Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneicls11 | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then conditions equal to claiming that the interior of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneicls11 | ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . . . . . . . 9 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | ntrnei.f | . . . . . . . . 9 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
3 | ntrnei.r | . . . . . . . . 9 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
4 | 1, 2, 3 | ntrneiiex 41152 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)) |
5 | elmapi 8438 | . . . . . . . 8 ⊢ (𝐼 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐼:𝒫 𝐵⟶𝒫 𝐵) |
7 | 0elpw 5224 | . . . . . . . 8 ⊢ ∅ ∈ 𝒫 𝐵 | |
8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ∅ ∈ 𝒫 𝐵) |
9 | 6, 8 | ffvelrnd 6843 | . . . . . 6 ⊢ (𝜑 → (𝐼‘∅) ∈ 𝒫 𝐵) |
10 | 9 | elpwid 4505 | . . . . 5 ⊢ (𝜑 → (𝐼‘∅) ⊆ 𝐵) |
11 | reldisj 4348 | . . . . 5 ⊢ ((𝐼‘∅) ⊆ 𝐵 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵 ∖ 𝐵))) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ (𝐼‘∅) ⊆ (𝐵 ∖ 𝐵))) |
13 | 12 | bicomd 226 | . . 3 ⊢ (𝜑 → ((𝐼‘∅) ⊆ (𝐵 ∖ 𝐵) ↔ ((𝐼‘∅) ∩ 𝐵) = ∅)) |
14 | difid 4269 | . . . . 5 ⊢ (𝐵 ∖ 𝐵) = ∅ | |
15 | 14 | sseq2i 3921 | . . . 4 ⊢ ((𝐼‘∅) ⊆ (𝐵 ∖ 𝐵) ↔ (𝐼‘∅) ⊆ ∅) |
16 | ss0b 4293 | . . . 4 ⊢ ((𝐼‘∅) ⊆ ∅ ↔ (𝐼‘∅) = ∅) | |
17 | 15, 16 | bitri 278 | . . 3 ⊢ ((𝐼‘∅) ⊆ (𝐵 ∖ 𝐵) ↔ (𝐼‘∅) = ∅) |
18 | disjr 4346 | . . 3 ⊢ (((𝐼‘∅) ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝐼‘∅)) | |
19 | 13, 17, 18 | 3bitr3g 316 | . 2 ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝐼‘∅))) |
20 | 3 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼𝐹𝑁) |
21 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
22 | 7 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∅ ∈ 𝒫 𝐵) |
23 | 1, 2, 20, 21, 22 | ntrneiel 41157 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ (𝐼‘∅) ↔ ∅ ∈ (𝑁‘𝑥))) |
24 | 23 | notbid 321 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (¬ 𝑥 ∈ (𝐼‘∅) ↔ ¬ ∅ ∈ (𝑁‘𝑥))) |
25 | 24 | ralbidva 3125 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝐼‘∅) ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) |
26 | 19, 25 | bitrd 282 | 1 ⊢ (𝜑 → ((𝐼‘∅) = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ ∅ ∈ (𝑁‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 {crab 3074 Vcvv 3409 ∖ cdif 3855 ∩ cin 3857 ⊆ wss 3858 ∅c0 4225 𝒫 cpw 4494 class class class wbr 5032 ↦ cmpt 5112 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ∈ cmpo 7152 ↑m cmap 8416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-map 8418 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |