MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqdisj Structured version   Visualization version   GIF version

Theorem kqdisj 22791
Description: A version of imain 6503 for the topological indistinguishability map. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqdisj ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) = ∅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqdisj
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imadmres 6126 . . . . 5 (𝐹 “ dom (𝐹 ↾ (𝐴𝑈))) = (𝐹 “ (𝐴𝑈))
2 dmres 5902 . . . . . . 7 dom (𝐹 ↾ (𝐴𝑈)) = ((𝐴𝑈) ∩ dom 𝐹)
3 kqval.2 . . . . . . . . . . 11 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
43kqffn 22784 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
54adantr 480 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝐹 Fn 𝑋)
65fndmd 6522 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → dom 𝐹 = 𝑋)
76ineq2d 4143 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐴𝑈) ∩ dom 𝐹) = ((𝐴𝑈) ∩ 𝑋))
82, 7eqtrid 2790 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → dom (𝐹 ↾ (𝐴𝑈)) = ((𝐴𝑈) ∩ 𝑋))
98imaeq2d 5958 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ dom (𝐹 ↾ (𝐴𝑈))) = (𝐹 “ ((𝐴𝑈) ∩ 𝑋)))
101, 9eqtr3id 2793 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐴𝑈)) = (𝐹 “ ((𝐴𝑈) ∩ 𝑋)))
11 indif1 4202 . . . . . 6 ((𝐴𝑈) ∩ 𝑋) = ((𝐴𝑋) ∖ 𝑈)
12 inss2 4160 . . . . . . 7 (𝐴𝑋) ⊆ 𝑋
13 ssdif 4070 . . . . . . 7 ((𝐴𝑋) ⊆ 𝑋 → ((𝐴𝑋) ∖ 𝑈) ⊆ (𝑋𝑈))
1412, 13ax-mp 5 . . . . . 6 ((𝐴𝑋) ∖ 𝑈) ⊆ (𝑋𝑈)
1511, 14eqsstri 3951 . . . . 5 ((𝐴𝑈) ∩ 𝑋) ⊆ (𝑋𝑈)
16 imass2 5999 . . . . 5 (((𝐴𝑈) ∩ 𝑋) ⊆ (𝑋𝑈) → (𝐹 “ ((𝐴𝑈) ∩ 𝑋)) ⊆ (𝐹 “ (𝑋𝑈)))
1715, 16mp1i 13 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ ((𝐴𝑈) ∩ 𝑋)) ⊆ (𝐹 “ (𝑋𝑈)))
1810, 17eqsstrd 3955 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐴𝑈)) ⊆ (𝐹 “ (𝑋𝑈)))
19 sslin 4165 . . 3 ((𝐹 “ (𝐴𝑈)) ⊆ (𝐹 “ (𝑋𝑈)) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) ⊆ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))))
2018, 19syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) ⊆ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))))
21 eldifn 4058 . . . . . . 7 (𝑤 ∈ (𝑋𝑈) → ¬ 𝑤𝑈)
2221adantl 481 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → ¬ 𝑤𝑈)
23 simpll 763 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → 𝐽 ∈ (TopOn‘𝑋))
24 simplr 765 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → 𝑈𝐽)
25 eldifi 4057 . . . . . . . 8 (𝑤 ∈ (𝑋𝑈) → 𝑤𝑋)
2625adantl 481 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → 𝑤𝑋)
273kqfvima 22789 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝑤𝑋) → (𝑤𝑈 ↔ (𝐹𝑤) ∈ (𝐹𝑈)))
2823, 24, 26, 27syl3anc 1369 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → (𝑤𝑈 ↔ (𝐹𝑤) ∈ (𝐹𝑈)))
2922, 28mtbid 323 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → ¬ (𝐹𝑤) ∈ (𝐹𝑈))
3029ralrimiva 3107 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ∀𝑤 ∈ (𝑋𝑈) ¬ (𝐹𝑤) ∈ (𝐹𝑈))
31 difss 4062 . . . . 5 (𝑋𝑈) ⊆ 𝑋
32 eleq1 2826 . . . . . . 7 (𝑧 = (𝐹𝑤) → (𝑧 ∈ (𝐹𝑈) ↔ (𝐹𝑤) ∈ (𝐹𝑈)))
3332notbid 317 . . . . . 6 (𝑧 = (𝐹𝑤) → (¬ 𝑧 ∈ (𝐹𝑈) ↔ ¬ (𝐹𝑤) ∈ (𝐹𝑈)))
3433ralima 7096 . . . . 5 ((𝐹 Fn 𝑋 ∧ (𝑋𝑈) ⊆ 𝑋) → (∀𝑧 ∈ (𝐹 “ (𝑋𝑈)) ¬ 𝑧 ∈ (𝐹𝑈) ↔ ∀𝑤 ∈ (𝑋𝑈) ¬ (𝐹𝑤) ∈ (𝐹𝑈)))
355, 31, 34sylancl 585 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (∀𝑧 ∈ (𝐹 “ (𝑋𝑈)) ¬ 𝑧 ∈ (𝐹𝑈) ↔ ∀𝑤 ∈ (𝑋𝑈) ¬ (𝐹𝑤) ∈ (𝐹𝑈)))
3630, 35mpbird 256 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ∀𝑧 ∈ (𝐹 “ (𝑋𝑈)) ¬ 𝑧 ∈ (𝐹𝑈))
37 disjr 4380 . . 3 (((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ∅ ↔ ∀𝑧 ∈ (𝐹 “ (𝑋𝑈)) ¬ 𝑧 ∈ (𝐹𝑈))
3836, 37sylibr 233 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ∅)
39 sseq0 4330 . 2 ((((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) ⊆ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) ∧ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ∅) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) = ∅)
4020, 38, 39syl2anc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  cdif 3880  cin 3882  wss 3883  c0 4253  cmpt 5153  dom cdm 5580  cres 5582  cima 5583   Fn wfn 6413  cfv 6418  TopOnctopon 21967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-topon 21968
This theorem is referenced by:  kqcldsat  22792  regr1lem  22798
  Copyright terms: Public domain W3C validator