MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem10OLD Structured version   Visualization version   GIF version

Theorem wfrlem10OLD 8340
Description: Lemma for well-ordered recursion. When 𝑧 is an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), then its predecessor class is equal to dom 𝐹. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem10OLD.1 𝑅 We 𝐴
wfrlem10OLD.2 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrlem10OLD ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹)
Distinct variable group:   𝑧,𝐴
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem10OLD
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 wfrlem10OLD.2 . . . 4 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
21wfrlem8OLD 8338 . . 3 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ ↔ Pred(𝑅, 𝐴, 𝑧) = Pred(𝑅, dom 𝐹, 𝑧))
32biimpi 215 . 2 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → Pred(𝑅, 𝐴, 𝑧) = Pred(𝑅, dom 𝐹, 𝑧))
4 predss 6312 . . . 4 Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹
54a1i 11 . . 3 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹)
6 simpr 483 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤 ∈ dom 𝐹)
7 eldifn 4124 . . . . . . . 8 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
8 eleq1w 2809 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤 ∈ dom 𝐹𝑧 ∈ dom 𝐹))
98notbid 317 . . . . . . . 8 (𝑤 = 𝑧 → (¬ 𝑤 ∈ dom 𝐹 ↔ ¬ 𝑧 ∈ dom 𝐹))
107, 9syl5ibrcom 246 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑤 = 𝑧 → ¬ 𝑤 ∈ dom 𝐹))
1110con2d 134 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑤 ∈ dom 𝐹 → ¬ 𝑤 = 𝑧))
1211imp 405 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑤 = 𝑧)
13 ssel 3972 . . . . . . . . 9 (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) → 𝑧 ∈ dom 𝐹))
1413con3d 152 . . . . . . . 8 (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → (¬ 𝑧 ∈ dom 𝐹 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤)))
157, 14syl5com 31 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤)))
161wfrdmclOLD 8339 . . . . . . 7 (𝑤 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
1715, 16impel 504 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤))
18 eldifi 4123 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
19 elpredg 6318 . . . . . . . 8 ((𝑤 ∈ dom 𝐹𝑧𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤))
2019ancoms 457 . . . . . . 7 ((𝑧𝐴𝑤 ∈ dom 𝐹) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤))
2118, 20sylan 578 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤))
2217, 21mtbid 323 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑧𝑅𝑤)
231wfrdmssOLD 8337 . . . . . . 7 dom 𝐹𝐴
2423sseli 3974 . . . . . 6 (𝑤 ∈ dom 𝐹𝑤𝐴)
25 wfrlem10OLD.1 . . . . . . . 8 𝑅 We 𝐴
26 weso 5665 . . . . . . . 8 (𝑅 We 𝐴𝑅 Or 𝐴)
2725, 26ax-mp 5 . . . . . . 7 𝑅 Or 𝐴
28 solin 5611 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝑤𝐴𝑧𝐴)) → (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
2927, 28mpan 688 . . . . . 6 ((𝑤𝐴𝑧𝐴) → (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
3024, 18, 29syl2anr 595 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
3112, 22, 30ecase23d 1470 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤𝑅𝑧)
32 vex 3466 . . . . . 6 𝑤 ∈ V
3332elpred 6321 . . . . 5 (𝑧 ∈ V → (𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧) ↔ (𝑤 ∈ dom 𝐹𝑤𝑅𝑧)))
3433elv 3468 . . . 4 (𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧) ↔ (𝑤 ∈ dom 𝐹𝑤𝑅𝑧))
356, 31, 34sylanbrc 581 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧))
365, 35eqelssd 4000 . 2 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, dom 𝐹, 𝑧) = dom 𝐹)
373, 36sylan9eqr 2788 1 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3o 1083   = wceq 1534  wcel 2099  Vcvv 3462  cdif 3943  wss 3946  c0 4322   class class class wbr 5145   Or wor 5585   We wwe 5628  dom cdm 5674  Predcpred 6303  wrecscwrecs 8318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-so 5587  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-fo 6552  df-fv 6554  df-ov 7419  df-2nd 7996  df-frecs 8288  df-wrecs 8319
This theorem is referenced by:  wfrlem15OLD  8345
  Copyright terms: Public domain W3C validator