Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > archiabllem2b | Structured version Visualization version GIF version |
Description: Lemma for archiabl 30978. (Contributed by Thierry Arnoux, 1-May-2018.) |
Ref | Expression |
---|---|
archiabllem.b | ⊢ 𝐵 = (Base‘𝑊) |
archiabllem.0 | ⊢ 0 = (0g‘𝑊) |
archiabllem.e | ⊢ ≤ = (le‘𝑊) |
archiabllem.t | ⊢ < = (lt‘𝑊) |
archiabllem.m | ⊢ · = (.g‘𝑊) |
archiabllem.g | ⊢ (𝜑 → 𝑊 ∈ oGrp) |
archiabllem.a | ⊢ (𝜑 → 𝑊 ∈ Archi) |
archiabllem2.1 | ⊢ + = (+g‘𝑊) |
archiabllem2.2 | ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) |
archiabllem2.3 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) |
archiabllem2b.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
archiabllem2b.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
archiabllem2b | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | archiabllem.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
2 | archiabllem.0 | . . 3 ⊢ 0 = (0g‘𝑊) | |
3 | archiabllem.e | . . 3 ⊢ ≤ = (le‘𝑊) | |
4 | archiabllem.t | . . 3 ⊢ < = (lt‘𝑊) | |
5 | archiabllem.m | . . 3 ⊢ · = (.g‘𝑊) | |
6 | archiabllem.g | . . 3 ⊢ (𝜑 → 𝑊 ∈ oGrp) | |
7 | archiabllem.a | . . 3 ⊢ (𝜑 → 𝑊 ∈ Archi) | |
8 | archiabllem2.1 | . . 3 ⊢ + = (+g‘𝑊) | |
9 | archiabllem2.2 | . . 3 ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) | |
10 | archiabllem2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) | |
11 | archiabllem2b.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | archiabllem2b.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | archiabllem2c 30975 | . 2 ⊢ (𝜑 → ¬ (𝑋 + 𝑌) < (𝑌 + 𝑋)) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11 | archiabllem2c 30975 | . 2 ⊢ (𝜑 → ¬ (𝑌 + 𝑋) < (𝑋 + 𝑌)) |
15 | isogrp 30854 | . . . . 5 ⊢ (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd)) | |
16 | 15 | simprbi 500 | . . . 4 ⊢ (𝑊 ∈ oGrp → 𝑊 ∈ oMnd) |
17 | omndtos 30857 | . . . 4 ⊢ (𝑊 ∈ oMnd → 𝑊 ∈ Toset) | |
18 | 6, 16, 17 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑊 ∈ Toset) |
19 | ogrpgrp 30855 | . . . . 5 ⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Grp) | |
20 | 6, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Grp) |
21 | 1, 8 | grpcl 18177 | . . . 4 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
22 | 20, 11, 12, 21 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
23 | 1, 8 | grpcl 18177 | . . . 4 ⊢ ((𝑊 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 + 𝑋) ∈ 𝐵) |
24 | 20, 12, 11, 23 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝑌 + 𝑋) ∈ 𝐵) |
25 | 1, 4 | tlt3 30774 | . . 3 ⊢ ((𝑊 ∈ Toset ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵) → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌))) |
26 | 18, 22, 24, 25 | syl3anc 1368 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌))) |
27 | 13, 14, 26 | ecase23d 1470 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ w3o 1083 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 +gcplusg 16623 lecple 16630 0gc0g 16771 ltcplt 17617 Tosetctos 17709 Grpcgrp 18169 .gcmg 18291 oppgcoppg 18540 oMndcomnd 30849 oGrpcogrp 30850 Archicarchi 30957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-tpos 7902 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-fz 12940 df-seq 13419 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-plusg 16636 df-ple 16643 df-0g 16773 df-proset 17604 df-poset 17622 df-plt 17634 df-toset 17710 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-sbg 18174 df-mulg 18292 df-oppg 18541 df-omnd 30851 df-ogrp 30852 df-inftm 30958 df-archi 30959 |
This theorem is referenced by: archiabllem2 30977 |
Copyright terms: Public domain | W3C validator |