Step | Hyp | Ref
| Expression |
1 | | wfrlem10OLD.2 |
. . . 4
⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
2 | 1 | wfrlem8OLD 8118 |
. . 3
⊢
(Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ ↔ Pred(𝑅, 𝐴, 𝑧) = Pred(𝑅, dom 𝐹, 𝑧)) |
3 | 2 | biimpi 215 |
. 2
⊢
(Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → Pred(𝑅, 𝐴, 𝑧) = Pred(𝑅, dom 𝐹, 𝑧)) |
4 | | predss 6199 |
. . . 4
⊢
Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹 |
5 | 4 | a1i 11 |
. . 3
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹) |
6 | | simpr 484 |
. . . 4
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤 ∈ dom 𝐹) |
7 | | eldifn 4058 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹) |
8 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (𝑤 ∈ dom 𝐹 ↔ 𝑧 ∈ dom 𝐹)) |
9 | 8 | notbid 317 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (¬ 𝑤 ∈ dom 𝐹 ↔ ¬ 𝑧 ∈ dom 𝐹)) |
10 | 7, 9 | syl5ibrcom 246 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑤 = 𝑧 → ¬ 𝑤 ∈ dom 𝐹)) |
11 | 10 | con2d 134 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑤 ∈ dom 𝐹 → ¬ 𝑤 = 𝑧)) |
12 | 11 | imp 406 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑤 = 𝑧) |
13 | | ssel 3910 |
. . . . . . . . 9
⊢
(Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) → 𝑧 ∈ dom 𝐹)) |
14 | 13 | con3d 152 |
. . . . . . . 8
⊢
(Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → (¬ 𝑧 ∈ dom 𝐹 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤))) |
15 | 7, 14 | syl5com 31 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤))) |
16 | 1 | wfrdmclOLD 8119 |
. . . . . . 7
⊢ (𝑤 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹) |
17 | 15, 16 | impel 505 |
. . . . . 6
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤)) |
18 | | eldifi 4057 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧 ∈ 𝐴) |
19 | | elpredg 6205 |
. . . . . . . 8
⊢ ((𝑤 ∈ dom 𝐹 ∧ 𝑧 ∈ 𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤)) |
20 | 19 | ancoms 458 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ dom 𝐹) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤)) |
21 | 18, 20 | sylan 579 |
. . . . . 6
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤)) |
22 | 17, 21 | mtbid 323 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑧𝑅𝑤) |
23 | 1 | wfrdmssOLD 8117 |
. . . . . . 7
⊢ dom 𝐹 ⊆ 𝐴 |
24 | 23 | sseli 3913 |
. . . . . 6
⊢ (𝑤 ∈ dom 𝐹 → 𝑤 ∈ 𝐴) |
25 | | wfrlem10OLD.1 |
. . . . . . . 8
⊢ 𝑅 We 𝐴 |
26 | | weso 5571 |
. . . . . . . 8
⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) |
27 | 25, 26 | ax-mp 5 |
. . . . . . 7
⊢ 𝑅 Or 𝐴 |
28 | | solin 5519 |
. . . . . . 7
⊢ ((𝑅 Or 𝐴 ∧ (𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑤𝑅𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧𝑅𝑤)) |
29 | 27, 28 | mpan 686 |
. . . . . 6
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑤𝑅𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧𝑅𝑤)) |
30 | 24, 18, 29 | syl2anr 596 |
. . . . 5
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → (𝑤𝑅𝑧 ∨ 𝑤 = 𝑧 ∨ 𝑧𝑅𝑤)) |
31 | 12, 22, 30 | ecase23d 1471 |
. . . 4
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤𝑅𝑧) |
32 | | vex 3426 |
. . . . . 6
⊢ 𝑤 ∈ V |
33 | 32 | elpred 6208 |
. . . . 5
⊢ (𝑧 ∈ V → (𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧) ↔ (𝑤 ∈ dom 𝐹 ∧ 𝑤𝑅𝑧))) |
34 | 33 | elv 3428 |
. . . 4
⊢ (𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧) ↔ (𝑤 ∈ dom 𝐹 ∧ 𝑤𝑅𝑧)) |
35 | 6, 31, 34 | sylanbrc 582 |
. . 3
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧)) |
36 | 5, 35 | eqelssd 3938 |
. 2
⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, dom 𝐹, 𝑧) = dom 𝐹) |
37 | 3, 36 | sylan9eqr 2801 |
1
⊢ ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹) |