Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem2b Structured version   Visualization version   GIF version

Theorem archiabllem2b 31450
Description: Lemma for archiabl 31452. (Contributed by Thierry Arnoux, 1-May-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem2.1 + = (+g𝑊)
archiabllem2.2 (𝜑 → (oppg𝑊) ∈ oGrp)
archiabllem2.3 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
archiabllem2b.4 (𝜑𝑋𝐵)
archiabllem2b.5 (𝜑𝑌𝐵)
Assertion
Ref Expression
archiabllem2b (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Distinct variable groups:   𝑎,𝑏,𝐵   𝑊,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝜑,𝑎,𝑏   + ,𝑎,𝑏   ,𝑎,𝑏   < ,𝑎,𝑏   0 ,𝑎,𝑏
Allowed substitution hints:   · (𝑎,𝑏)

Proof of Theorem archiabllem2b
StepHypRef Expression
1 archiabllem.b . . 3 𝐵 = (Base‘𝑊)
2 archiabllem.0 . . 3 0 = (0g𝑊)
3 archiabllem.e . . 3 = (le‘𝑊)
4 archiabllem.t . . 3 < = (lt‘𝑊)
5 archiabllem.m . . 3 · = (.g𝑊)
6 archiabllem.g . . 3 (𝜑𝑊 ∈ oGrp)
7 archiabllem.a . . 3 (𝜑𝑊 ∈ Archi)
8 archiabllem2.1 . . 3 + = (+g𝑊)
9 archiabllem2.2 . . 3 (𝜑 → (oppg𝑊) ∈ oGrp)
10 archiabllem2.3 . . 3 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
11 archiabllem2b.4 . . 3 (𝜑𝑋𝐵)
12 archiabllem2b.5 . . 3 (𝜑𝑌𝐵)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12archiabllem2c 31449 . 2 (𝜑 → ¬ (𝑋 + 𝑌) < (𝑌 + 𝑋))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11archiabllem2c 31449 . 2 (𝜑 → ¬ (𝑌 + 𝑋) < (𝑋 + 𝑌))
15 isogrp 31328 . . . . 5 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
1615simprbi 497 . . . 4 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
17 omndtos 31331 . . . 4 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
186, 16, 173syl 18 . . 3 (𝜑𝑊 ∈ Toset)
19 ogrpgrp 31329 . . . . 5 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
206, 19syl 17 . . . 4 (𝜑𝑊 ∈ Grp)
211, 8grpcl 18585 . . . 4 ((𝑊 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
2220, 11, 12, 21syl3anc 1370 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
231, 8grpcl 18585 . . . 4 ((𝑊 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
2420, 12, 11, 23syl3anc 1370 . . 3 (𝜑 → (𝑌 + 𝑋) ∈ 𝐵)
251, 4tlt3 31248 . . 3 ((𝑊 ∈ Toset ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵) → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌)))
2618, 22, 24, 25syl3anc 1370 . 2 (𝜑 → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌)))
2713, 14, 26ecase23d 1472 1 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  lecple 16969  0gc0g 17150  ltcplt 18026  Tosetctos 18134  Grpcgrp 18577  .gcmg 18700  oppgcoppg 18949  oMndcomnd 31323  oGrpcogrp 31324  Archicarchi 31431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-seq 13722  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-ple 16982  df-0g 17152  df-proset 18013  df-poset 18031  df-plt 18048  df-toset 18135  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-oppg 18950  df-omnd 31325  df-ogrp 31326  df-inftm 31432  df-archi 31433
This theorem is referenced by:  archiabllem2  31451
  Copyright terms: Public domain W3C validator