MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem10OLD Structured version   Visualization version   GIF version

Theorem wfrlem10OLD 8374
Description: Lemma for well-ordered recursion. When 𝑧 is an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), then its predecessor class is equal to dom 𝐹. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem10OLD.1 𝑅 We 𝐴
wfrlem10OLD.2 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrlem10OLD ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹)
Distinct variable group:   𝑧,𝐴
Allowed substitution hints:   𝑅(𝑧)   𝐹(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem10OLD
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 wfrlem10OLD.2 . . . 4 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
21wfrlem8OLD 8372 . . 3 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ ↔ Pred(𝑅, 𝐴, 𝑧) = Pred(𝑅, dom 𝐹, 𝑧))
32biimpi 216 . 2 (Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅ → Pred(𝑅, 𝐴, 𝑧) = Pred(𝑅, dom 𝐹, 𝑧))
4 predss 6340 . . . 4 Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹
54a1i 11 . . 3 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, dom 𝐹, 𝑧) ⊆ dom 𝐹)
6 simpr 484 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤 ∈ dom 𝐹)
7 eldifn 4155 . . . . . . . 8 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
8 eleq1w 2827 . . . . . . . . 9 (𝑤 = 𝑧 → (𝑤 ∈ dom 𝐹𝑧 ∈ dom 𝐹))
98notbid 318 . . . . . . . 8 (𝑤 = 𝑧 → (¬ 𝑤 ∈ dom 𝐹 ↔ ¬ 𝑧 ∈ dom 𝐹))
107, 9syl5ibrcom 247 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑤 = 𝑧 → ¬ 𝑤 ∈ dom 𝐹))
1110con2d 134 . . . . . 6 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (𝑤 ∈ dom 𝐹 → ¬ 𝑤 = 𝑧))
1211imp 406 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑤 = 𝑧)
13 ssel 4002 . . . . . . . . 9 (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) → 𝑧 ∈ dom 𝐹))
1413con3d 152 . . . . . . . 8 (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → (¬ 𝑧 ∈ dom 𝐹 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤)))
157, 14syl5com 31 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹 → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤)))
161wfrdmclOLD 8373 . . . . . . 7 (𝑤 ∈ dom 𝐹 → Pred(𝑅, 𝐴, 𝑤) ⊆ dom 𝐹)
1715, 16impel 505 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑧 ∈ Pred(𝑅, 𝐴, 𝑤))
18 eldifi 4154 . . . . . . 7 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝑧𝐴)
19 elpredg 6346 . . . . . . . 8 ((𝑤 ∈ dom 𝐹𝑧𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤))
2019ancoms 458 . . . . . . 7 ((𝑧𝐴𝑤 ∈ dom 𝐹) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤))
2118, 20sylan 579 . . . . . 6 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑤) ↔ 𝑧𝑅𝑤))
2217, 21mtbid 324 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → ¬ 𝑧𝑅𝑤)
231wfrdmssOLD 8371 . . . . . . 7 dom 𝐹𝐴
2423sseli 4004 . . . . . 6 (𝑤 ∈ dom 𝐹𝑤𝐴)
25 wfrlem10OLD.1 . . . . . . . 8 𝑅 We 𝐴
26 weso 5691 . . . . . . . 8 (𝑅 We 𝐴𝑅 Or 𝐴)
2725, 26ax-mp 5 . . . . . . 7 𝑅 Or 𝐴
28 solin 5634 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝑤𝐴𝑧𝐴)) → (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
2927, 28mpan 689 . . . . . 6 ((𝑤𝐴𝑧𝐴) → (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
3024, 18, 29syl2anr 596 . . . . 5 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → (𝑤𝑅𝑧𝑤 = 𝑧𝑧𝑅𝑤))
3112, 22, 30ecase23d 1473 . . . 4 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤𝑅𝑧)
32 vex 3492 . . . . . 6 𝑤 ∈ V
3332elpred 6349 . . . . 5 (𝑧 ∈ V → (𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧) ↔ (𝑤 ∈ dom 𝐹𝑤𝑅𝑧)))
3433elv 3493 . . . 4 (𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧) ↔ (𝑤 ∈ dom 𝐹𝑤𝑅𝑧))
356, 31, 34sylanbrc 582 . . 3 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ 𝑤 ∈ dom 𝐹) → 𝑤 ∈ Pred(𝑅, dom 𝐹, 𝑧))
365, 35eqelssd 4030 . 2 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Pred(𝑅, dom 𝐹, 𝑧) = dom 𝐹)
373, 36sylan9eqr 2802 1 ((𝑧 ∈ (𝐴 ∖ dom 𝐹) ∧ Pred(𝑅, (𝐴 ∖ dom 𝐹), 𝑧) = ∅) → Pred(𝑅, 𝐴, 𝑧) = dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1086   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  wss 3976  c0 4352   class class class wbr 5166   Or wor 5606   We wwe 5651  dom cdm 5700  Predcpred 6331  wrecscwrecs 8352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-so 5608  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-ov 7451  df-2nd 8031  df-frecs 8322  df-wrecs 8353
This theorem is referenced by:  wfrlem15OLD  8379
  Copyright terms: Public domain W3C validator