Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem2b Structured version   Visualization version   GIF version

Theorem archiabllem2b 30739
Description: Lemma for archiabl 30741. (Contributed by Thierry Arnoux, 1-May-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem2.1 + = (+g𝑊)
archiabllem2.2 (𝜑 → (oppg𝑊) ∈ oGrp)
archiabllem2.3 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
archiabllem2b.4 (𝜑𝑋𝐵)
archiabllem2b.5 (𝜑𝑌𝐵)
Assertion
Ref Expression
archiabllem2b (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Distinct variable groups:   𝑎,𝑏,𝐵   𝑊,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝜑,𝑎,𝑏   + ,𝑎,𝑏   ,𝑎,𝑏   < ,𝑎,𝑏   0 ,𝑎,𝑏
Allowed substitution hints:   · (𝑎,𝑏)

Proof of Theorem archiabllem2b
StepHypRef Expression
1 archiabllem.b . . 3 𝐵 = (Base‘𝑊)
2 archiabllem.0 . . 3 0 = (0g𝑊)
3 archiabllem.e . . 3 = (le‘𝑊)
4 archiabllem.t . . 3 < = (lt‘𝑊)
5 archiabllem.m . . 3 · = (.g𝑊)
6 archiabllem.g . . 3 (𝜑𝑊 ∈ oGrp)
7 archiabllem.a . . 3 (𝜑𝑊 ∈ Archi)
8 archiabllem2.1 . . 3 + = (+g𝑊)
9 archiabllem2.2 . . 3 (𝜑 → (oppg𝑊) ∈ oGrp)
10 archiabllem2.3 . . 3 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
11 archiabllem2b.4 . . 3 (𝜑𝑋𝐵)
12 archiabllem2b.5 . . 3 (𝜑𝑌𝐵)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12archiabllem2c 30738 . 2 (𝜑 → ¬ (𝑋 + 𝑌) < (𝑌 + 𝑋))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11archiabllem2c 30738 . 2 (𝜑 → ¬ (𝑌 + 𝑋) < (𝑋 + 𝑌))
15 isogrp 30617 . . . . 5 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
1615simprbi 497 . . . 4 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
17 omndtos 30620 . . . 4 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
186, 16, 173syl 18 . . 3 (𝜑𝑊 ∈ Toset)
19 ogrpgrp 30618 . . . . 5 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
206, 19syl 17 . . . 4 (𝜑𝑊 ∈ Grp)
211, 8grpcl 18041 . . . 4 ((𝑊 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
2220, 11, 12, 21syl3anc 1365 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
231, 8grpcl 18041 . . . 4 ((𝑊 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
2420, 12, 11, 23syl3anc 1365 . . 3 (𝜑 → (𝑌 + 𝑋) ∈ 𝐵)
251, 4tlt3 30566 . . 3 ((𝑊 ∈ Toset ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵) → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌)))
2618, 22, 24, 25syl3anc 1365 . 2 (𝜑 → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌)))
2713, 14, 26ecase23d 1466 1 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3o 1080  w3a 1081   = wceq 1530  wcel 2107  wrex 3144   class class class wbr 5063  cfv 6352  (class class class)co 7148  Basecbs 16473  +gcplusg 16555  lecple 16562  0gc0g 16703  ltcplt 17541  Tosetctos 17633  Grpcgrp 18033  .gcmg 18154  oppgcoppg 18403  oMndcomnd 30612  oGrpcogrp 30613  Archicarchi 30720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-tpos 7883  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-fz 12883  df-seq 13360  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-plusg 16568  df-ple 16575  df-0g 16705  df-proset 17528  df-poset 17546  df-plt 17558  df-toset 17634  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-grp 18036  df-minusg 18037  df-sbg 18038  df-mulg 18155  df-oppg 18404  df-omnd 30614  df-ogrp 30615  df-inftm 30721  df-archi 30722
This theorem is referenced by:  archiabllem2  30740
  Copyright terms: Public domain W3C validator