Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem2b Structured version   Visualization version   GIF version

Theorem archiabllem2b 32813
Description: Lemma for archiabl 32815. (Contributed by Thierry Arnoux, 1-May-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem2.1 + = (+g𝑊)
archiabllem2.2 (𝜑 → (oppg𝑊) ∈ oGrp)
archiabllem2.3 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
archiabllem2b.4 (𝜑𝑋𝐵)
archiabllem2b.5 (𝜑𝑌𝐵)
Assertion
Ref Expression
archiabllem2b (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Distinct variable groups:   𝑎,𝑏,𝐵   𝑊,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝜑,𝑎,𝑏   + ,𝑎,𝑏   ,𝑎,𝑏   < ,𝑎,𝑏   0 ,𝑎,𝑏
Allowed substitution hints:   · (𝑎,𝑏)

Proof of Theorem archiabllem2b
StepHypRef Expression
1 archiabllem.b . . 3 𝐵 = (Base‘𝑊)
2 archiabllem.0 . . 3 0 = (0g𝑊)
3 archiabllem.e . . 3 = (le‘𝑊)
4 archiabllem.t . . 3 < = (lt‘𝑊)
5 archiabllem.m . . 3 · = (.g𝑊)
6 archiabllem.g . . 3 (𝜑𝑊 ∈ oGrp)
7 archiabllem.a . . 3 (𝜑𝑊 ∈ Archi)
8 archiabllem2.1 . . 3 + = (+g𝑊)
9 archiabllem2.2 . . 3 (𝜑 → (oppg𝑊) ∈ oGrp)
10 archiabllem2.3 . . 3 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
11 archiabllem2b.4 . . 3 (𝜑𝑋𝐵)
12 archiabllem2b.5 . . 3 (𝜑𝑌𝐵)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12archiabllem2c 32812 . 2 (𝜑 → ¬ (𝑋 + 𝑌) < (𝑌 + 𝑋))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11archiabllem2c 32812 . 2 (𝜑 → ¬ (𝑌 + 𝑋) < (𝑋 + 𝑌))
15 isogrp 32691 . . . . 5 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
1615simprbi 496 . . . 4 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
17 omndtos 32694 . . . 4 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
186, 16, 173syl 18 . . 3 (𝜑𝑊 ∈ Toset)
19 ogrpgrp 32692 . . . . 5 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
206, 19syl 17 . . . 4 (𝜑𝑊 ∈ Grp)
211, 8grpcl 18863 . . . 4 ((𝑊 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
2220, 11, 12, 21syl3anc 1368 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
231, 8grpcl 18863 . . . 4 ((𝑊 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
2420, 12, 11, 23syl3anc 1368 . . 3 (𝜑 → (𝑌 + 𝑋) ∈ 𝐵)
251, 4tlt3 32610 . . 3 ((𝑊 ∈ Toset ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵) → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌)))
2618, 22, 24, 25syl3anc 1368 . 2 (𝜑 → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌)))
2713, 14, 26ecase23d 1469 1 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  wrex 3062   class class class wbr 5139  cfv 6534  (class class class)co 7402  Basecbs 17145  +gcplusg 17198  lecple 17205  0gc0g 17386  ltcplt 18265  Tosetctos 18373  Grpcgrp 18855  .gcmg 18987  oppgcoppg 19253  oMndcomnd 32686  oGrpcogrp 32687  Archicarchi 32794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-fz 13483  df-seq 13965  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-plusg 17211  df-ple 17218  df-0g 17388  df-proset 18252  df-poset 18270  df-plt 18287  df-toset 18374  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-sbg 18860  df-mulg 18988  df-oppg 19254  df-omnd 32688  df-ogrp 32689  df-inftm 32795  df-archi 32796
This theorem is referenced by:  archiabllem2  32814
  Copyright terms: Public domain W3C validator