MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqdisj Structured version   Visualization version   GIF version

Theorem kqdisj 23595
Description: A version of imain 6585 for the topological indistinguishability map. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqdisj ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) = ∅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqdisj
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imadmres 6195 . . . . 5 (𝐹 “ dom (𝐹 ↾ (𝐴𝑈))) = (𝐹 “ (𝐴𝑈))
2 dmres 5972 . . . . . . 7 dom (𝐹 ↾ (𝐴𝑈)) = ((𝐴𝑈) ∩ dom 𝐹)
3 kqval.2 . . . . . . . . . . 11 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
43kqffn 23588 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
54adantr 480 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝐹 Fn 𝑋)
65fndmd 6605 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → dom 𝐹 = 𝑋)
76ineq2d 4179 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐴𝑈) ∩ dom 𝐹) = ((𝐴𝑈) ∩ 𝑋))
82, 7eqtrid 2776 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → dom (𝐹 ↾ (𝐴𝑈)) = ((𝐴𝑈) ∩ 𝑋))
98imaeq2d 6020 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ dom (𝐹 ↾ (𝐴𝑈))) = (𝐹 “ ((𝐴𝑈) ∩ 𝑋)))
101, 9eqtr3id 2778 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐴𝑈)) = (𝐹 “ ((𝐴𝑈) ∩ 𝑋)))
11 indif1 4241 . . . . . 6 ((𝐴𝑈) ∩ 𝑋) = ((𝐴𝑋) ∖ 𝑈)
12 inss2 4197 . . . . . . 7 (𝐴𝑋) ⊆ 𝑋
13 ssdif 4103 . . . . . . 7 ((𝐴𝑋) ⊆ 𝑋 → ((𝐴𝑋) ∖ 𝑈) ⊆ (𝑋𝑈))
1412, 13ax-mp 5 . . . . . 6 ((𝐴𝑋) ∖ 𝑈) ⊆ (𝑋𝑈)
1511, 14eqsstri 3990 . . . . 5 ((𝐴𝑈) ∩ 𝑋) ⊆ (𝑋𝑈)
16 imass2 6062 . . . . 5 (((𝐴𝑈) ∩ 𝑋) ⊆ (𝑋𝑈) → (𝐹 “ ((𝐴𝑈) ∩ 𝑋)) ⊆ (𝐹 “ (𝑋𝑈)))
1715, 16mp1i 13 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ ((𝐴𝑈) ∩ 𝑋)) ⊆ (𝐹 “ (𝑋𝑈)))
1810, 17eqsstrd 3978 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐴𝑈)) ⊆ (𝐹 “ (𝑋𝑈)))
19 sslin 4202 . . 3 ((𝐹 “ (𝐴𝑈)) ⊆ (𝐹 “ (𝑋𝑈)) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) ⊆ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))))
2018, 19syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) ⊆ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))))
21 eldifn 4091 . . . . . . 7 (𝑤 ∈ (𝑋𝑈) → ¬ 𝑤𝑈)
2221adantl 481 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → ¬ 𝑤𝑈)
23 simpll 766 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → 𝐽 ∈ (TopOn‘𝑋))
24 simplr 768 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → 𝑈𝐽)
25 eldifi 4090 . . . . . . . 8 (𝑤 ∈ (𝑋𝑈) → 𝑤𝑋)
2625adantl 481 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → 𝑤𝑋)
273kqfvima 23593 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝑤𝑋) → (𝑤𝑈 ↔ (𝐹𝑤) ∈ (𝐹𝑈)))
2823, 24, 26, 27syl3anc 1373 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → (𝑤𝑈 ↔ (𝐹𝑤) ∈ (𝐹𝑈)))
2922, 28mtbid 324 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) ∧ 𝑤 ∈ (𝑋𝑈)) → ¬ (𝐹𝑤) ∈ (𝐹𝑈))
3029ralrimiva 3125 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ∀𝑤 ∈ (𝑋𝑈) ¬ (𝐹𝑤) ∈ (𝐹𝑈))
31 difss 4095 . . . . 5 (𝑋𝑈) ⊆ 𝑋
32 eleq1 2816 . . . . . . 7 (𝑧 = (𝐹𝑤) → (𝑧 ∈ (𝐹𝑈) ↔ (𝐹𝑤) ∈ (𝐹𝑈)))
3332notbid 318 . . . . . 6 (𝑧 = (𝐹𝑤) → (¬ 𝑧 ∈ (𝐹𝑈) ↔ ¬ (𝐹𝑤) ∈ (𝐹𝑈)))
3433ralima 7193 . . . . 5 ((𝐹 Fn 𝑋 ∧ (𝑋𝑈) ⊆ 𝑋) → (∀𝑧 ∈ (𝐹 “ (𝑋𝑈)) ¬ 𝑧 ∈ (𝐹𝑈) ↔ ∀𝑤 ∈ (𝑋𝑈) ¬ (𝐹𝑤) ∈ (𝐹𝑈)))
355, 31, 34sylancl 586 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (∀𝑧 ∈ (𝐹 “ (𝑋𝑈)) ¬ 𝑧 ∈ (𝐹𝑈) ↔ ∀𝑤 ∈ (𝑋𝑈) ¬ (𝐹𝑤) ∈ (𝐹𝑈)))
3630, 35mpbird 257 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ∀𝑧 ∈ (𝐹 “ (𝑋𝑈)) ¬ 𝑧 ∈ (𝐹𝑈))
37 disjr 4410 . . 3 (((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ∅ ↔ ∀𝑧 ∈ (𝐹 “ (𝑋𝑈)) ¬ 𝑧 ∈ (𝐹𝑈))
3836, 37sylibr 234 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ∅)
39 sseq0 4362 . 2 ((((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) ⊆ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) ∧ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ∅) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) = ∅)
4020, 38, 39syl2anc 584 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∩ (𝐹 “ (𝐴𝑈))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  cdif 3908  cin 3910  wss 3911  c0 4292  cmpt 5183  dom cdm 5631  cres 5633  cima 5634   Fn wfn 6494  cfv 6499  TopOnctopon 22773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-topon 22774
This theorem is referenced by:  kqcldsat  23596  regr1lem  23602
  Copyright terms: Public domain W3C validator