Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noresle Structured version   Visualization version   GIF version

Theorem noresle 33208
Description: Restriction law for surreals. Lemma 2.1.4 of [Lipparini] p. 3. (Contributed by Scott Fenton, 5-Dec-2021.)
Assertion
Ref Expression
noresle (((𝑈 No 𝑆 No ) ∧ (dom 𝑈𝐴 ∧ dom 𝑆𝐴 ∧ ∀𝑔𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ 𝑆 <s 𝑈)
Distinct variable groups:   𝑆,𝑔   𝑈,𝑔   𝐴,𝑔

Proof of Theorem noresle
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 unss 4139 . . . 4 ((dom 𝑈𝐴 ∧ dom 𝑆𝐴) ↔ (dom 𝑈 ∪ dom 𝑆) ⊆ 𝐴)
2 ssralv 4012 . . . 4 ((dom 𝑈 ∪ dom 𝑆) ⊆ 𝐴 → (∀𝑔𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) → ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)))
31, 2sylbi 219 . . 3 ((dom 𝑈𝐴 ∧ dom 𝑆𝐴) → (∀𝑔𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) → ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)))
433impia 1113 . 2 ((dom 𝑈𝐴 ∧ dom 𝑆𝐴 ∧ ∀𝑔𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)) → ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))
5 breq1 5045 . . . . . . . 8 (𝑈 = 𝑆 → (𝑈 <s 𝑈𝑆 <s 𝑈))
65notbid 320 . . . . . . 7 (𝑈 = 𝑆 → (¬ 𝑈 <s 𝑈 ↔ ¬ 𝑆 <s 𝑈))
76biimpd 231 . . . . . 6 (𝑈 = 𝑆 → (¬ 𝑈 <s 𝑈 → ¬ 𝑆 <s 𝑈))
8 sltso 33189 . . . . . . . 8 <s Or No
9 sonr 5472 . . . . . . . 8 (( <s Or No 𝑈 No ) → ¬ 𝑈 <s 𝑈)
108, 9mpan 688 . . . . . . 7 (𝑈 No → ¬ 𝑈 <s 𝑈)
1110adantr 483 . . . . . 6 ((𝑈 No 𝑆 No ) → ¬ 𝑈 <s 𝑈)
127, 11impel 508 . . . . 5 ((𝑈 = 𝑆 ∧ (𝑈 No 𝑆 No )) → ¬ 𝑆 <s 𝑈)
1312adantrr 715 . . . 4 ((𝑈 = 𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ 𝑆 <s 𝑈)
1413ex 415 . . 3 (𝑈 = 𝑆 → (((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)) → ¬ 𝑆 <s 𝑈))
15 simprl 769 . . . . 5 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑈 No 𝑆 No ))
16 simprll 777 . . . . . . . . . . 11 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → 𝑈 No )
17 simprlr 778 . . . . . . . . . . 11 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → 𝑆 No )
18 simpl 485 . . . . . . . . . . 11 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → 𝑈𝑆)
19 nosepne 33193 . . . . . . . . . . 11 ((𝑈 No 𝑆 No 𝑈𝑆) → (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ≠ (𝑆 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
2016, 17, 18, 19syl3anc 1367 . . . . . . . . . 10 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ≠ (𝑆 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
21 nosepon 33180 . . . . . . . . . . . . 13 ((𝑈 No 𝑆 No 𝑈𝑆) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On)
2216, 17, 18, 21syl3anc 1367 . . . . . . . . . . . 12 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On)
23 sucidg 6245 . . . . . . . . . . . 12 ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})
2422, 23syl 17 . . . . . . . . . . 11 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})
2524fvresd 6666 . . . . . . . . . 10 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
2624fvresd 6666 . . . . . . . . . 10 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = (𝑆 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
2720, 25, 263netr4d 3083 . . . . . . . . 9 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ≠ ((𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
2827neneqd 3011 . . . . . . . 8 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = ((𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
29 fveq1 6645 . . . . . . . 8 ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = ((𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
3028, 29nsyl 142 . . . . . . 7 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
31 nosepdm 33196 . . . . . . . . 9 ((𝑈 No 𝑆 No 𝑈𝑆) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ (dom 𝑈 ∪ dom 𝑆))
3216, 17, 18, 31syl3anc 1367 . . . . . . . 8 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ (dom 𝑈 ∪ dom 𝑆))
33 simprr 771 . . . . . . . 8 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))
34 suceq 6232 . . . . . . . . . . . 12 (𝑔 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} → suc 𝑔 = suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})
3534reseq2d 5829 . . . . . . . . . . 11 (𝑔 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} → (𝑆 ↾ suc 𝑔) = (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
3634reseq2d 5829 . . . . . . . . . . 11 (𝑔 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} → (𝑈 ↾ suc 𝑔) = (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
3735, 36breq12d 5055 . . . . . . . . . 10 (𝑔 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} → ((𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) ↔ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})))
3837notbid 320 . . . . . . . . 9 (𝑔 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} → (¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) ↔ ¬ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})))
3938rspcv 3597 . . . . . . . 8 ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ (dom 𝑈 ∪ dom 𝑆) → (∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) → ¬ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})))
4032, 33, 39sylc 65 . . . . . . 7 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
41 suceloni 7506 . . . . . . . . . 10 ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On → suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On)
4222, 41syl 17 . . . . . . . . 9 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On)
43 noreson 33175 . . . . . . . . 9 ((𝑈 No ∧ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On) → (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No )
4416, 42, 43syl2anc 586 . . . . . . . 8 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No )
45 noreson 33175 . . . . . . . . 9 ((𝑆 No ∧ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On) → (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No )
4617, 42, 45syl2anc 586 . . . . . . . 8 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No )
47 solin 5474 . . . . . . . . 9 (( <s Or No ∧ ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No ∧ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No )) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∨ (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∨ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})))
488, 47mpan 688 . . . . . . . 8 (((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No ∧ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∈ No ) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∨ (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∨ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})))
4944, 46, 48syl2anc 586 . . . . . . 7 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∨ (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) = (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) ∨ (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)})))
5030, 40, 49ecase23d 1469 . . . . . 6 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}))
51 sltres 33177 . . . . . . 7 ((𝑈 No 𝑆 No ∧ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)} ∈ On) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) → 𝑈 <s 𝑆))
5216, 17, 42, 51syl3anc 1367 . . . . . 6 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑈 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) <s (𝑆 ↾ suc {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑆𝑥)}) → 𝑈 <s 𝑆))
5350, 52mpd 15 . . . . 5 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → 𝑈 <s 𝑆)
54 soasym 5480 . . . . . 6 (( <s Or No ∧ (𝑈 No 𝑆 No )) → (𝑈 <s 𝑆 → ¬ 𝑆 <s 𝑈))
558, 54mpan 688 . . . . 5 ((𝑈 No 𝑆 No ) → (𝑈 <s 𝑆 → ¬ 𝑆 <s 𝑈))
5615, 53, 55sylc 65 . . . 4 ((𝑈𝑆 ∧ ((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ 𝑆 <s 𝑈)
5756ex 415 . . 3 (𝑈𝑆 → (((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)) → ¬ 𝑆 <s 𝑈))
5814, 57pm2.61ine 3089 . 2 (((𝑈 No 𝑆 No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)) → ¬ 𝑆 <s 𝑈)
594, 58sylan2 594 1 (((𝑈 No 𝑆 No ) ∧ (dom 𝑈𝐴 ∧ dom 𝑆𝐴 ∧ ∀𝑔𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ 𝑆 <s 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wne 3006  wral 3125  {crab 3129  cun 3911  wss 3913   cint 4852   class class class wbr 5042   Or wor 5449  dom cdm 5531  cres 5533  Oncon0 6167  suc csuc 6169  cfv 6331   No csur 33155   <s cslt 33156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-ord 6170  df-on 6171  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-1o 8080  df-2o 8081  df-no 33158  df-slt 33159
This theorem is referenced by:  nosupbnd1lem1  33216  nosupbnd2  33224
  Copyright terms: Public domain W3C validator