Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem2b Structured version   Visualization version   GIF version

Theorem archiabllem2b 33178
Description: Lemma for archiabl 33180. (Contributed by Thierry Arnoux, 1-May-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem2.1 + = (+g𝑊)
archiabllem2.2 (𝜑 → (oppg𝑊) ∈ oGrp)
archiabllem2.3 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
archiabllem2b.4 (𝜑𝑋𝐵)
archiabllem2b.5 (𝜑𝑌𝐵)
Assertion
Ref Expression
archiabllem2b (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Distinct variable groups:   𝑎,𝑏,𝐵   𝑊,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝜑,𝑎,𝑏   + ,𝑎,𝑏   ,𝑎,𝑏   < ,𝑎,𝑏   0 ,𝑎,𝑏
Allowed substitution hints:   · (𝑎,𝑏)

Proof of Theorem archiabllem2b
StepHypRef Expression
1 archiabllem.b . . 3 𝐵 = (Base‘𝑊)
2 archiabllem.0 . . 3 0 = (0g𝑊)
3 archiabllem.e . . 3 = (le‘𝑊)
4 archiabllem.t . . 3 < = (lt‘𝑊)
5 archiabllem.m . . 3 · = (.g𝑊)
6 archiabllem.g . . 3 (𝜑𝑊 ∈ oGrp)
7 archiabllem.a . . 3 (𝜑𝑊 ∈ Archi)
8 archiabllem2.1 . . 3 + = (+g𝑊)
9 archiabllem2.2 . . 3 (𝜑 → (oppg𝑊) ∈ oGrp)
10 archiabllem2.3 . . 3 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
11 archiabllem2b.4 . . 3 (𝜑𝑋𝐵)
12 archiabllem2b.5 . . 3 (𝜑𝑌𝐵)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12archiabllem2c 33177 . 2 (𝜑 → ¬ (𝑋 + 𝑌) < (𝑌 + 𝑋))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11archiabllem2c 33177 . 2 (𝜑 → ¬ (𝑌 + 𝑋) < (𝑋 + 𝑌))
15 isogrp 33054 . . . . 5 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
1615simprbi 496 . . . 4 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
17 omndtos 33057 . . . 4 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
186, 16, 173syl 18 . . 3 (𝜑𝑊 ∈ Toset)
19 ogrpgrp 33055 . . . . 5 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
206, 19syl 17 . . . 4 (𝜑𝑊 ∈ Grp)
211, 8grpcl 18983 . . . 4 ((𝑊 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
2220, 11, 12, 21syl3anc 1371 . . 3 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
231, 8grpcl 18983 . . . 4 ((𝑊 ∈ Grp ∧ 𝑌𝐵𝑋𝐵) → (𝑌 + 𝑋) ∈ 𝐵)
2420, 12, 11, 23syl3anc 1371 . . 3 (𝜑 → (𝑌 + 𝑋) ∈ 𝐵)
251, 4tlt3 32945 . . 3 ((𝑊 ∈ Toset ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑌 + 𝑋) ∈ 𝐵) → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌)))
2618, 22, 24, 25syl3anc 1371 . 2 (𝜑 → ((𝑋 + 𝑌) = (𝑌 + 𝑋) ∨ (𝑋 + 𝑌) < (𝑌 + 𝑋) ∨ (𝑌 + 𝑋) < (𝑋 + 𝑌)))
2713, 14, 26ecase23d 1473 1 (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6575  (class class class)co 7450  Basecbs 17260  +gcplusg 17313  lecple 17320  0gc0g 17501  ltcplt 18380  Tosetctos 18488  Grpcgrp 18975  .gcmg 19109  oppgcoppg 19387  oMndcomnd 33049  oGrpcogrp 33050  Archicarchi 33159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-tpos 8269  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-n0 12556  df-z 12642  df-dec 12761  df-uz 12906  df-fz 13570  df-seq 14055  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-plusg 17326  df-ple 17333  df-0g 17503  df-proset 18367  df-poset 18385  df-plt 18402  df-toset 18489  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-grp 18978  df-minusg 18979  df-sbg 18980  df-mulg 19110  df-oppg 19388  df-omnd 33051  df-ogrp 33052  df-inftm 33160  df-archi 33161
This theorem is referenced by:  archiabllem2  33179
  Copyright terms: Public domain W3C validator