ 𝑈 ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑈))) |
| 28 | 23, 24, 26, 27 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) ∧ 𝑤 ∈ (𝑋 ∖ 𝑈)) → (𝑤 ∈ 𝑈 ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑈))) |
| 29 | 22, 28 | mtbid 324 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) ∧ 𝑤 ∈ (𝑋 ∖ 𝑈)) → ¬ (𝐹‘𝑤) ∈ (𝐹 “ 𝑈)) |
| 30 | 29 | ralrimiva 3146 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → ∀𝑤 ∈ (𝑋 ∖ 𝑈) ¬ (𝐹‘𝑤) ∈ (𝐹 “ 𝑈)) |
| 31 | | difss 4136 |
. . . . 5
⊢ (𝑋 ∖ 𝑈) ⊆ 𝑋 |
| 32 | | eleq1 2829 |
. . . . . . 7
⊢ (𝑧 = (𝐹‘𝑤) → (𝑧 ∈ (𝐹 “ 𝑈) ↔ (𝐹‘𝑤) ∈ (𝐹 “ 𝑈))) |
| 33 | 32 | notbid 318 |
. . . . . 6
⊢ (𝑧 = (𝐹‘𝑤) → (¬ 𝑧 ∈ (𝐹 “ 𝑈) ↔ ¬ (𝐹‘𝑤) ∈ (𝐹 “ 𝑈))) |
| 34 | 33 | ralima 7257 |
. . . . 5
⊢ ((𝐹 Fn 𝑋 ∧ (𝑋 ∖ 𝑈) ⊆ 𝑋) → (∀𝑧 ∈ (𝐹 “ (𝑋 ∖ 𝑈)) ¬ 𝑧 ∈ (𝐹 “ 𝑈) ↔ ∀𝑤 ∈ (𝑋 ∖ 𝑈) ¬ (𝐹‘𝑤) ∈ (𝐹 “ 𝑈))) |
| 35 | 5, 31, 34 | sylancl 586 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → (∀𝑧 ∈ (𝐹 “ (𝑋 ∖ 𝑈)) ¬ 𝑧 ∈ (𝐹 “ 𝑈) ↔ ∀𝑤 ∈ (𝑋 ∖ 𝑈) ¬ (𝐹‘𝑤) ∈ (𝐹 “ 𝑈))) |
| 36 | 30, 35 | mpbird 257 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → ∀𝑧 ∈ (𝐹 “ (𝑋 ∖ 𝑈)) ¬ 𝑧 ∈ (𝐹 “ 𝑈)) |
| 37 | | disjr 4451 |
. . 3
⊢ (((𝐹 “ 𝑈) ∩ (𝐹 “ (𝑋 ∖ 𝑈))) = ∅ ↔ ∀𝑧 ∈ (𝐹 “ (𝑋 ∖ 𝑈)) ¬ 𝑧 ∈ (𝐹 “ 𝑈)) |
| 38 | 36, 37 | sylibr 234 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → ((𝐹 “ 𝑈) ∩ (𝐹 “ (𝑋 ∖ 𝑈))) = ∅) |
| 39 | | sseq0 4403 |
. 2
⊢ ((((𝐹 “ 𝑈) ∩ (𝐹 “ (𝐴 ∖ 𝑈))) ⊆ ((𝐹 “ 𝑈) ∩ (𝐹 “ (𝑋 ∖ 𝑈))) ∧ ((𝐹 “ 𝑈) ∩ (𝐹 “ (𝑋 ∖ 𝑈))) = ∅) → ((𝐹 “ 𝑈) ∩ (𝐹 “ (𝐴 ∖ 𝑈))) = ∅) |
| 40 | 20, 38, 39 | syl2anc 584 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ 𝐽) → ((𝐹 “ 𝑈) ∩ (𝐹 “ (𝐴 ∖ 𝑈))) = ∅) |