Step | Hyp | Ref
| Expression |
1 | | unss 4123 |
. . . 4
⊢ ((dom
𝑈 ⊆ 𝐴 ∧ dom 𝑆 ⊆ 𝐴) ↔ (dom 𝑈 ∪ dom 𝑆) ⊆ 𝐴) |
2 | | ssralv 3992 |
. . . 4
⊢ ((dom
𝑈 ∪ dom 𝑆) ⊆ 𝐴 → (∀𝑔 ∈ 𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) → ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) |
3 | 1, 2 | sylbi 216 |
. . 3
⊢ ((dom
𝑈 ⊆ 𝐴 ∧ dom 𝑆 ⊆ 𝐴) → (∀𝑔 ∈ 𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) → ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) |
4 | 3 | 3impia 1116 |
. 2
⊢ ((dom
𝑈 ⊆ 𝐴 ∧ dom 𝑆 ⊆ 𝐴 ∧ ∀𝑔 ∈ 𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)) → ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)) |
5 | | breq1 5082 |
. . . . . . . 8
⊢ (𝑈 = 𝑆 → (𝑈 <s 𝑈 ↔ 𝑆 <s 𝑈)) |
6 | 5 | notbid 318 |
. . . . . . 7
⊢ (𝑈 = 𝑆 → (¬ 𝑈 <s 𝑈 ↔ ¬ 𝑆 <s 𝑈)) |
7 | 6 | biimpd 228 |
. . . . . 6
⊢ (𝑈 = 𝑆 → (¬ 𝑈 <s 𝑈 → ¬ 𝑆 <s 𝑈)) |
8 | | sltso 33875 |
. . . . . . . 8
⊢ <s Or
No |
9 | | sonr 5527 |
. . . . . . . 8
⊢ (( <s
Or No ∧ 𝑈 ∈ No )
→ ¬ 𝑈 <s 𝑈) |
10 | 8, 9 | mpan 687 |
. . . . . . 7
⊢ (𝑈 ∈
No → ¬ 𝑈
<s 𝑈) |
11 | 10 | adantr 481 |
. . . . . 6
⊢ ((𝑈 ∈
No ∧ 𝑆 ∈
No ) → ¬ 𝑈 <s 𝑈) |
12 | 7, 11 | impel 506 |
. . . . 5
⊢ ((𝑈 = 𝑆 ∧ (𝑈 ∈ No
∧ 𝑆 ∈ No )) → ¬ 𝑆 <s 𝑈) |
13 | 12 | adantrr 714 |
. . . 4
⊢ ((𝑈 = 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ 𝑆 <s 𝑈) |
14 | 13 | ex 413 |
. . 3
⊢ (𝑈 = 𝑆 → (((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)) → ¬ 𝑆 <s 𝑈)) |
15 | | simprl 768 |
. . . . 5
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑈 ∈ No
∧ 𝑆 ∈ No )) |
16 | | simprll 776 |
. . . . . . . . . . 11
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → 𝑈 ∈ No
) |
17 | | simprlr 777 |
. . . . . . . . . . 11
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → 𝑆 ∈ No
) |
18 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → 𝑈 ≠ 𝑆) |
19 | | nosepne 33879 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈
No ∧ 𝑆 ∈
No ∧ 𝑈 ≠ 𝑆) → (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ≠ (𝑆‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})) |
20 | 16, 17, 18, 19 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ≠ (𝑆‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})) |
21 | | nosepon 33864 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈
No ∧ 𝑆 ∈
No ∧ 𝑈 ≠ 𝑆) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} ∈ On) |
22 | 16, 17, 18, 21 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} ∈ On) |
23 | | sucidg 6343 |
. . . . . . . . . . . 12
⊢ (∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} ∈ On → ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} ∈ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) |
24 | 22, 23 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} ∈ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) |
25 | 24 | fvresd 6791 |
. . . . . . . . . 10
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) = (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})) |
26 | 24 | fvresd 6791 |
. . . . . . . . . 10
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) = (𝑆‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})) |
27 | 20, 25, 26 | 3netr4d 3023 |
. . . . . . . . 9
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ≠ ((𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})) |
28 | 27 | neneqd 2950 |
. . . . . . . 8
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ ((𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) = ((𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})) |
29 | | fveq1 6770 |
. . . . . . . 8
⊢ ((𝑈 ↾ suc ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) = (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) → ((𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) = ((𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})) |
30 | 28, 29 | nsyl 140 |
. . . . . . 7
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) = (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})) |
31 | | nosepdm 33883 |
. . . . . . . . 9
⊢ ((𝑈 ∈
No ∧ 𝑆 ∈
No ∧ 𝑈 ≠ 𝑆) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} ∈ (dom 𝑈 ∪ dom 𝑆)) |
32 | 16, 17, 18, 31 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} ∈ (dom 𝑈 ∪ dom 𝑆)) |
33 | | simprr 770 |
. . . . . . . 8
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)) |
34 | | suceq 6330 |
. . . . . . . . . . . 12
⊢ (𝑔 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} → suc 𝑔 = suc ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) |
35 | 34 | reseq2d 5890 |
. . . . . . . . . . 11
⊢ (𝑔 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} → (𝑆 ↾ suc 𝑔) = (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})) |
36 | 34 | reseq2d 5890 |
. . . . . . . . . . 11
⊢ (𝑔 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} → (𝑈 ↾ suc 𝑔) = (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})) |
37 | 35, 36 | breq12d 5092 |
. . . . . . . . . 10
⊢ (𝑔 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} → ((𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) ↔ (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) <s (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}))) |
38 | 37 | notbid 318 |
. . . . . . . . 9
⊢ (𝑔 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} → (¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) ↔ ¬ (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) <s (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}))) |
39 | 38 | rspcv 3556 |
. . . . . . . 8
⊢ (∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} ∈ (dom 𝑈 ∪ dom 𝑆) → (∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔) → ¬ (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) <s (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}))) |
40 | 32, 33, 39 | sylc 65 |
. . . . . . 7
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) <s (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})) |
41 | | suceloni 7653 |
. . . . . . . . . 10
⊢ (∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} ∈ On → suc ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} ∈ On) |
42 | 22, 41 | syl 17 |
. . . . . . . . 9
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} ∈ On) |
43 | | noreson 33859 |
. . . . . . . . 9
⊢ ((𝑈 ∈
No ∧ suc ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} ∈ On) → (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ∈ No
) |
44 | 16, 42, 43 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ∈ No
) |
45 | | noreson 33859 |
. . . . . . . . 9
⊢ ((𝑆 ∈
No ∧ suc ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} ∈ On) → (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ∈ No
) |
46 | 17, 42, 45 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ∈ No
) |
47 | | solin 5529 |
. . . . . . . . 9
⊢ (( <s
Or No ∧ ((𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ∈ No
∧ (𝑆 ↾ suc ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ∈ No
)) → ((𝑈
↾ suc ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) <s (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ∨ (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) = (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ∨ (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) <s (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}))) |
48 | 8, 47 | mpan 687 |
. . . . . . . 8
⊢ (((𝑈 ↾ suc ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ∈ No
∧ (𝑆 ↾ suc ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ∈ No )
→ ((𝑈 ↾ suc
∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) <s (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ∨ (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) = (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ∨ (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) <s (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}))) |
49 | 44, 46, 48 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) <s (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ∨ (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) = (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) ∨ (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) <s (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}))) |
50 | 30, 40, 49 | ecase23d 1472 |
. . . . . 6
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → (𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) <s (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)})) |
51 | | sltres 33861 |
. . . . . . 7
⊢ ((𝑈 ∈
No ∧ 𝑆 ∈
No ∧ suc ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)} ∈ On) → ((𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) <s (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) → 𝑈 <s 𝑆)) |
52 | 16, 17, 42, 51 | syl3anc 1370 |
. . . . . 6
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ((𝑈 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) <s (𝑆 ↾ suc ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑆‘𝑥)}) → 𝑈 <s 𝑆)) |
53 | 50, 52 | mpd 15 |
. . . . 5
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → 𝑈 <s 𝑆) |
54 | | soasym 5535 |
. . . . . 6
⊢ (( <s
Or No ∧ (𝑈 ∈ No
∧ 𝑆 ∈ No )) → (𝑈 <s 𝑆 → ¬ 𝑆 <s 𝑈)) |
55 | 8, 54 | mpan 687 |
. . . . 5
⊢ ((𝑈 ∈
No ∧ 𝑆 ∈
No ) → (𝑈 <s 𝑆 → ¬ 𝑆 <s 𝑈)) |
56 | 15, 53, 55 | sylc 65 |
. . . 4
⊢ ((𝑈 ≠ 𝑆 ∧ ((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ 𝑆 <s 𝑈) |
57 | 56 | ex 413 |
. . 3
⊢ (𝑈 ≠ 𝑆 → (((𝑈 ∈ No
∧ 𝑆 ∈ No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)) → ¬ 𝑆 <s 𝑈)) |
58 | 14, 57 | pm2.61ine 3030 |
. 2
⊢ (((𝑈 ∈
No ∧ 𝑆 ∈
No ) ∧ ∀𝑔 ∈ (dom 𝑈 ∪ dom 𝑆) ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔)) → ¬ 𝑆 <s 𝑈) |
59 | 4, 58 | sylan2 593 |
1
⊢ (((𝑈 ∈
No ∧ 𝑆 ∈
No ) ∧ (dom 𝑈 ⊆ 𝐴 ∧ dom 𝑆 ⊆ 𝐴 ∧ ∀𝑔 ∈ 𝐴 ¬ (𝑆 ↾ suc 𝑔) <s (𝑈 ↾ suc 𝑔))) → ¬ 𝑆 <s 𝑈) |