MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem10OLD Structured version   Visualization version   GIF version

Theorem wfrlem10OLD 8359
Description: Obsolete version as of 18-Nov-2024. Lemma for well-ordered recursion. When 𝑧 is an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), then its predecessor class is equal to dom 𝐹. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem10OLD.1 𝑅 We 𝐴
wfrlem10OLD.2 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrlem10OLD ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹)
Distinct variable group:   𝑧,𝐴
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem10OLD
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 wfrlem10OLD.2 . . . 4 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
21wfrlem8OLD 8357 . . 3 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ ↔ Pred(𝑅, 𝐴, 𝑧) = Pred(𝑅, dom 𝐹, 𝑧))
32biimpi 216 . 2 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → Pred(𝑅, 𝐴, 𝑧) = Pred(𝑅, dom 𝐹, 𝑧))
4 predss 6328 . . . 4 Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹
54a1i 11 . . 3 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹)
6 simpr 484 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤 ∈ dom 𝐹)
7 eldifn 4131 . . . . . . . 8 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
8 eleq1w 2823 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤 ∈ dom 𝐹𝑧 ∈ dom 𝐹))
98notbid 318 . . . . . . . 8 (𝑤 = 𝑧 → (¬ 𝑤 ∈ dom 𝐹 ↔ ¬ 𝑧 ∈ dom 𝐹))
107, 9syl5ibrcom 247 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑤 = 𝑧 → ¬ 𝑤 ∈ dom 𝐹))
1110con2d 134 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑤 ∈ dom 𝐹 → ¬ 𝑤 = 𝑧))
1211imp 406 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑤 = 𝑧)
13 ssel 3976 . . . . . . . . 9 (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) → 𝑧 ∈ dom 𝐹))
1413con3d 152 . . . . . . . 8 (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → (¬ 𝑧 ∈ dom 𝐹 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤)))
157, 14syl5com 31 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤)))
161wfrdmclOLD 8358 . . . . . . 7 (𝑤 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
1715, 16impel 505 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤))
18 eldifi 4130 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
19 elpredg 6334 . . . . . . . 8 ((𝑤 ∈ dom 𝐹𝑧𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤))
2019ancoms 458 . . . . . . 7 ((𝑧𝐴𝑤 ∈ dom 𝐹) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤))
2118, 20sylan 580 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤))
2217, 21mtbid 324 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑧𝑅𝑤)
231wfrdmssOLD 8356 . . . . . . 7 dom 𝐹𝐴
2423sseli 3978 . . . . . 6 (𝑤 ∈ dom 𝐹𝑤𝐴)
25 wfrlem10OLD.1 . . . . . . . 8 𝑅 We 𝐴
26 weso 5675 . . . . . . . 8 (𝑅 We 𝐴𝑅 Or 𝐴)
2725, 26ax-mp 5 . . . . . . 7 𝑅 Or 𝐴
28 solin 5618 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝑤𝐴𝑧𝐴)) → (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
2927, 28mpan 690 . . . . . 6 ((𝑤𝐴𝑧𝐴) → (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
3024, 18, 29syl2anr 597 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
3112, 22, 30ecase23d 1474 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤𝑅𝑧)
32 vex 3483 . . . . . 6 𝑤 ∈ V
3332elpred 6337 . . . . 5 (𝑧 ∈ V → (𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧) ↔ (𝑤 ∈ dom 𝐹𝑤𝑅𝑧)))
3433elv 3484 . . . 4 (𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧) ↔ (𝑤 ∈ dom 𝐹𝑤𝑅𝑧))
356, 31, 34sylanbrc 583 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧))
365, 35eqelssd 4004 . 2 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, dom 𝐹, 𝑧) = dom 𝐹)
373, 36sylan9eqr 2798 1 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1539  wcel 2107  Vcvv 3479  cdif 3947  wss 3950  c0 4332   class class class wbr 5142   Or wor 5590   We wwe 5635  dom cdm 5684  Predcpred 6319  wrecscwrecs 8337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-so 5592  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fo 6566  df-fv 6568  df-ov 7435  df-2nd 8016  df-frecs 8307  df-wrecs 8338
This theorem is referenced by:  wfrlem15OLD  8364
  Copyright terms: Public domain W3C validator