MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqdisj Structured version   Visualization version   GIF version

Theorem kqdisj 23740
Description: A version of imain 6651 for the topological indistinguishability map. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqdisj ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) = ∅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqdisj
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imadmres 6254 . . . . 5 (𝐹 “ dom (𝐹 ↾ (𝐴𝑈))) = (𝐹 “ (𝐴𝑈))
2 dmres 6030 . . . . . . 7 dom (𝐹 ↾ (𝐴𝑈)) = ((𝐴𝑈) ∩ dom 𝐹)
3 kqval.2 . . . . . . . . . . 11 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
43kqffn 23733 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
54adantr 480 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝐹 Fn 𝑋)
65fndmd 6673 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → dom 𝐹 = 𝑋)
76ineq2d 4220 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐴𝑈) ∩ dom 𝐹) = ((𝐴𝑈) ∩ 𝑋))
82, 7eqtrid 2789 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → dom (𝐹 ↾ (𝐴𝑈)) = ((𝐴𝑈) ∩ 𝑋))
98imaeq2d 6078 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ dom (𝐹 ↾ (𝐴𝑈))) = (𝐹 “ ((𝐴𝑈) ∩ 𝑋)))
101, 9eqtr3id 2791 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐴𝑈)) = (𝐹 “ ((𝐴𝑈) ∩ 𝑋)))
11 indif1 4282 . . . . . 6 ((𝐴𝑈) ∩ 𝑋) = ((𝐴𝑋) ∖ 𝑈)
12 inss2 4238 . . . . . . 7 (𝐴𝑋) ⊆ 𝑋
13 ssdif 4144 . . . . . . 7 ((𝐴𝑋) ⊆ 𝑋 → ((𝐴𝑋) ∖ 𝑈) ⊆ (𝑋𝑈))
1412, 13ax-mp 5 . . . . . 6 ((𝐴𝑋) ∖ 𝑈) ⊆ (𝑋𝑈)
1511, 14eqsstri 4030 . . . . 5 ((𝐴𝑈) ∩ 𝑋) ⊆ (𝑋𝑈)
16 imass2 6120 . . . . 5 (((𝐴𝑈) ∩ 𝑋) ⊆ (𝑋𝑈) → (𝐹 “ ((𝐴𝑈) ∩ 𝑋)) ⊆ (𝐹 “ (𝑋𝑈)))
1715, 16mp1i 13 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ ((𝐴𝑈) ∩ 𝑋)) ⊆ (𝐹 “ (𝑋𝑈)))
1810, 17eqsstrd 4018 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐴𝑈)) ⊆ (𝐹 “ (𝑋𝑈)))
19 sslin 4243 . . 3 ((𝐹 “ (𝐴𝑈)) ⊆ (𝐹 “ (𝑋𝑈)) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) ⊆ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))))
2018, 19syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) ⊆ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))))
21 eldifn 4132 . . . . . . 7 (𝑤 ∈ (𝑋𝑈) → ¬ 𝑤𝑈)
2221adantl 481 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → ¬ 𝑤𝑈)
23 simpll 767 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → 𝐽 ∈ (TopOn‘𝑋))
24 simplr 769 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → 𝑈𝐽)
25 eldifi 4131 . . . . . . . 8 (𝑤 ∈ (𝑋𝑈) → 𝑤𝑋)
2625adantl 481 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → 𝑤𝑋)
273kqfvima 23738 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝑤𝑋) → (𝑤𝑈 ↔ (𝐹𝑤) ∈ (𝐹𝑈)))
2823, 24, 26, 27syl3anc 1373 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → (𝑤𝑈 ↔ (𝐹𝑤) ∈ (𝐹𝑈)))
2922, 28mtbid 324 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → ¬ (𝐹𝑤) ∈ (𝐹𝑈))
3029ralrimiva 3146 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ∀𝑤 ∈ (𝑋𝑈) ¬ (𝐹𝑤) ∈ (𝐹𝑈))
31 difss 4136 . . . . 5 (𝑋𝑈) ⊆ 𝑋
32 eleq1 2829 . . . . . . 7 (𝑧 = (𝐹𝑤) → (𝑧 ∈ (𝐹𝑈) ↔ (𝐹𝑤) ∈ (𝐹𝑈)))
3332notbid 318 . . . . . 6 (𝑧 = (𝐹𝑤) → (¬ 𝑧 ∈ (𝐹𝑈) ↔ ¬ (𝐹𝑤) ∈ (𝐹𝑈)))
3433ralima 7257 . . . . 5 ((𝐹 Fn 𝑋 ∧ (𝑋𝑈) ⊆ 𝑋) → (∀𝑧 ∈ (𝐹 “ (𝑋𝑈)) ¬ 𝑧 ∈ (𝐹𝑈) ↔ ∀𝑤 ∈ (𝑋𝑈) ¬ (𝐹𝑤) ∈ (𝐹𝑈)))
355, 31, 34sylancl 586 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (∀𝑧 ∈ (𝐹 “ (𝑋𝑈)) ¬ 𝑧 ∈ (𝐹𝑈) ↔ ∀𝑤 ∈ (𝑋𝑈) ¬ (𝐹𝑤) ∈ (𝐹𝑈)))
3630, 35mpbird 257 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ∀𝑧 ∈ (𝐹 “ (𝑋𝑈)) ¬ 𝑧 ∈ (𝐹𝑈))
37 disjr 4451 . . 3 (((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ∅ ↔ ∀𝑧 ∈ (𝐹 “ (𝑋𝑈)) ¬ 𝑧 ∈ (𝐹𝑈))
3836, 37sylibr 234 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ∅)
39 sseq0 4403 . 2 ((((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) ⊆ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) ∧ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ∅) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) = ∅)
4020, 38, 39syl2anc 584 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436  cdif 3948  cin 3950  wss 3951  c0 4333  cmpt 5225  dom cdm 5685  cres 5687  cima 5688   Fn wfn 6556  cfv 6561  TopOnctopon 22916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-topon 22917
This theorem is referenced by:  kqcldsat  23741  regr1lem  23747
  Copyright terms: Public domain W3C validator