![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > archiabllem2b | Structured version Visualization version GIF version |
Description: Lemma for archiabl 32815. (Contributed by Thierry Arnoux, 1-May-2018.) |
Ref | Expression |
---|---|
archiabllem.b | ⊢ 𝐵 = (Base‘𝑊) |
archiabllem.0 | ⊢ 0 = (0g‘𝑊) |
archiabllem.e | ⊢ ≤ = (le‘𝑊) |
archiabllem.t | ⊢ < = (lt‘𝑊) |
archiabllem.m | ⊢ · = (.g‘𝑊) |
archiabllem.g | ⊢ (𝜑 → 𝑊 ∈ oGrp) |
archiabllem.a | ⊢ (𝜑 → 𝑊 ∈ Archi) |
archiabllem2.1 | ⊢ + = (+g‘𝑊) |
archiabllem2.2 | ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) |
archiabllem2.3 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) |
archiabllem2b.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
archiabllem2b.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
archiabllem2b | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | archiabllem.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
2 | archiabllem.0 | . . 3 ⊢ 0 = (0g‘𝑊) | |
3 | archiabllem.e | . . 3 ⊢ ≤ = (le‘𝑊) | |
4 | archiabllem.t | . . 3 ⊢ < = (lt‘𝑊) | |
5 | archiabllem.m | . . 3 ⊢ · = (.g‘𝑊) | |
6 | archiabllem.g | . . 3 ⊢ (𝜑 → 𝑊 ∈ oGrp) | |
7 | archiabllem.a | . . 3 ⊢ (𝜑 → 𝑊 ∈ Archi) | |
8 | archiabllem2.1 | . . 3 ⊢ + = (+g‘𝑊) | |
9 | archiabllem2.2 | . . 3 ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) | |
10 | archiabllem2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) | |
11 | archiabllem2b.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | archiabllem2b.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | archiabllem2c 32812 | . 2 ⊢ (𝜑 → ¬ (𝑋 + 𝑌) < (𝑌 + 𝑋)) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11 | archiabllem2c 32812 | . 2 ⊢ (𝜑 → ¬ (𝑌 + 𝑋) < (𝑋 + 𝑌)) |
15 | isogrp 32691 | . . . . 5 ⊢ (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd)) | |
16 | 15 | simprbi 496 | . . . 4 ⊢ (𝑊 ∈ oGrp → 𝑊 ∈ oMnd) |
17 | omndtos 32694 | . . . 4 ⊢ (𝑊 ∈ oMnd → 𝑊 ∈ Toset) | |
18 | 6, 16, 17 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑊 ∈ Toset) |
19 | ogrpgrp 32692 | . . . . 5 ⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Grp) | |
20 | 6, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Grp) |
21 | 1, 8 | grpcl 18863 | . . . 4 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
22 | 20, 11, 12, 21 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
23 | 1, 8 | grpcl 18863 | . . . 4 ⊢ ((𝑊 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 + 𝑋) ∈ 𝐵) |
24 | 20, 12, 11, 23 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝑌 + 𝑋) ∈ 𝐵) |
25 | 1, 4 | tlt3 32610 | . . 3 ⊢ ((𝑊 ∈ Toset ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵) → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌))) |
26 | 18, 22, 24, 25 | syl3anc 1368 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌))) |
27 | 13, 14, 26 | ecase23d 1469 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1083 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 class class class wbr 5139 ‘cfv 6534 (class class class)co 7402 Basecbs 17145 +gcplusg 17198 lecple 17205 0gc0g 17386 ltcplt 18265 Tosetctos 18373 Grpcgrp 18855 .gcmg 18987 oppgcoppg 19253 oMndcomnd 32686 oGrpcogrp 32687 Archicarchi 32794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-7 12278 df-8 12279 df-9 12280 df-n0 12471 df-z 12557 df-dec 12676 df-uz 12821 df-fz 13483 df-seq 13965 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-plusg 17211 df-ple 17218 df-0g 17388 df-proset 18252 df-poset 18270 df-plt 18287 df-toset 18374 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-sbg 18860 df-mulg 18988 df-oppg 19254 df-omnd 32688 df-ogrp 32689 df-inftm 32795 df-archi 32796 |
This theorem is referenced by: archiabllem2 32814 |
Copyright terms: Public domain | W3C validator |