![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > archiabllem2b | Structured version Visualization version GIF version |
Description: Lemma for archiabl 30260. (Contributed by Thierry Arnoux, 1-May-2018.) |
Ref | Expression |
---|---|
archiabllem.b | ⊢ 𝐵 = (Base‘𝑊) |
archiabllem.0 | ⊢ 0 = (0g‘𝑊) |
archiabllem.e | ⊢ ≤ = (le‘𝑊) |
archiabllem.t | ⊢ < = (lt‘𝑊) |
archiabllem.m | ⊢ · = (.g‘𝑊) |
archiabllem.g | ⊢ (𝜑 → 𝑊 ∈ oGrp) |
archiabllem.a | ⊢ (𝜑 → 𝑊 ∈ Archi) |
archiabllem2.1 | ⊢ + = (+g‘𝑊) |
archiabllem2.2 | ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) |
archiabllem2.3 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) |
archiabllem2b.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
archiabllem2b.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
archiabllem2b | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | archiabllem.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
2 | archiabllem.0 | . . 3 ⊢ 0 = (0g‘𝑊) | |
3 | archiabllem.e | . . 3 ⊢ ≤ = (le‘𝑊) | |
4 | archiabllem.t | . . 3 ⊢ < = (lt‘𝑊) | |
5 | archiabllem.m | . . 3 ⊢ · = (.g‘𝑊) | |
6 | archiabllem.g | . . 3 ⊢ (𝜑 → 𝑊 ∈ oGrp) | |
7 | archiabllem.a | . . 3 ⊢ (𝜑 → 𝑊 ∈ Archi) | |
8 | archiabllem2.1 | . . 3 ⊢ + = (+g‘𝑊) | |
9 | archiabllem2.2 | . . 3 ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) | |
10 | archiabllem2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) | |
11 | archiabllem2b.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | archiabllem2b.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | archiabllem2c 30257 | . 2 ⊢ (𝜑 → ¬ (𝑋 + 𝑌) < (𝑌 + 𝑋)) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11 | archiabllem2c 30257 | . 2 ⊢ (𝜑 → ¬ (𝑌 + 𝑋) < (𝑋 + 𝑌)) |
15 | isogrp 30210 | . . . . 5 ⊢ (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd)) | |
16 | 15 | simprbi 491 | . . . 4 ⊢ (𝑊 ∈ oGrp → 𝑊 ∈ oMnd) |
17 | omndtos 30213 | . . . 4 ⊢ (𝑊 ∈ oMnd → 𝑊 ∈ Toset) | |
18 | 6, 16, 17 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑊 ∈ Toset) |
19 | ogrpgrp 30211 | . . . . 5 ⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Grp) | |
20 | 6, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Grp) |
21 | 1, 8 | grpcl 17743 | . . . 4 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
22 | 20, 11, 12, 21 | syl3anc 1491 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
23 | 1, 8 | grpcl 17743 | . . . 4 ⊢ ((𝑊 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 + 𝑋) ∈ 𝐵) |
24 | 20, 12, 11, 23 | syl3anc 1491 | . . 3 ⊢ (𝜑 → (𝑌 + 𝑋) ∈ 𝐵) |
25 | 1, 4 | tlt3 30173 | . . 3 ⊢ ((𝑊 ∈ Toset ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵) → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌))) |
26 | 18, 22, 24, 25 | syl3anc 1491 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌))) |
27 | 13, 14, 26 | ecase23d 1598 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∨ w3o 1107 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∃wrex 3088 class class class wbr 4841 ‘cfv 6099 (class class class)co 6876 Basecbs 16181 +gcplusg 16264 lecple 16271 0gc0g 16412 ltcplt 17253 Tosetctos 17345 Grpcgrp 17735 .gcmg 17853 oppgcoppg 18084 oMndcomnd 30205 oGrpcogrp 30206 Archicarchi 30239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-tpos 7588 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-seq 13052 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-plusg 16277 df-ple 16284 df-0g 16414 df-proset 17240 df-poset 17258 df-plt 17270 df-toset 17346 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-grp 17738 df-minusg 17739 df-sbg 17740 df-mulg 17854 df-oppg 18085 df-omnd 30207 df-ogrp 30208 df-inftm 30240 df-archi 30241 |
This theorem is referenced by: archiabllem2 30259 |
Copyright terms: Public domain | W3C validator |