| Step | Hyp | Ref
| Expression |
| 1 | | wfrlem10OLD.2 |
. . . 4
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
| 2 | 1 | wfrlem8OLD 8335 |
. . 3
⊢
(Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ ↔ Pred(𝑅, 𝐴, 𝑧) = Pred(𝑅, dom 𝐹, 𝑧)) |
| 3 | 2 | biimpi 216 |
. 2
⊢
(Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → Pred(𝑅, 𝐴, 𝑧) = Pred(𝑅, dom 𝐹, 𝑧)) |
| 4 | | predss 6303 |
. . . 4
⊢
Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹 |
| 5 | 4 | a1i 11 |
. . 3
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹) |
| 6 | | simpr 484 |
. . . 4
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤 ∈ dom 𝐹) |
| 7 | | eldifn 4112 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹) |
| 8 | | eleq1w 2818 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (𝑤 ∈ dom 𝐹 ↔ 𝑧 ∈ dom 𝐹)) |
| 9 | 8 | notbid 318 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (¬ 𝑤 ∈ dom 𝐹 ↔ ¬ 𝑧 ∈ dom 𝐹)) |
| 10 | 7, 9 | syl5ibrcom 247 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑤 = 𝑧 → ¬ 𝑤 ∈ dom 𝐹)) |
| 11 | 10 | con2d 134 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑤 ∈ dom 𝐹 → ¬ 𝑤 = 𝑧)) |
| 12 | 11 | imp 406 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑤 = 𝑧) |
| 13 | | ssel 3957 |
. . . . . . . . 9
⊢
(Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) → 𝑧 ∈ dom 𝐹)) |
| 14 | 13 | con3d 152 |
. . . . . . . 8
⊢
(Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → (¬ 𝑧 ∈ dom 𝐹 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤))) |
| 15 | 7, 14 | syl5com 31 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤))) |
| 16 | 1 | wfrdmclOLD 8336 |
. . . . . . 7
⊢ (𝑤 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹) |
| 17 | 15, 16 | impel 505 |
. . . . . 6
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤)) |
| 18 | | eldifi 4111 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧 ∈ 𝐴) |
| 19 | | elpredg 6309 |
. . . . . . . 8
⊢ ((𝑤 ∈ dom 𝐹 ∧ 𝑧 ∈ 𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤)) |
| 20 | 19 | ancoms 458 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ dom 𝐹) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤)) |
| 21 | 18, 20 | sylan 580 |
. . . . . 6
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤)) |
| 22 | 17, 21 | mtbid 324 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑧𝑅𝑤) |
| 23 | 1 | wfrdmssOLD 8334 |
. . . . . . 7
⊢ dom 𝐹 ⊆ 𝐴 |
| 24 | 23 | sseli 3959 |
. . . . . 6
⊢ (𝑤 ∈ dom 𝐹 → 𝑤 ∈ 𝐴) |
| 25 | | wfrlem10OLD.1 |
. . . . . . . 8
⊢ 𝑅 We 𝐴 |
| 26 | | weso 5650 |
. . . . . . . 8
⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . 7
⊢ 𝑅 Or 𝐴 |
| 28 | | solin 5593 |
. . . . . . 7
⊢ ((𝑅 Or 𝐴 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑤𝑅𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧𝑅𝑤)) |
| 29 | 27, 28 | mpan 690 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑤𝑅𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧𝑅𝑤)) |
| 30 | 24, 18, 29 | syl2anr 597 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → (𝑤𝑅𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧𝑅𝑤)) |
| 31 | 12, 22, 30 | ecase23d 1475 |
. . . 4
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤𝑅𝑧) |
| 32 | | vex 3468 |
. . . . . 6
⊢ 𝑤 ∈ V |
| 33 | 32 | elpred 6312 |
. . . . 5
⊢ (𝑧 ∈ V → (𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧) ↔ (𝑤 ∈ dom 𝐹 ∧ 𝑤𝑅𝑧))) |
| 34 | 33 | elv 3469 |
. . . 4
⊢ (𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧) ↔ (𝑤 ∈ dom 𝐹 ∧ 𝑤𝑅𝑧)) |
| 35 | 6, 31, 34 | sylanbrc 583 |
. . 3
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧)) |
| 36 | 5, 35 | eqelssd 3985 |
. 2
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, dom 𝐹, 𝑧) = dom 𝐹) |
| 37 | 3, 36 | sylan9eqr 2793 |
1
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹) |