Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneicls11 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the interior of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneicls11 | ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . . . . . . . 9 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . . . . . . . 9 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . . . . . . 9 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 1, 2, 3 | ntrneiiex 41686 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
5 | elmapi 8637 | . . . . . . . 8 ⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
7 | 0elpw 5278 | . . . . . . . 8 ⊢ ∅ ∈ 𝒫 𝐵 | |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ∅ ∈ 𝒫 𝐵) |
9 | 6, 8 | ffvelrnd 6962 | . . . . . 6 ⊢ (𝜑 → (𝐼‘∅) ∈ 𝒫 𝐵) |
10 | 9 | elpwid 4544 | . . . . 5 ⊢ (𝜑 → (𝐼‘∅) ⊆ 𝐵) |
11 | reldisj 4385 | . . . . 5 ⊢ ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵 ∖ 𝐵))) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵 ∖ 𝐵))) |
13 | 12 | bicomd 222 | . . 3 ⊢ (𝜑 → ((𝐼‘∅) ⊆ (𝐵 ∖ 𝐵) ↔ ((𝐼‘∅) ∩ 𝐵) = ∅)) |
14 | difid 4304 | . . . . 5 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
15 | 14 | sseq2i 3950 | . . . 4 ⊢ ((𝐼‘∅) ⊆ (𝐵 ∖ 𝐵) ↔ (𝐼‘∅) ⊆ ∅) |
16 | ss0b 4331 | . . . 4 ⊢ ((𝐼‘∅) ⊆ ∅ ↔ (𝐼‘∅) = ∅) | |
17 | 15, 16 | bitri 274 | . . 3 ⊢ ((𝐼‘∅) ⊆ (𝐵 ∖ 𝐵) ↔ (𝐼‘∅) = ∅) |
18 | disjr 4383 | . . 3 ⊢ (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝐼‘∅)) | |
19 | 13, 17, 18 | 3bitr3g 313 | . 2 ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝐼‘∅))) |
20 | 3 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) |
21 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
22 | 7 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∅ ∈ 𝒫 𝐵) |
23 | 1, 2, 20, 21, 22 | ntrneiel 41691 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘∅) ↔ ∅ ∈ (𝑁‘𝑥))) |
24 | 23 | notbid 318 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (¬ 𝑥 ∈ (𝐼‘∅) ↔ ¬ ∅ ∈ (𝑁‘𝑥))) |
25 | 24 | ralbidva 3111 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝐼‘∅) ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) |
26 | 19, 25 | bitrd 278 | 1 ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 Vcvv 3432 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 class class class wbr 5074 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |