MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltmul2 Structured version   Visualization version   GIF version

Theorem sltmul2 28113
Description: Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.)
Assertion
Ref Expression
sltmul2 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → (𝐵 <s 𝐶 ↔ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)))

Proof of Theorem sltmul2
StepHypRef Expression
1 simpl1l 1225 . . . . 5 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → 𝐴 No )
2 simpl3 1194 . . . . . 6 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → 𝐶 No )
3 simpl2 1193 . . . . . 6 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → 𝐵 No )
42, 3subscld 28006 . . . . 5 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → (𝐶 -s 𝐵) ∈ No )
5 simpl1r 1226 . . . . 5 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → 0s <s 𝐴)
6 simp2 1137 . . . . . . 7 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → 𝐵 No )
7 simp3 1138 . . . . . . 7 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → 𝐶 No )
86, 7posdifsd 28040 . . . . . 6 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → (𝐵 <s 𝐶 ↔ 0s <s (𝐶 -s 𝐵)))
98biimpa 476 . . . . 5 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → 0s <s (𝐶 -s 𝐵))
101, 4, 5, 9mulsgt0d 28087 . . . 4 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → 0s <s (𝐴 ·s (𝐶 -s 𝐵)))
111, 2, 3subsdid 28100 . . . 4 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → (𝐴 ·s (𝐶 -s 𝐵)) = ((𝐴 ·s 𝐶) -s (𝐴 ·s 𝐵)))
1210, 11breqtrd 5121 . . 3 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → 0s <s ((𝐴 ·s 𝐶) -s (𝐴 ·s 𝐵)))
131, 3mulscld 28077 . . . 4 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → (𝐴 ·s 𝐵) ∈ No )
141, 2mulscld 28077 . . . 4 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → (𝐴 ·s 𝐶) ∈ No )
1513, 14posdifsd 28040 . . 3 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → ((𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶) ↔ 0s <s ((𝐴 ·s 𝐶) -s (𝐴 ·s 𝐵))))
1612, 15mpbird 257 . 2 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶))
17 simp1l 1198 . . . . . . . 8 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → 𝐴 No )
1817, 7mulscld 28077 . . . . . . 7 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → (𝐴 ·s 𝐶) ∈ No )
19 sltirr 27688 . . . . . . 7 ((𝐴 ·s 𝐶) ∈ No → ¬ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐶))
2018, 19syl 17 . . . . . 6 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → ¬ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐶))
21 oveq2 7362 . . . . . . . 8 (𝐵 = 𝐶 → (𝐴 ·s 𝐵) = (𝐴 ·s 𝐶))
2221breq1d 5105 . . . . . . 7 (𝐵 = 𝐶 → ((𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶) ↔ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐶)))
2322notbid 318 . . . . . 6 (𝐵 = 𝐶 → (¬ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶) ↔ ¬ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐶)))
2420, 23syl5ibrcom 247 . . . . 5 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → (𝐵 = 𝐶 → ¬ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)))
2524con2d 134 . . . 4 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → ((𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶) → ¬ 𝐵 = 𝐶))
2625imp 406 . . 3 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → ¬ 𝐵 = 𝐶)
2717, 6mulscld 28077 . . . . . . 7 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → (𝐴 ·s 𝐵) ∈ No )
28 sltasym 27690 . . . . . . 7 (((𝐴 ·s 𝐵) ∈ No ∧ (𝐴 ·s 𝐶) ∈ No ) → ((𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶) → ¬ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐵)))
2927, 18, 28syl2anc 584 . . . . . 6 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → ((𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶) → ¬ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐵)))
3029imp 406 . . . . 5 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → ¬ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐵))
31 simpl1l 1225 . . . . . . . 8 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → 𝐴 No )
3231adantr 480 . . . . . . 7 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → 𝐴 No )
33 simpll2 1214 . . . . . . . 8 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → 𝐵 No )
34 simpll3 1215 . . . . . . . 8 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → 𝐶 No )
3533, 34subscld 28006 . . . . . . 7 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → (𝐵 -s 𝐶) ∈ No )
36 simpl1r 1226 . . . . . . . 8 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → 0s <s 𝐴)
3736adantr 480 . . . . . . 7 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → 0s <s 𝐴)
38 simpr 484 . . . . . . 7 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → 0s <s (𝐵 -s 𝐶))
3932, 35, 37, 38mulsgt0d 28087 . . . . . 6 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → 0s <s (𝐴 ·s (𝐵 -s 𝐶)))
4032, 33, 34subsdid 28100 . . . . . . . 8 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → (𝐴 ·s (𝐵 -s 𝐶)) = ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝐶)))
4140breq2d 5107 . . . . . . 7 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → ( 0s <s (𝐴 ·s (𝐵 -s 𝐶)) ↔ 0s <s ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝐶))))
4218ad2antrr 726 . . . . . . . 8 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → (𝐴 ·s 𝐶) ∈ No )
4327ad2antrr 726 . . . . . . . 8 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → (𝐴 ·s 𝐵) ∈ No )
4442, 43posdifsd 28040 . . . . . . 7 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → ((𝐴 ·s 𝐶) <s (𝐴 ·s 𝐵) ↔ 0s <s ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝐶))))
4541, 44bitr4d 282 . . . . . 6 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → ( 0s <s (𝐴 ·s (𝐵 -s 𝐶)) ↔ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐵)))
4639, 45mpbid 232 . . . . 5 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐵))
4730, 46mtand 815 . . . 4 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → ¬ 0s <s (𝐵 -s 𝐶))
48 simpl3 1194 . . . . 5 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → 𝐶 No )
49 simpl2 1193 . . . . 5 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → 𝐵 No )
5048, 49posdifsd 28040 . . . 4 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → (𝐶 <s 𝐵 ↔ 0s <s (𝐵 -s 𝐶)))
5147, 50mtbird 325 . . 3 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → ¬ 𝐶 <s 𝐵)
52 sltlin 27691 . . . 4 ((𝐵 No 𝐶 No ) → (𝐵 <s 𝐶𝐵 = 𝐶𝐶 <s 𝐵))
5349, 48, 52syl2anc 584 . . 3 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → (𝐵 <s 𝐶𝐵 = 𝐶𝐶 <s 𝐵))
5426, 51, 53ecase23d 1475 . 2 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → 𝐵 <s 𝐶)
5516, 54impbida 800 1 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → (𝐵 <s 𝐶 ↔ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5095  (class class class)co 7354   No csur 27581   <s cslt 27582   0s c0s 27769   -s csubs 27965   ·s cmuls 28048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-1o 8393  df-2o 8394  df-nadd 8589  df-no 27584  df-slt 27585  df-bday 27586  df-sle 27687  df-sslt 27724  df-scut 27726  df-0s 27771  df-made 27791  df-old 27792  df-left 27794  df-right 27795  df-norec 27884  df-norec2 27895  df-adds 27906  df-negs 27966  df-subs 27967  df-muls 28049
This theorem is referenced by:  sltmul2d  28114
  Copyright terms: Public domain W3C validator