![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > archiabllem2b | Structured version Visualization version GIF version |
Description: Lemma for archiabl 32615. (Contributed by Thierry Arnoux, 1-May-2018.) |
Ref | Expression |
---|---|
archiabllem.b | β’ π΅ = (Baseβπ) |
archiabllem.0 | β’ 0 = (0gβπ) |
archiabllem.e | β’ β€ = (leβπ) |
archiabllem.t | β’ < = (ltβπ) |
archiabllem.m | β’ Β· = (.gβπ) |
archiabllem.g | β’ (π β π β oGrp) |
archiabllem.a | β’ (π β π β Archi) |
archiabllem2.1 | β’ + = (+gβπ) |
archiabllem2.2 | β’ (π β (oppgβπ) β oGrp) |
archiabllem2.3 | β’ ((π β§ π β π΅ β§ 0 < π) β βπ β π΅ ( 0 < π β§ π < π)) |
archiabllem2b.4 | β’ (π β π β π΅) |
archiabllem2b.5 | β’ (π β π β π΅) |
Ref | Expression |
---|---|
archiabllem2b | β’ (π β (π + π) = (π + π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | archiabllem.b | . . 3 β’ π΅ = (Baseβπ) | |
2 | archiabllem.0 | . . 3 β’ 0 = (0gβπ) | |
3 | archiabllem.e | . . 3 β’ β€ = (leβπ) | |
4 | archiabllem.t | . . 3 β’ < = (ltβπ) | |
5 | archiabllem.m | . . 3 β’ Β· = (.gβπ) | |
6 | archiabllem.g | . . 3 β’ (π β π β oGrp) | |
7 | archiabllem.a | . . 3 β’ (π β π β Archi) | |
8 | archiabllem2.1 | . . 3 β’ + = (+gβπ) | |
9 | archiabllem2.2 | . . 3 β’ (π β (oppgβπ) β oGrp) | |
10 | archiabllem2.3 | . . 3 β’ ((π β§ π β π΅ β§ 0 < π) β βπ β π΅ ( 0 < π β§ π < π)) | |
11 | archiabllem2b.4 | . . 3 β’ (π β π β π΅) | |
12 | archiabllem2b.5 | . . 3 β’ (π β π β π΅) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | archiabllem2c 32612 | . 2 β’ (π β Β¬ (π + π) < (π + π)) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11 | archiabllem2c 32612 | . 2 β’ (π β Β¬ (π + π) < (π + π)) |
15 | isogrp 32491 | . . . . 5 β’ (π β oGrp β (π β Grp β§ π β oMnd)) | |
16 | 15 | simprbi 496 | . . . 4 β’ (π β oGrp β π β oMnd) |
17 | omndtos 32494 | . . . 4 β’ (π β oMnd β π β Toset) | |
18 | 6, 16, 17 | 3syl 18 | . . 3 β’ (π β π β Toset) |
19 | ogrpgrp 32492 | . . . . 5 β’ (π β oGrp β π β Grp) | |
20 | 6, 19 | syl 17 | . . . 4 β’ (π β π β Grp) |
21 | 1, 8 | grpcl 18864 | . . . 4 β’ ((π β Grp β§ π β π΅ β§ π β π΅) β (π + π) β π΅) |
22 | 20, 11, 12, 21 | syl3anc 1370 | . . 3 β’ (π β (π + π) β π΅) |
23 | 1, 8 | grpcl 18864 | . . . 4 β’ ((π β Grp β§ π β π΅ β§ π β π΅) β (π + π) β π΅) |
24 | 20, 12, 11, 23 | syl3anc 1370 | . . 3 β’ (π β (π + π) β π΅) |
25 | 1, 4 | tlt3 32408 | . . 3 β’ ((π β Toset β§ (π + π) β π΅ β§ (π + π) β π΅) β ((π + π) = (π + π) β¨ (π + π) < (π + π) β¨ (π + π) < (π + π))) |
26 | 18, 22, 24, 25 | syl3anc 1370 | . 2 β’ (π β ((π + π) = (π + π) β¨ (π + π) < (π + π) β¨ (π + π) < (π + π))) |
27 | 13, 14, 26 | ecase23d 1472 | 1 β’ (π β (π + π) = (π + π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β¨ w3o 1085 β§ w3a 1086 = wceq 1540 β wcel 2105 βwrex 3069 class class class wbr 5148 βcfv 6543 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 lecple 17209 0gc0g 17390 ltcplt 18266 Tosetctos 18374 Grpcgrp 18856 .gcmg 18987 oppgcoppg 19251 oMndcomnd 32486 oGrpcogrp 32487 Archicarchi 32594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-seq 13972 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-ple 17222 df-0g 17392 df-proset 18253 df-poset 18271 df-plt 18288 df-toset 18375 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-oppg 19252 df-omnd 32488 df-ogrp 32489 df-inftm 32595 df-archi 32596 |
This theorem is referenced by: archiabllem2 32614 |
Copyright terms: Public domain | W3C validator |