| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > archiabllem2b | Structured version Visualization version GIF version | ||
| Description: Lemma for archiabl 33158. (Contributed by Thierry Arnoux, 1-May-2018.) |
| Ref | Expression |
|---|---|
| archiabllem.b | ⊢ 𝐵 = (Base‘𝑊) |
| archiabllem.0 | ⊢ 0 = (0g‘𝑊) |
| archiabllem.e | ⊢ ≤ = (le‘𝑊) |
| archiabllem.t | ⊢ < = (lt‘𝑊) |
| archiabllem.m | ⊢ · = (.g‘𝑊) |
| archiabllem.g | ⊢ (𝜑 → 𝑊 ∈ oGrp) |
| archiabllem.a | ⊢ (𝜑 → 𝑊 ∈ Archi) |
| archiabllem2.1 | ⊢ + = (+g‘𝑊) |
| archiabllem2.2 | ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) |
| archiabllem2.3 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) |
| archiabllem2b.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| archiabllem2b.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| archiabllem2b | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | archiabllem.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | archiabllem.0 | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 3 | archiabllem.e | . . 3 ⊢ ≤ = (le‘𝑊) | |
| 4 | archiabllem.t | . . 3 ⊢ < = (lt‘𝑊) | |
| 5 | archiabllem.m | . . 3 ⊢ · = (.g‘𝑊) | |
| 6 | archiabllem.g | . . 3 ⊢ (𝜑 → 𝑊 ∈ oGrp) | |
| 7 | archiabllem.a | . . 3 ⊢ (𝜑 → 𝑊 ∈ Archi) | |
| 8 | archiabllem2.1 | . . 3 ⊢ + = (+g‘𝑊) | |
| 9 | archiabllem2.2 | . . 3 ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) | |
| 10 | archiabllem2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) | |
| 11 | archiabllem2b.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | archiabllem2b.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | archiabllem2c 33155 | . 2 ⊢ (𝜑 → ¬ (𝑋 + 𝑌) < (𝑌 + 𝑋)) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11 | archiabllem2c 33155 | . 2 ⊢ (𝜑 → ¬ (𝑌 + 𝑋) < (𝑋 + 𝑌)) |
| 15 | isogrp 33022 | . . . . 5 ⊢ (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd)) | |
| 16 | 15 | simprbi 496 | . . . 4 ⊢ (𝑊 ∈ oGrp → 𝑊 ∈ oMnd) |
| 17 | omndtos 33025 | . . . 4 ⊢ (𝑊 ∈ oMnd → 𝑊 ∈ Toset) | |
| 18 | 6, 16, 17 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑊 ∈ Toset) |
| 19 | ogrpgrp 33023 | . . . . 5 ⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Grp) | |
| 20 | 6, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 21 | 1, 8 | grpcl 18879 | . . . 4 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 22 | 20, 11, 12, 21 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| 23 | 1, 8 | grpcl 18879 | . . . 4 ⊢ ((𝑊 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 + 𝑋) ∈ 𝐵) |
| 24 | 20, 12, 11, 23 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑌 + 𝑋) ∈ 𝐵) |
| 25 | 1, 4 | tlt3 32902 | . . 3 ⊢ ((𝑊 ∈ Toset ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵) → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌))) |
| 26 | 18, 22, 24, 25 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌))) |
| 27 | 13, 14, 26 | ecase23d 1475 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 lecple 17233 0gc0g 17408 ltcplt 18275 Tosetctos 18381 Grpcgrp 18871 .gcmg 19005 oppgcoppg 19283 oMndcomnd 33017 oGrpcogrp 33018 Archicarchi 33137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-seq 13973 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-ple 17246 df-0g 17410 df-proset 18261 df-poset 18280 df-plt 18295 df-toset 18382 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-oppg 19284 df-omnd 33019 df-ogrp 33020 df-inftm 33138 df-archi 33139 |
| This theorem is referenced by: archiabllem2 33157 |
| Copyright terms: Public domain | W3C validator |