Step | Hyp | Ref
| Expression |
1 | | simp1l 1197 |
. . 3
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → 𝑈 ∈ 𝐴) |
2 | | simp3 1138 |
. . 3
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) |
3 | | breq1 5169 |
. . . 4
⊢ (𝑎 = 𝑈 → (𝑎 <s 𝑍 ↔ 𝑈 <s 𝑍)) |
4 | 3 | rspcv 3631 |
. . 3
⊢ (𝑈 ∈ 𝐴 → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑍 → 𝑈 <s 𝑍)) |
5 | 1, 2, 4 | sylc 65 |
. 2
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → 𝑈 <s 𝑍) |
6 | | simpl21 1251 |
. . . . 5
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝐴 ⊆ No
) |
7 | | simpl1l 1224 |
. . . . 5
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑈 ∈ 𝐴) |
8 | 6, 7 | sseldd 4009 |
. . . 4
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑈 ∈ No
) |
9 | | simpl23 1253 |
. . . 4
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑍 ∈ No
) |
10 | | simp21 1206 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → 𝐴 ⊆ No
) |
11 | 10, 1 | sseldd 4009 |
. . . . . . . . 9
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → 𝑈 ∈ No
) |
12 | | sltso 27739 |
. . . . . . . . . 10
⊢ <s Or
No |
13 | | sonr 5632 |
. . . . . . . . . 10
⊢ (( <s
Or No ∧ 𝑈 ∈ No )
→ ¬ 𝑈 <s 𝑈) |
14 | 12, 13 | mpan 689 |
. . . . . . . . 9
⊢ (𝑈 ∈
No → ¬ 𝑈
<s 𝑈) |
15 | 11, 14 | syl 17 |
. . . . . . . 8
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ 𝑈 <s 𝑈) |
16 | | breq2 5170 |
. . . . . . . . 9
⊢ (𝑈 = 𝑍 → (𝑈 <s 𝑈 ↔ 𝑈 <s 𝑍)) |
17 | 16 | notbid 318 |
. . . . . . . 8
⊢ (𝑈 = 𝑍 → (¬ 𝑈 <s 𝑈 ↔ ¬ 𝑈 <s 𝑍)) |
18 | 15, 17 | syl5ibcom 245 |
. . . . . . 7
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → (𝑈 = 𝑍 → ¬ 𝑈 <s 𝑍)) |
19 | 18 | con2d 134 |
. . . . . 6
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → (𝑈 <s 𝑍 → ¬ 𝑈 = 𝑍)) |
20 | 19 | imp 406 |
. . . . 5
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ¬ 𝑈 = 𝑍) |
21 | 20 | neqned 2953 |
. . . 4
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑈 ≠ 𝑍) |
22 | | nosepssdm 27749 |
. . . 4
⊢ ((𝑈 ∈
No ∧ 𝑍 ∈
No ∧ 𝑈 ≠ 𝑍) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑈) |
23 | 8, 9, 21, 22 | syl3anc 1371 |
. . 3
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑈) |
24 | | nosepon 27728 |
. . . . . 6
⊢ ((𝑈 ∈
No ∧ 𝑍 ∈
No ∧ 𝑈 ≠ 𝑍) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On) |
25 | 8, 9, 21, 24 | syl3anc 1371 |
. . . . 5
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On) |
26 | | nodmon 27713 |
. . . . . 6
⊢ (𝑈 ∈
No → dom 𝑈
∈ On) |
27 | 8, 26 | syl 17 |
. . . . 5
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → dom 𝑈 ∈ On) |
28 | | onsseleq 6436 |
. . . . 5
⊢ ((∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On ∧ dom 𝑈 ∈ On) → (∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑈 ↔ (∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈 ∨ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈))) |
29 | 25, 27, 28 | syl2anc 583 |
. . . 4
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → (∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑈 ↔ (∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈 ∨ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈))) |
30 | 8 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑈 ∈ No
) |
31 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑍 ∈ No
) |
32 | 21 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑈 ≠ 𝑍) |
33 | 30, 31, 32, 24 | syl3anc 1371 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On) |
34 | | onelon 6420 |
. . . . . . . . . . . . . . . 16
⊢ ((∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → 𝑞 ∈ On) |
35 | 33, 34 | sylan 579 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → 𝑞 ∈ On) |
36 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) |
37 | | fveq2 6920 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑞 → (𝑈‘𝑥) = (𝑈‘𝑞)) |
38 | | fveq2 6920 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑞 → (𝑍‘𝑥) = (𝑍‘𝑞)) |
39 | 37, 38 | neeq12d 3008 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑞 → ((𝑈‘𝑥) ≠ (𝑍‘𝑥) ↔ (𝑈‘𝑞) ≠ (𝑍‘𝑞))) |
40 | 39 | onnminsb 7835 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ On → (𝑞 ∈ ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞))) |
41 | 35, 36, 40 | sylc 65 |
. . . . . . . . . . . . . 14
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞)) |
42 | | df-ne 2947 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈‘𝑞) ≠ (𝑍‘𝑞) ↔ ¬ (𝑈‘𝑞) = (𝑍‘𝑞)) |
43 | 42 | con2bii 357 |
. . . . . . . . . . . . . 14
⊢ ((𝑈‘𝑞) = (𝑍‘𝑞) ↔ ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞)) |
44 | 41, 43 | sylibr 234 |
. . . . . . . . . . . . 13
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → (𝑈‘𝑞) = (𝑍‘𝑞)) |
45 | | simplr 768 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) |
46 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → dom 𝑈 ∈ On) |
47 | 46 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → dom 𝑈 ∈ On) |
48 | | ontr1 6441 |
. . . . . . . . . . . . . . . 16
⊢ (dom
𝑈 ∈ On → ((𝑞 ∈ ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈)) |
49 | 47, 48 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → ((𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈)) |
50 | 36, 45, 49 | mp2and 698 |
. . . . . . . . . . . . . 14
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → 𝑞 ∈ dom 𝑈) |
51 | 50 | fvresd 6940 |
. . . . . . . . . . . . 13
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑍‘𝑞)) |
52 | 44, 51 | eqtr4d 2783 |
. . . . . . . . . . . 12
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞)) |
53 | 52 | ralrimiva 3152 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ∀𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞)) |
54 | | simplr 768 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑈 <s 𝑍) |
55 | | sltval2 27719 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈
No ∧ 𝑍 ∈
No ) → (𝑈 <s 𝑍 ↔ (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}))) |
56 | 30, 31, 55 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈 <s 𝑍 ↔ (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}))) |
57 | 54, 56 | mpbid 232 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
58 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) |
59 | 58 | fvresd 6940 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) = (𝑍‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
60 | 57, 59 | breqtrrd 5194 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
61 | | raleq 3331 |
. . . . . . . . . . . . 13
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → (∀𝑞 ∈ 𝑝 (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ↔ ∀𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞))) |
62 | | fveq2 6920 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → (𝑈‘𝑝) = (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
63 | | fveq2 6920 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → ((𝑍 ↾ dom 𝑈)‘𝑝) = ((𝑍 ↾ dom 𝑈)‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
64 | 62, 63 | breq12d 5179 |
. . . . . . . . . . . . 13
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → ((𝑈‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘𝑝) ↔ (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}))) |
65 | 61, 64 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → ((∀𝑞 ∈ 𝑝 (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘𝑝)) ↔ (∀𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})))) |
66 | 65 | rspcev 3635 |
. . . . . . . . . . 11
⊢ ((∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On ∧ (∀𝑞 ∈ ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}))) → ∃𝑝 ∈ On (∀𝑞 ∈ 𝑝 (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘𝑝))) |
67 | 33, 53, 60, 66 | syl12anc 836 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ∃𝑝 ∈ On (∀𝑞 ∈ 𝑝 (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘𝑝))) |
68 | | noreson 27723 |
. . . . . . . . . . . 12
⊢ ((𝑍 ∈
No ∧ dom 𝑈
∈ On) → (𝑍
↾ dom 𝑈) ∈ No ) |
69 | 31, 46, 68 | syl2anc 583 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑍 ↾ dom 𝑈) ∈ No
) |
70 | | sltval 27710 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈
No ∧ (𝑍 ↾
dom 𝑈) ∈ No ) → (𝑈 <s (𝑍 ↾ dom 𝑈) ↔ ∃𝑝 ∈ On (∀𝑞 ∈ 𝑝 (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘𝑝)))) |
71 | 30, 69, 70 | syl2anc 583 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈 <s (𝑍 ↾ dom 𝑈) ↔ ∃𝑝 ∈ On (∀𝑞 ∈ 𝑝 (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘𝑝)))) |
72 | 67, 71 | mpbird 257 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑈 <s (𝑍 ↾ dom 𝑈)) |
73 | | df-res 5712 |
. . . . . . . . . . . . 13
⊢
({〈dom 𝑈,
2o〉} ↾ dom 𝑈) = ({〈dom 𝑈, 2o〉} ∩ (dom 𝑈 × V)) |
74 | | 2on 8536 |
. . . . . . . . . . . . . . . 16
⊢
2o ∈ On |
75 | | xpsng 7173 |
. . . . . . . . . . . . . . . 16
⊢ ((dom
𝑈 ∈ On ∧
2o ∈ On) → ({dom 𝑈} × {2o}) = {〈dom
𝑈,
2o〉}) |
76 | 46, 74, 75 | sylancl 585 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ({dom 𝑈} × {2o}) = {〈dom
𝑈,
2o〉}) |
77 | 76 | ineq1d 4240 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (({dom 𝑈} × {2o}) ∩ (dom 𝑈 × V)) = ({〈dom 𝑈, 2o〉} ∩
(dom 𝑈 ×
V))) |
78 | | incom 4230 |
. . . . . . . . . . . . . . . 16
⊢ ({dom
𝑈} ∩ dom 𝑈) = (dom 𝑈 ∩ {dom 𝑈}) |
79 | | nodmord 27716 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈
No → Ord dom 𝑈) |
80 | | ordirr 6413 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord dom
𝑈 → ¬ dom 𝑈 ∈ dom 𝑈) |
81 | 30, 79, 80 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ¬ dom 𝑈 ∈ dom 𝑈) |
82 | | disjsn 4736 |
. . . . . . . . . . . . . . . . 17
⊢ ((dom
𝑈 ∩ {dom 𝑈}) = ∅ ↔ ¬ dom
𝑈 ∈ dom 𝑈) |
83 | 81, 82 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (dom 𝑈 ∩ {dom 𝑈}) = ∅) |
84 | 78, 83 | eqtrid 2792 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ({dom 𝑈} ∩ dom 𝑈) = ∅) |
85 | | xpdisj1 6192 |
. . . . . . . . . . . . . . 15
⊢ (({dom
𝑈} ∩ dom 𝑈) = ∅ → (({dom 𝑈} × {2o}) ∩
(dom 𝑈 × V)) =
∅) |
86 | 84, 85 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (({dom 𝑈} × {2o}) ∩ (dom 𝑈 × V)) =
∅) |
87 | 77, 86 | eqtr3d 2782 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ({〈dom 𝑈, 2o〉} ∩ (dom 𝑈 × V)) =
∅) |
88 | 73, 87 | eqtrid 2792 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ({〈dom 𝑈, 2o〉} ↾ dom 𝑈) = ∅) |
89 | 88 | uneq2d 4191 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑈 ↾ dom 𝑈) ∪ ({〈dom 𝑈, 2o〉} ↾ dom 𝑈)) = ((𝑈 ↾ dom 𝑈) ∪ ∅)) |
90 | | resundir 6024 |
. . . . . . . . . . 11
⊢ ((𝑈 ∪ {〈dom 𝑈, 2o〉}) ↾
dom 𝑈) = ((𝑈 ↾ dom 𝑈) ∪ ({〈dom 𝑈, 2o〉} ↾ dom 𝑈)) |
91 | | un0 4417 |
. . . . . . . . . . . 12
⊢ ((𝑈 ↾ dom 𝑈) ∪ ∅) = (𝑈 ↾ dom 𝑈) |
92 | 91 | eqcomi 2749 |
. . . . . . . . . . 11
⊢ (𝑈 ↾ dom 𝑈) = ((𝑈 ↾ dom 𝑈) ∪ ∅) |
93 | 89, 90, 92 | 3eqtr4g 2805 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {〈dom 𝑈, 2o〉}) ↾ dom 𝑈) = (𝑈 ↾ dom 𝑈)) |
94 | | nofun 27712 |
. . . . . . . . . . 11
⊢ (𝑈 ∈
No → Fun 𝑈) |
95 | | funrel 6595 |
. . . . . . . . . . 11
⊢ (Fun
𝑈 → Rel 𝑈) |
96 | | resdm 6055 |
. . . . . . . . . . 11
⊢ (Rel
𝑈 → (𝑈 ↾ dom 𝑈) = 𝑈) |
97 | 30, 94, 95, 96 | 4syl 19 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈 ↾ dom 𝑈) = 𝑈) |
98 | 93, 97 | eqtrd 2780 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {〈dom 𝑈, 2o〉}) ↾ dom 𝑈) = 𝑈) |
99 | | sssucid 6475 |
. . . . . . . . . 10
⊢ dom 𝑈 ⊆ suc dom 𝑈 |
100 | | resabs1 6036 |
. . . . . . . . . 10
⊢ (dom
𝑈 ⊆ suc dom 𝑈 → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) = (𝑍 ↾ dom 𝑈)) |
101 | 99, 100 | mp1i 13 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) = (𝑍 ↾ dom 𝑈)) |
102 | 72, 98, 101 | 3brtr4d 5198 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {〈dom 𝑈, 2o〉}) ↾ dom 𝑈) <s ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈)) |
103 | 74 | elexi 3511 |
. . . . . . . . . . . . 13
⊢
2o ∈ V |
104 | 103 | prid2 4788 |
. . . . . . . . . . . 12
⊢
2o ∈ {1o, 2o} |
105 | 104 | noextend 27729 |
. . . . . . . . . . 11
⊢ (𝑈 ∈
No → (𝑈 ∪
{〈dom 𝑈,
2o〉}) ∈ No
) |
106 | 8, 105 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → (𝑈 ∪ {〈dom 𝑈, 2o〉}) ∈ No ) |
107 | 106 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈 ∪ {〈dom 𝑈, 2o〉}) ∈ No ) |
108 | | onsucb 7853 |
. . . . . . . . . . . 12
⊢ (dom
𝑈 ∈ On ↔ suc dom
𝑈 ∈
On) |
109 | 27, 108 | sylib 218 |
. . . . . . . . . . 11
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → suc dom 𝑈 ∈ On) |
110 | | noreson 27723 |
. . . . . . . . . . 11
⊢ ((𝑍 ∈
No ∧ suc dom 𝑈
∈ On) → (𝑍
↾ suc dom 𝑈) ∈
No ) |
111 | 9, 109, 110 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → (𝑍 ↾ suc dom 𝑈) ∈ No
) |
112 | 111 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) ∈ No
) |
113 | | sltres 27725 |
. . . . . . . . 9
⊢ (((𝑈 ∪ {〈dom 𝑈, 2o〉}) ∈
No ∧ (𝑍 ↾ suc dom 𝑈) ∈ No
∧ dom 𝑈 ∈ On)
→ (((𝑈 ∪
{〈dom 𝑈,
2o〉}) ↾ dom 𝑈) <s ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) → (𝑈 ∪ {〈dom 𝑈, 2o〉}) <s (𝑍 ↾ suc dom 𝑈))) |
114 | 107, 112,
46, 113 | syl3anc 1371 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (((𝑈 ∪ {〈dom 𝑈, 2o〉}) ↾ dom 𝑈) <s ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) → (𝑈 ∪ {〈dom 𝑈, 2o〉}) <s (𝑍 ↾ suc dom 𝑈))) |
115 | 102, 114 | mpd 15 |
. . . . . . 7
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈 ∪ {〈dom 𝑈, 2o〉}) <s (𝑍 ↾ suc dom 𝑈)) |
116 | | soasym 5640 |
. . . . . . . . 9
⊢ (( <s
Or No ∧ ((𝑈 ∪ {〈dom 𝑈, 2o〉}) ∈ No ∧ (𝑍 ↾ suc dom 𝑈) ∈ No ))
→ ((𝑈 ∪ {〈dom
𝑈, 2o〉})
<s (𝑍 ↾ suc dom
𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉}))) |
117 | 12, 116 | mpan 689 |
. . . . . . . 8
⊢ (((𝑈 ∪ {〈dom 𝑈, 2o〉}) ∈
No ∧ (𝑍 ↾ suc dom 𝑈) ∈ No )
→ ((𝑈 ∪ {〈dom
𝑈, 2o〉})
<s (𝑍 ↾ suc dom
𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉}))) |
118 | 107, 112,
117 | syl2anc 583 |
. . . . . . 7
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {〈dom 𝑈, 2o〉}) <s (𝑍 ↾ suc dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉}))) |
119 | 115, 118 | mpd 15 |
. . . . . 6
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉})) |
120 | | df-suc 6401 |
. . . . . . . . . 10
⊢ suc dom
𝑈 = (dom 𝑈 ∪ {dom 𝑈}) |
121 | 120 | reseq2i 6006 |
. . . . . . . . 9
⊢ (𝑍 ↾ suc dom 𝑈) = (𝑍 ↾ (dom 𝑈 ∪ {dom 𝑈})) |
122 | | resundi 6023 |
. . . . . . . . 9
⊢ (𝑍 ↾ (dom 𝑈 ∪ {dom 𝑈})) = ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈})) |
123 | 121, 122 | eqtri 2768 |
. . . . . . . 8
⊢ (𝑍 ↾ suc dom 𝑈) = ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈})) |
124 | | dmres 6041 |
. . . . . . . . . . 11
⊢ dom
(𝑍 ↾ dom 𝑈) = (dom 𝑈 ∩ dom 𝑍) |
125 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) |
126 | | necom 3000 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈‘𝑥) ≠ (𝑍‘𝑥) ↔ (𝑍‘𝑥) ≠ (𝑈‘𝑥)) |
127 | 126 | rabbii 3449 |
. . . . . . . . . . . . . . 15
⊢ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} |
128 | 127 | inteqi 4974 |
. . . . . . . . . . . . . 14
⊢ ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = ∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} |
129 | 9 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑍 ∈ No
) |
130 | 8 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑈 ∈ No
) |
131 | 21 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑈 ≠ 𝑍) |
132 | 131 | necomd 3002 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑍 ≠ 𝑈) |
133 | | nosepssdm 27749 |
. . . . . . . . . . . . . . 15
⊢ ((𝑍 ∈
No ∧ 𝑈 ∈
No ∧ 𝑍 ≠ 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} ⊆ dom 𝑍) |
134 | 129, 130,
132, 133 | syl3anc 1371 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} ⊆ dom 𝑍) |
135 | 128, 134 | eqsstrid 4057 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑍) |
136 | 125, 135 | eqsstrrd 4048 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → dom 𝑈 ⊆ dom 𝑍) |
137 | | dfss2 3994 |
. . . . . . . . . . . 12
⊢ (dom
𝑈 ⊆ dom 𝑍 ↔ (dom 𝑈 ∩ dom 𝑍) = dom 𝑈) |
138 | 136, 137 | sylib 218 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (dom 𝑈 ∩ dom 𝑍) = dom 𝑈) |
139 | 124, 138 | eqtrid 2792 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → dom (𝑍 ↾ dom 𝑈) = dom 𝑈) |
140 | 139 | eleq2d 2830 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑞 ∈ dom (𝑍 ↾ dom 𝑈) ↔ 𝑞 ∈ dom 𝑈)) |
141 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈) |
142 | 141 | fvresd 6940 |
. . . . . . . . . . . . . 14
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑍‘𝑞)) |
143 | 130, 26 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → dom 𝑈 ∈ On) |
144 | | onelon 6420 |
. . . . . . . . . . . . . . . . 17
⊢ ((dom
𝑈 ∈ On ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ On) |
145 | 143, 144 | sylan 579 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ On) |
146 | 125 | eleq2d 2830 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ↔ 𝑞 ∈ dom 𝑈)) |
147 | 146 | biimpar 477 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) |
148 | 145, 147,
40 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞)) |
149 | | nesym 3003 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈‘𝑞) ≠ (𝑍‘𝑞) ↔ ¬ (𝑍‘𝑞) = (𝑈‘𝑞)) |
150 | 149 | con2bii 357 |
. . . . . . . . . . . . . . 15
⊢ ((𝑍‘𝑞) = (𝑈‘𝑞) ↔ ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞)) |
151 | 148, 150 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → (𝑍‘𝑞) = (𝑈‘𝑞)) |
152 | 142, 151 | eqtrd 2780 |
. . . . . . . . . . . . 13
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞)) |
153 | 152 | ex 412 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑞 ∈ dom 𝑈 → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞))) |
154 | 140, 153 | sylbid 240 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑞 ∈ dom (𝑍 ↾ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞))) |
155 | 154 | ralrimiv 3151 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞)) |
156 | | nofun 27712 |
. . . . . . . . . . . 12
⊢ (𝑍 ∈
No → Fun 𝑍) |
157 | | funres 6620 |
. . . . . . . . . . . 12
⊢ (Fun
𝑍 → Fun (𝑍 ↾ dom 𝑈)) |
158 | 129, 156,
157 | 3syl 18 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → Fun (𝑍 ↾ dom 𝑈)) |
159 | 130, 94 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → Fun 𝑈) |
160 | | eqfunfv 7069 |
. . . . . . . . . . 11
⊢ ((Fun
(𝑍 ↾ dom 𝑈) ∧ Fun 𝑈) → ((𝑍 ↾ dom 𝑈) = 𝑈 ↔ (dom (𝑍 ↾ dom 𝑈) = dom 𝑈 ∧ ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞)))) |
161 | 158, 159,
160 | syl2anc 583 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ((𝑍 ↾ dom 𝑈) = 𝑈 ↔ (dom (𝑍 ↾ dom 𝑈) = dom 𝑈 ∧ ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞)))) |
162 | 139, 155,
161 | mpbir2and 712 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍 ↾ dom 𝑈) = 𝑈) |
163 | 129, 156 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → Fun 𝑍) |
164 | | funfn 6608 |
. . . . . . . . . . . 12
⊢ (Fun
𝑍 ↔ 𝑍 Fn dom 𝑍) |
165 | 163, 164 | sylib 218 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑍 Fn dom 𝑍) |
166 | | 1oex 8532 |
. . . . . . . . . . . . . . . . . . 19
⊢
1o ∈ V |
167 | 166 | prid1 4787 |
. . . . . . . . . . . . . . . . . 18
⊢
1o ∈ {1o, 2o} |
168 | 167 | nosgnn0i 27722 |
. . . . . . . . . . . . . . . . 17
⊢ ∅
≠ 1o |
169 | | ndmfv 6955 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
dom 𝑈 ∈ dom 𝑈 → (𝑈‘dom 𝑈) = ∅) |
170 | 130, 79, 80, 169 | 4syl 19 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑈‘dom 𝑈) = ∅) |
171 | 170 | neeq1d 3006 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ((𝑈‘dom 𝑈) ≠ 1o ↔ ∅ ≠
1o)) |
172 | 168, 171 | mpbiri 258 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑈‘dom 𝑈) ≠ 1o) |
173 | 172 | neneqd 2951 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ (𝑈‘dom 𝑈) = 1o) |
174 | 173 | intnanrd 489 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅)) |
175 | 173 | intnanrd 489 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o)) |
176 | | simplr 768 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑈 <s 𝑍) |
177 | 130, 129,
55 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑈 <s 𝑍 ↔ (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}))) |
178 | 176, 177 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
179 | | fveq2 6920 |
. . . . . . . . . . . . . . . . 17
⊢ (∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈 → (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) = (𝑈‘dom 𝑈)) |
180 | 179 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) = (𝑈‘dom 𝑈)) |
181 | | fveq2 6920 |
. . . . . . . . . . . . . . . . 17
⊢ (∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈 → (𝑍‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) = (𝑍‘dom 𝑈)) |
182 | 181 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) = (𝑍‘dom 𝑈)) |
183 | 178, 180,
182 | 3brtr3d 5197 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑈‘dom 𝑈){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘dom 𝑈)) |
184 | | fvex 6933 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈‘dom 𝑈) ∈ V |
185 | | fvex 6933 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑍‘dom 𝑈) ∈ V |
186 | 184, 185 | brtp 5542 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈‘dom 𝑈){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘dom 𝑈) ↔ (((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o))) |
187 | | 3orrot 1092 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o)) ↔ (((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅))) |
188 | | 3orrot 1092 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅)) ↔ (((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o))) |
189 | 186, 187,
188 | 3bitri 297 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈‘dom 𝑈){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘dom 𝑈) ↔ (((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o))) |
190 | 183, 189 | sylib 218 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o))) |
191 | 174, 175,
190 | ecase23d 1473 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o)) |
192 | 191 | simprd 495 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍‘dom 𝑈) = 2o) |
193 | | ndmfv 6955 |
. . . . . . . . . . . . . 14
⊢ (¬
dom 𝑈 ∈ dom 𝑍 → (𝑍‘dom 𝑈) = ∅) |
194 | 104 | nosgnn0i 27722 |
. . . . . . . . . . . . . . . 16
⊢ ∅
≠ 2o |
195 | | neeq1 3009 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑍‘dom 𝑈) = ∅ → ((𝑍‘dom 𝑈) ≠ 2o ↔ ∅ ≠
2o)) |
196 | 194, 195 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢ ((𝑍‘dom 𝑈) = ∅ → (𝑍‘dom 𝑈) ≠ 2o) |
197 | 196 | neneqd 2951 |
. . . . . . . . . . . . . 14
⊢ ((𝑍‘dom 𝑈) = ∅ → ¬ (𝑍‘dom 𝑈) = 2o) |
198 | 193, 197 | syl 17 |
. . . . . . . . . . . . 13
⊢ (¬
dom 𝑈 ∈ dom 𝑍 → ¬ (𝑍‘dom 𝑈) = 2o) |
199 | 198 | con4i 114 |
. . . . . . . . . . . 12
⊢ ((𝑍‘dom 𝑈) = 2o → dom 𝑈 ∈ dom 𝑍) |
200 | 192, 199 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → dom 𝑈 ∈ dom 𝑍) |
201 | | fnressn 7192 |
. . . . . . . . . . 11
⊢ ((𝑍 Fn dom 𝑍 ∧ dom 𝑈 ∈ dom 𝑍) → (𝑍 ↾ {dom 𝑈}) = {〈dom 𝑈, (𝑍‘dom 𝑈)〉}) |
202 | 165, 200,
201 | syl2anc 583 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍 ↾ {dom 𝑈}) = {〈dom 𝑈, (𝑍‘dom 𝑈)〉}) |
203 | 192 | opeq2d 4904 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 〈dom 𝑈, (𝑍‘dom 𝑈)〉 = 〈dom 𝑈, 2o〉) |
204 | 203 | sneqd 4660 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → {〈dom 𝑈, (𝑍‘dom 𝑈)〉} = {〈dom 𝑈, 2o〉}) |
205 | 202, 204 | eqtrd 2780 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍 ↾ {dom 𝑈}) = {〈dom 𝑈, 2o〉}) |
206 | 162, 205 | uneq12d 4192 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈})) = (𝑈 ∪ {〈dom 𝑈, 2o〉})) |
207 | 123, 206 | eqtrid 2792 |
. . . . . . 7
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍 ↾ suc dom 𝑈) = (𝑈 ∪ {〈dom 𝑈, 2o〉})) |
208 | | sonr 5632 |
. . . . . . . . 9
⊢ (( <s
Or No ∧ (𝑈 ∪ {〈dom 𝑈, 2o〉}) ∈ No ) → ¬ (𝑈 ∪ {〈dom 𝑈, 2o〉}) <s (𝑈 ∪ {〈dom 𝑈,
2o〉})) |
209 | 12, 208 | mpan 689 |
. . . . . . . 8
⊢ ((𝑈 ∪ {〈dom 𝑈, 2o〉}) ∈
No → ¬ (𝑈 ∪ {〈dom 𝑈, 2o〉}) <s (𝑈 ∪ {〈dom 𝑈,
2o〉})) |
210 | 130, 105,
209 | 3syl 18 |
. . . . . . 7
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ (𝑈 ∪ {〈dom 𝑈, 2o〉}) <s (𝑈 ∪ {〈dom 𝑈,
2o〉})) |
211 | 207, 210 | eqnbrtrd 5184 |
. . . . . 6
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉})) |
212 | 119, 211 | jaodan 958 |
. . . . 5
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ (∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈 ∨ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈)) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉})) |
213 | 212 | ex 412 |
. . . 4
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ((∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈 ∨ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉}))) |
214 | 29, 213 | sylbid 240 |
. . 3
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → (∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑈 → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉}))) |
215 | 23, 214 | mpd 15 |
. 2
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉})) |
216 | 5, 215 | mpdan 686 |
1
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉})) |