| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > archiabllem2b | Structured version Visualization version GIF version | ||
| Description: Lemma for archiabl 33125. (Contributed by Thierry Arnoux, 1-May-2018.) |
| Ref | Expression |
|---|---|
| archiabllem.b | ⊢ 𝐵 = (Base‘𝑊) |
| archiabllem.0 | ⊢ 0 = (0g‘𝑊) |
| archiabllem.e | ⊢ ≤ = (le‘𝑊) |
| archiabllem.t | ⊢ < = (lt‘𝑊) |
| archiabllem.m | ⊢ · = (.g‘𝑊) |
| archiabllem.g | ⊢ (𝜑 → 𝑊 ∈ oGrp) |
| archiabllem.a | ⊢ (𝜑 → 𝑊 ∈ Archi) |
| archiabllem2.1 | ⊢ + = (+g‘𝑊) |
| archiabllem2.2 | ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) |
| archiabllem2.3 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) |
| archiabllem2b.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| archiabllem2b.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| archiabllem2b | ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | archiabllem.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | archiabllem.0 | . . 3 ⊢ 0 = (0g‘𝑊) | |
| 3 | archiabllem.e | . . 3 ⊢ ≤ = (le‘𝑊) | |
| 4 | archiabllem.t | . . 3 ⊢ < = (lt‘𝑊) | |
| 5 | archiabllem.m | . . 3 ⊢ · = (.g‘𝑊) | |
| 6 | archiabllem.g | . . 3 ⊢ (𝜑 → 𝑊 ∈ oGrp) | |
| 7 | archiabllem.a | . . 3 ⊢ (𝜑 → 𝑊 ∈ Archi) | |
| 8 | archiabllem2.1 | . . 3 ⊢ + = (+g‘𝑊) | |
| 9 | archiabllem2.2 | . . 3 ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) | |
| 10 | archiabllem2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) | |
| 11 | archiabllem2b.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | archiabllem2b.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | archiabllem2c 33122 | . 2 ⊢ (𝜑 → ¬ (𝑋 + 𝑌) < (𝑌 + 𝑋)) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11 | archiabllem2c 33122 | . 2 ⊢ (𝜑 → ¬ (𝑌 + 𝑋) < (𝑋 + 𝑌)) |
| 15 | isogrp 32989 | . . . . 5 ⊢ (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd)) | |
| 16 | 15 | simprbi 496 | . . . 4 ⊢ (𝑊 ∈ oGrp → 𝑊 ∈ oMnd) |
| 17 | omndtos 32992 | . . . 4 ⊢ (𝑊 ∈ oMnd → 𝑊 ∈ Toset) | |
| 18 | 6, 16, 17 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑊 ∈ Toset) |
| 19 | ogrpgrp 32990 | . . . . 5 ⊢ (𝑊 ∈ oGrp → 𝑊 ∈ Grp) | |
| 20 | 6, 19 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 21 | 1, 8 | grpcl 18849 | . . . 4 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 22 | 20, 11, 12, 21 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| 23 | 1, 8 | grpcl 18849 | . . . 4 ⊢ ((𝑊 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 + 𝑋) ∈ 𝐵) |
| 24 | 20, 12, 11, 23 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑌 + 𝑋) ∈ 𝐵) |
| 25 | 1, 4 | tlt3 32869 | . . 3 ⊢ ((𝑊 ∈ Toset ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵) → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌))) |
| 26 | 18, 22, 24, 25 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌))) |
| 27 | 13, 14, 26 | ecase23d 1475 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 lecple 17203 0gc0g 17378 ltcplt 18245 Tosetctos 18351 Grpcgrp 18841 .gcmg 18975 oppgcoppg 19253 oMndcomnd 32984 oGrpcogrp 32985 Archicarchi 33104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-seq 13943 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-ple 17216 df-0g 17380 df-proset 18231 df-poset 18250 df-plt 18265 df-toset 18352 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-oppg 19254 df-omnd 32986 df-ogrp 32987 df-inftm 33105 df-archi 33106 |
| This theorem is referenced by: archiabllem2 33124 |
| Copyright terms: Public domain | W3C validator |