MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltmul2 Structured version   Visualization version   GIF version

Theorem sltmul2 28212
Description: Multiplication of both sides of surreal less-than by a positive number. (Contributed by Scott Fenton, 10-Mar-2025.)
Assertion
Ref Expression
sltmul2 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → (𝐵 <s 𝐶 ↔ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)))

Proof of Theorem sltmul2
StepHypRef Expression
1 simpl1l 1223 . . . . 5 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → 𝐴 No )
2 simpl3 1192 . . . . . 6 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → 𝐶 No )
3 simpl2 1191 . . . . . 6 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → 𝐵 No )
42, 3subscld 28108 . . . . 5 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → (𝐶 -s 𝐵) ∈ No )
5 simpl1r 1224 . . . . 5 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → 0s <s 𝐴)
6 simp2 1136 . . . . . . 7 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → 𝐵 No )
7 simp3 1137 . . . . . . 7 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → 𝐶 No )
86, 7posdifsd 28142 . . . . . 6 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → (𝐵 <s 𝐶 ↔ 0s <s (𝐶 -s 𝐵)))
98biimpa 476 . . . . 5 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → 0s <s (𝐶 -s 𝐵))
101, 4, 5, 9mulsgt0d 28186 . . . 4 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → 0s <s (𝐴 ·s (𝐶 -s 𝐵)))
111, 2, 3subsdid 28199 . . . 4 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → (𝐴 ·s (𝐶 -s 𝐵)) = ((𝐴 ·s 𝐶) -s (𝐴 ·s 𝐵)))
1210, 11breqtrd 5174 . . 3 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → 0s <s ((𝐴 ·s 𝐶) -s (𝐴 ·s 𝐵)))
131, 3mulscld 28176 . . . 4 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → (𝐴 ·s 𝐵) ∈ No )
141, 2mulscld 28176 . . . 4 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → (𝐴 ·s 𝐶) ∈ No )
1513, 14posdifsd 28142 . . 3 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → ((𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶) ↔ 0s <s ((𝐴 ·s 𝐶) -s (𝐴 ·s 𝐵))))
1612, 15mpbird 257 . 2 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ 𝐵 <s 𝐶) → (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶))
17 simp1l 1196 . . . . . . . 8 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → 𝐴 No )
1817, 7mulscld 28176 . . . . . . 7 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → (𝐴 ·s 𝐶) ∈ No )
19 sltirr 27806 . . . . . . 7 ((𝐴 ·s 𝐶) ∈ No → ¬ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐶))
2018, 19syl 17 . . . . . 6 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → ¬ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐶))
21 oveq2 7439 . . . . . . . 8 (𝐵 = 𝐶 → (𝐴 ·s 𝐵) = (𝐴 ·s 𝐶))
2221breq1d 5158 . . . . . . 7 (𝐵 = 𝐶 → ((𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶) ↔ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐶)))
2322notbid 318 . . . . . 6 (𝐵 = 𝐶 → (¬ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶) ↔ ¬ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐶)))
2420, 23syl5ibrcom 247 . . . . 5 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → (𝐵 = 𝐶 → ¬ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)))
2524con2d 134 . . . 4 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → ((𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶) → ¬ 𝐵 = 𝐶))
2625imp 406 . . 3 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → ¬ 𝐵 = 𝐶)
2717, 6mulscld 28176 . . . . . . 7 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → (𝐴 ·s 𝐵) ∈ No )
28 sltasym 27808 . . . . . . 7 (((𝐴 ·s 𝐵) ∈ No ∧ (𝐴 ·s 𝐶) ∈ No ) → ((𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶) → ¬ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐵)))
2927, 18, 28syl2anc 584 . . . . . 6 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → ((𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶) → ¬ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐵)))
3029imp 406 . . . . 5 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → ¬ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐵))
31 simpl1l 1223 . . . . . . . 8 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → 𝐴 No )
3231adantr 480 . . . . . . 7 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → 𝐴 No )
33 simpll2 1212 . . . . . . . 8 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → 𝐵 No )
34 simpll3 1213 . . . . . . . 8 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → 𝐶 No )
3533, 34subscld 28108 . . . . . . 7 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → (𝐵 -s 𝐶) ∈ No )
36 simpl1r 1224 . . . . . . . 8 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → 0s <s 𝐴)
3736adantr 480 . . . . . . 7 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → 0s <s 𝐴)
38 simpr 484 . . . . . . 7 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → 0s <s (𝐵 -s 𝐶))
3932, 35, 37, 38mulsgt0d 28186 . . . . . 6 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → 0s <s (𝐴 ·s (𝐵 -s 𝐶)))
4032, 33, 34subsdid 28199 . . . . . . . 8 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → (𝐴 ·s (𝐵 -s 𝐶)) = ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝐶)))
4140breq2d 5160 . . . . . . 7 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → ( 0s <s (𝐴 ·s (𝐵 -s 𝐶)) ↔ 0s <s ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝐶))))
4218ad2antrr 726 . . . . . . . 8 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → (𝐴 ·s 𝐶) ∈ No )
4327ad2antrr 726 . . . . . . . 8 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → (𝐴 ·s 𝐵) ∈ No )
4442, 43posdifsd 28142 . . . . . . 7 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → ((𝐴 ·s 𝐶) <s (𝐴 ·s 𝐵) ↔ 0s <s ((𝐴 ·s 𝐵) -s (𝐴 ·s 𝐶))))
4541, 44bitr4d 282 . . . . . 6 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → ( 0s <s (𝐴 ·s (𝐵 -s 𝐶)) ↔ (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐵)))
4639, 45mpbid 232 . . . . 5 (((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) ∧ 0s <s (𝐵 -s 𝐶)) → (𝐴 ·s 𝐶) <s (𝐴 ·s 𝐵))
4730, 46mtand 816 . . . 4 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → ¬ 0s <s (𝐵 -s 𝐶))
48 simpl3 1192 . . . . 5 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → 𝐶 No )
49 simpl2 1191 . . . . 5 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → 𝐵 No )
5048, 49posdifsd 28142 . . . 4 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → (𝐶 <s 𝐵 ↔ 0s <s (𝐵 -s 𝐶)))
5147, 50mtbird 325 . . 3 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → ¬ 𝐶 <s 𝐵)
52 sltlin 27809 . . . 4 ((𝐵 No 𝐶 No ) → (𝐵 <s 𝐶𝐵 = 𝐶𝐶 <s 𝐵))
5349, 48, 52syl2anc 584 . . 3 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → (𝐵 <s 𝐶𝐵 = 𝐶𝐶 <s 𝐵))
5426, 51, 53ecase23d 1472 . 2 ((((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) ∧ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)) → 𝐵 <s 𝐶)
5516, 54impbida 801 1 (((𝐴 No ∧ 0s <s 𝐴) ∧ 𝐵 No 𝐶 No ) → (𝐵 <s 𝐶 ↔ (𝐴 ·s 𝐵) <s (𝐴 ·s 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  (class class class)co 7431   No csur 27699   <s cslt 27700   0s c0s 27882   -s csubs 28067   ·s cmuls 28147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-muls 28148
This theorem is referenced by:  sltmul2d  28213
  Copyright terms: Public domain W3C validator