MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosupbnd2lem1 Structured version   Visualization version   GIF version

Theorem nosupbnd2lem1 27063
Description: Bounding law from above when a set of surreals has a maximum. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nosupbnd2lem1 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
Distinct variable groups:   𝐴,𝑎   𝑈,𝑎   𝑍,𝑎
Allowed substitution hints:   𝐴(𝑦)   𝑈(𝑦)   𝑍(𝑦)

Proof of Theorem nosupbnd2lem1
Dummy variables 𝑞 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1l 1197 . . 3 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → 𝑈𝐴)
2 simp3 1138 . . 3 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ∀𝑎𝐴 𝑎 <s 𝑍)
3 breq1 5108 . . . 4 (𝑎 = 𝑈 → (𝑎 <s 𝑍𝑈 <s 𝑍))
43rspcv 3577 . . 3 (𝑈𝐴 → (∀𝑎𝐴 𝑎 <s 𝑍𝑈 <s 𝑍))
51, 2, 4sylc 65 . 2 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → 𝑈 <s 𝑍)
6 simpl21 1251 . . . . 5 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝐴 No )
7 simpl1l 1224 . . . . 5 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑈𝐴)
86, 7sseldd 3945 . . . 4 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑈 No )
9 simpl23 1253 . . . 4 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑍 No )
10 simp21 1206 . . . . . . . . . 10 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → 𝐴 No )
1110, 1sseldd 3945 . . . . . . . . 9 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → 𝑈 No )
12 sltso 27024 . . . . . . . . . 10 <s Or No
13 sonr 5568 . . . . . . . . . 10 (( <s Or No 𝑈 No ) → ¬ 𝑈 <s 𝑈)
1412, 13mpan 688 . . . . . . . . 9 (𝑈 No → ¬ 𝑈 <s 𝑈)
1511, 14syl 17 . . . . . . . 8 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ 𝑈 <s 𝑈)
16 breq2 5109 . . . . . . . . 9 (𝑈 = 𝑍 → (𝑈 <s 𝑈𝑈 <s 𝑍))
1716notbid 317 . . . . . . . 8 (𝑈 = 𝑍 → (¬ 𝑈 <s 𝑈 ↔ ¬ 𝑈 <s 𝑍))
1815, 17syl5ibcom 244 . . . . . . 7 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → (𝑈 = 𝑍 → ¬ 𝑈 <s 𝑍))
1918con2d 134 . . . . . 6 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → (𝑈 <s 𝑍 → ¬ 𝑈 = 𝑍))
2019imp 407 . . . . 5 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ¬ 𝑈 = 𝑍)
2120neqned 2950 . . . 4 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑈𝑍)
22 nosepssdm 27034 . . . 4 ((𝑈 No 𝑍 No 𝑈𝑍) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈)
238, 9, 21, 22syl3anc 1371 . . 3 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈)
24 nosepon 27013 . . . . . 6 ((𝑈 No 𝑍 No 𝑈𝑍) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On)
258, 9, 21, 24syl3anc 1371 . . . . 5 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On)
26 nodmon 26998 . . . . . 6 (𝑈 No → dom 𝑈 ∈ On)
278, 26syl 17 . . . . 5 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → dom 𝑈 ∈ On)
28 onsseleq 6358 . . . . 5 (( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On ∧ dom 𝑈 ∈ On) → ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈 ↔ ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈)))
2925, 27, 28syl2anc 584 . . . 4 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈 ↔ ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈)))
308adantr 481 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑈 No )
319adantr 481 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑍 No )
3221adantr 481 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑈𝑍)
3330, 31, 32, 24syl3anc 1371 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On)
34 onelon 6342 . . . . . . . . . . . . . . . 16 (( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 ∈ On)
3533, 34sylan 580 . . . . . . . . . . . . . . 15 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 ∈ On)
36 simpr 485 . . . . . . . . . . . . . . 15 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})
37 fveq2 6842 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑞 → (𝑈𝑥) = (𝑈𝑞))
38 fveq2 6842 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑞 → (𝑍𝑥) = (𝑍𝑞))
3937, 38neeq12d 3005 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑞 → ((𝑈𝑥) ≠ (𝑍𝑥) ↔ (𝑈𝑞) ≠ (𝑍𝑞)))
4039onnminsb 7734 . . . . . . . . . . . . . . 15 (𝑞 ∈ On → (𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → ¬ (𝑈𝑞) ≠ (𝑍𝑞)))
4135, 36, 40sylc 65 . . . . . . . . . . . . . 14 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → ¬ (𝑈𝑞) ≠ (𝑍𝑞))
42 df-ne 2944 . . . . . . . . . . . . . . 15 ((𝑈𝑞) ≠ (𝑍𝑞) ↔ ¬ (𝑈𝑞) = (𝑍𝑞))
4342con2bii 357 . . . . . . . . . . . . . 14 ((𝑈𝑞) = (𝑍𝑞) ↔ ¬ (𝑈𝑞) ≠ (𝑍𝑞))
4441, 43sylibr 233 . . . . . . . . . . . . 13 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → (𝑈𝑞) = (𝑍𝑞))
45 simplr 767 . . . . . . . . . . . . . . 15 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈)
4627adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → dom 𝑈 ∈ On)
4746adantr 481 . . . . . . . . . . . . . . . 16 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → dom 𝑈 ∈ On)
48 ontr1 6363 . . . . . . . . . . . . . . . 16 (dom 𝑈 ∈ On → ((𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈))
4947, 48syl 17 . . . . . . . . . . . . . . 15 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → ((𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈))
5036, 45, 49mp2and 697 . . . . . . . . . . . . . 14 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 ∈ dom 𝑈)
5150fvresd 6862 . . . . . . . . . . . . 13 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑍𝑞))
5244, 51eqtr4d 2779 . . . . . . . . . . . 12 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞))
5352ralrimiva 3143 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞))
54 simplr 767 . . . . . . . . . . . . 13 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑈 <s 𝑍)
55 sltval2 27004 . . . . . . . . . . . . . 14 ((𝑈 No 𝑍 No ) → (𝑈 <s 𝑍 ↔ (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})))
5630, 31, 55syl2anc 584 . . . . . . . . . . . . 13 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 <s 𝑍 ↔ (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})))
5754, 56mpbid 231 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
58 simpr 485 . . . . . . . . . . . . 13 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈)
5958fvresd 6862 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
6057, 59breqtrrd 5133 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
61 raleq 3309 . . . . . . . . . . . . 13 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → (∀𝑞𝑝 (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ↔ ∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞)))
62 fveq2 6842 . . . . . . . . . . . . . 14 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → (𝑈𝑝) = (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
63 fveq2 6842 . . . . . . . . . . . . . 14 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → ((𝑍 ↾ dom 𝑈)‘𝑝) = ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
6462, 63breq12d 5118 . . . . . . . . . . . . 13 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → ((𝑈𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘𝑝) ↔ (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})))
6561, 64anbi12d 631 . . . . . . . . . . . 12 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → ((∀𝑞𝑝 (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘𝑝)) ↔ (∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))))
6665rspcev 3581 . . . . . . . . . . 11 (( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On ∧ (∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))) → ∃𝑝 ∈ On (∀𝑞𝑝 (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘𝑝)))
6733, 53, 60, 66syl12anc 835 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ∃𝑝 ∈ On (∀𝑞𝑝 (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘𝑝)))
68 noreson 27008 . . . . . . . . . . . 12 ((𝑍 No ∧ dom 𝑈 ∈ On) → (𝑍 ↾ dom 𝑈) ∈ No )
6931, 46, 68syl2anc 584 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 ↾ dom 𝑈) ∈ No )
70 sltval 26995 . . . . . . . . . . 11 ((𝑈 No ∧ (𝑍 ↾ dom 𝑈) ∈ No ) → (𝑈 <s (𝑍 ↾ dom 𝑈) ↔ ∃𝑝 ∈ On (∀𝑞𝑝 (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘𝑝))))
7130, 69, 70syl2anc 584 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 <s (𝑍 ↾ dom 𝑈) ↔ ∃𝑝 ∈ On (∀𝑞𝑝 (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘𝑝))))
7267, 71mpbird 256 . . . . . . . . 9 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑈 <s (𝑍 ↾ dom 𝑈))
73 df-res 5645 . . . . . . . . . . . . 13 ({⟨dom 𝑈, 2o⟩} ↾ dom 𝑈) = ({⟨dom 𝑈, 2o⟩} ∩ (dom 𝑈 × V))
74 2on 8426 . . . . . . . . . . . . . . . 16 2o ∈ On
75 xpsng 7085 . . . . . . . . . . . . . . . 16 ((dom 𝑈 ∈ On ∧ 2o ∈ On) → ({dom 𝑈} × {2o}) = {⟨dom 𝑈, 2o⟩})
7646, 74, 75sylancl 586 . . . . . . . . . . . . . . 15 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ({dom 𝑈} × {2o}) = {⟨dom 𝑈, 2o⟩})
7776ineq1d 4171 . . . . . . . . . . . . . 14 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (({dom 𝑈} × {2o}) ∩ (dom 𝑈 × V)) = ({⟨dom 𝑈, 2o⟩} ∩ (dom 𝑈 × V)))
78 incom 4161 . . . . . . . . . . . . . . . 16 ({dom 𝑈} ∩ dom 𝑈) = (dom 𝑈 ∩ {dom 𝑈})
79 nodmord 27001 . . . . . . . . . . . . . . . . . 18 (𝑈 No → Ord dom 𝑈)
80 ordirr 6335 . . . . . . . . . . . . . . . . . 18 (Ord dom 𝑈 → ¬ dom 𝑈 ∈ dom 𝑈)
8130, 79, 803syl 18 . . . . . . . . . . . . . . . . 17 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ¬ dom 𝑈 ∈ dom 𝑈)
82 disjsn 4672 . . . . . . . . . . . . . . . . 17 ((dom 𝑈 ∩ {dom 𝑈}) = ∅ ↔ ¬ dom 𝑈 ∈ dom 𝑈)
8381, 82sylibr 233 . . . . . . . . . . . . . . . 16 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (dom 𝑈 ∩ {dom 𝑈}) = ∅)
8478, 83eqtrid 2788 . . . . . . . . . . . . . . 15 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ({dom 𝑈} ∩ dom 𝑈) = ∅)
85 xpdisj1 6113 . . . . . . . . . . . . . . 15 (({dom 𝑈} ∩ dom 𝑈) = ∅ → (({dom 𝑈} × {2o}) ∩ (dom 𝑈 × V)) = ∅)
8684, 85syl 17 . . . . . . . . . . . . . 14 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (({dom 𝑈} × {2o}) ∩ (dom 𝑈 × V)) = ∅)
8777, 86eqtr3d 2778 . . . . . . . . . . . . 13 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ({⟨dom 𝑈, 2o⟩} ∩ (dom 𝑈 × V)) = ∅)
8873, 87eqtrid 2788 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ({⟨dom 𝑈, 2o⟩} ↾ dom 𝑈) = ∅)
8988uneq2d 4123 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ↾ dom 𝑈) ∪ ({⟨dom 𝑈, 2o⟩} ↾ dom 𝑈)) = ((𝑈 ↾ dom 𝑈) ∪ ∅))
90 resundir 5952 . . . . . . . . . . 11 ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ↾ dom 𝑈) = ((𝑈 ↾ dom 𝑈) ∪ ({⟨dom 𝑈, 2o⟩} ↾ dom 𝑈))
91 un0 4350 . . . . . . . . . . . 12 ((𝑈 ↾ dom 𝑈) ∪ ∅) = (𝑈 ↾ dom 𝑈)
9291eqcomi 2745 . . . . . . . . . . 11 (𝑈 ↾ dom 𝑈) = ((𝑈 ↾ dom 𝑈) ∪ ∅)
9389, 90, 923eqtr4g 2801 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ↾ dom 𝑈) = (𝑈 ↾ dom 𝑈))
94 nofun 26997 . . . . . . . . . . . 12 (𝑈 No → Fun 𝑈)
9530, 94syl 17 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → Fun 𝑈)
96 funrel 6518 . . . . . . . . . . 11 (Fun 𝑈 → Rel 𝑈)
97 resdm 5982 . . . . . . . . . . 11 (Rel 𝑈 → (𝑈 ↾ dom 𝑈) = 𝑈)
9895, 96, 973syl 18 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 ↾ dom 𝑈) = 𝑈)
9993, 98eqtrd 2776 . . . . . . . . 9 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ↾ dom 𝑈) = 𝑈)
100 sssucid 6397 . . . . . . . . . 10 dom 𝑈 ⊆ suc dom 𝑈
101 resabs1 5967 . . . . . . . . . 10 (dom 𝑈 ⊆ suc dom 𝑈 → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) = (𝑍 ↾ dom 𝑈))
102100, 101mp1i 13 . . . . . . . . 9 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) = (𝑍 ↾ dom 𝑈))
10372, 99, 1023brtr4d 5137 . . . . . . . 8 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ↾ dom 𝑈) <s ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈))
10474elexi 3464 . . . . . . . . . . . . 13 2o ∈ V
105104prid2 4724 . . . . . . . . . . . 12 2o ∈ {1o, 2o}
106105noextend 27014 . . . . . . . . . . 11 (𝑈 No → (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No )
1078, 106syl 17 . . . . . . . . . 10 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No )
108107adantr 481 . . . . . . . . 9 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No )
109 onsucb 7752 . . . . . . . . . . . 12 (dom 𝑈 ∈ On ↔ suc dom 𝑈 ∈ On)
11027, 109sylib 217 . . . . . . . . . . 11 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → suc dom 𝑈 ∈ On)
111 noreson 27008 . . . . . . . . . . 11 ((𝑍 No ∧ suc dom 𝑈 ∈ On) → (𝑍 ↾ suc dom 𝑈) ∈ No )
1129, 110, 111syl2anc 584 . . . . . . . . . 10 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → (𝑍 ↾ suc dom 𝑈) ∈ No )
113112adantr 481 . . . . . . . . 9 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) ∈ No )
114 sltres 27010 . . . . . . . . 9 (((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No ∧ (𝑍 ↾ suc dom 𝑈) ∈ No ∧ dom 𝑈 ∈ On) → (((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ↾ dom 𝑈) <s ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) → (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑍 ↾ suc dom 𝑈)))
115108, 113, 46, 114syl3anc 1371 . . . . . . . 8 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ↾ dom 𝑈) <s ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) → (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑍 ↾ suc dom 𝑈)))
116103, 115mpd 15 . . . . . . 7 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑍 ↾ suc dom 𝑈))
117 soasym 5576 . . . . . . . . 9 (( <s Or No ∧ ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No ∧ (𝑍 ↾ suc dom 𝑈) ∈ No )) → ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑍 ↾ suc dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩})))
11812, 117mpan 688 . . . . . . . 8 (((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No ∧ (𝑍 ↾ suc dom 𝑈) ∈ No ) → ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑍 ↾ suc dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩})))
119108, 113, 118syl2anc 584 . . . . . . 7 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑍 ↾ suc dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩})))
120116, 119mpd 15 . . . . . 6 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
121 df-suc 6323 . . . . . . . . . 10 suc dom 𝑈 = (dom 𝑈 ∪ {dom 𝑈})
122121reseq2i 5934 . . . . . . . . 9 (𝑍 ↾ suc dom 𝑈) = (𝑍 ↾ (dom 𝑈 ∪ {dom 𝑈}))
123 resundi 5951 . . . . . . . . 9 (𝑍 ↾ (dom 𝑈 ∪ {dom 𝑈})) = ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈}))
124122, 123eqtri 2764 . . . . . . . 8 (𝑍 ↾ suc dom 𝑈) = ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈}))
125 dmres 5959 . . . . . . . . . . 11 dom (𝑍 ↾ dom 𝑈) = (dom 𝑈 ∩ dom 𝑍)
126 simpr 485 . . . . . . . . . . . . 13 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈)
127 necom 2997 . . . . . . . . . . . . . . . 16 ((𝑈𝑥) ≠ (𝑍𝑥) ↔ (𝑍𝑥) ≠ (𝑈𝑥))
128127rabbii 3413 . . . . . . . . . . . . . . 15 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}
129128inteqi 4911 . . . . . . . . . . . . . 14 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}
1309adantr 481 . . . . . . . . . . . . . . 15 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑍 No )
1318adantr 481 . . . . . . . . . . . . . . 15 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑈 No )
13221adantr 481 . . . . . . . . . . . . . . . 16 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑈𝑍)
133132necomd 2999 . . . . . . . . . . . . . . 15 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑍𝑈)
134 nosepssdm 27034 . . . . . . . . . . . . . . 15 ((𝑍 No 𝑈 No 𝑍𝑈) → {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)} ⊆ dom 𝑍)
135130, 131, 133, 134syl3anc 1371 . . . . . . . . . . . . . 14 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)} ⊆ dom 𝑍)
136129, 135eqsstrid 3992 . . . . . . . . . . . . 13 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑍)
137126, 136eqsstrrd 3983 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom 𝑈 ⊆ dom 𝑍)
138 df-ss 3927 . . . . . . . . . . . 12 (dom 𝑈 ⊆ dom 𝑍 ↔ (dom 𝑈 ∩ dom 𝑍) = dom 𝑈)
139137, 138sylib 217 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (dom 𝑈 ∩ dom 𝑍) = dom 𝑈)
140125, 139eqtrid 2788 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom (𝑍 ↾ dom 𝑈) = dom 𝑈)
141140eleq2d 2823 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 ∈ dom (𝑍 ↾ dom 𝑈) ↔ 𝑞 ∈ dom 𝑈))
142 simpr 485 . . . . . . . . . . . . . . 15 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈)
143142fvresd 6862 . . . . . . . . . . . . . 14 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑍𝑞))
144131, 26syl 17 . . . . . . . . . . . . . . . . 17 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom 𝑈 ∈ On)
145 onelon 6342 . . . . . . . . . . . . . . . . 17 ((dom 𝑈 ∈ On ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ On)
146144, 145sylan 580 . . . . . . . . . . . . . . . 16 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ On)
147126eleq2d 2823 . . . . . . . . . . . . . . . . 17 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ↔ 𝑞 ∈ dom 𝑈))
148147biimpar 478 . . . . . . . . . . . . . . . 16 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})
149146, 148, 40sylc 65 . . . . . . . . . . . . . . 15 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ¬ (𝑈𝑞) ≠ (𝑍𝑞))
150 nesym 3000 . . . . . . . . . . . . . . . 16 ((𝑈𝑞) ≠ (𝑍𝑞) ↔ ¬ (𝑍𝑞) = (𝑈𝑞))
151150con2bii 357 . . . . . . . . . . . . . . 15 ((𝑍𝑞) = (𝑈𝑞) ↔ ¬ (𝑈𝑞) ≠ (𝑍𝑞))
152149, 151sylibr 233 . . . . . . . . . . . . . 14 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → (𝑍𝑞) = (𝑈𝑞))
153143, 152eqtrd 2776 . . . . . . . . . . . . 13 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))
154153ex 413 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 ∈ dom 𝑈 → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞)))
155141, 154sylbid 239 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 ∈ dom (𝑍 ↾ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞)))
156155ralrimiv 3142 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))
157 nofun 26997 . . . . . . . . . . . 12 (𝑍 No → Fun 𝑍)
158 funres 6543 . . . . . . . . . . . 12 (Fun 𝑍 → Fun (𝑍 ↾ dom 𝑈))
159130, 157, 1583syl 18 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Fun (𝑍 ↾ dom 𝑈))
160131, 94syl 17 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Fun 𝑈)
161 eqfunfv 6987 . . . . . . . . . . 11 ((Fun (𝑍 ↾ dom 𝑈) ∧ Fun 𝑈) → ((𝑍 ↾ dom 𝑈) = 𝑈 ↔ (dom (𝑍 ↾ dom 𝑈) = dom 𝑈 ∧ ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))))
162159, 160, 161syl2anc 584 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑍 ↾ dom 𝑈) = 𝑈 ↔ (dom (𝑍 ↾ dom 𝑈) = dom 𝑈 ∧ ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))))
163140, 156, 162mpbir2and 711 . . . . . . . . 9 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ dom 𝑈) = 𝑈)
164130, 157syl 17 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Fun 𝑍)
165 funfn 6531 . . . . . . . . . . . 12 (Fun 𝑍𝑍 Fn dom 𝑍)
166164, 165sylib 217 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑍 Fn dom 𝑍)
167 1oex 8422 . . . . . . . . . . . . . . . . . . 19 1o ∈ V
168167prid1 4723 . . . . . . . . . . . . . . . . . 18 1o ∈ {1o, 2o}
169168nosgnn0i 27007 . . . . . . . . . . . . . . . . 17 ∅ ≠ 1o
170131, 79syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Ord dom 𝑈)
171 ndmfv 6877 . . . . . . . . . . . . . . . . . . 19 (¬ dom 𝑈 ∈ dom 𝑈 → (𝑈‘dom 𝑈) = ∅)
172170, 80, 1713syl 18 . . . . . . . . . . . . . . . . . 18 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑈‘dom 𝑈) = ∅)
173172neeq1d 3003 . . . . . . . . . . . . . . . . 17 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑈‘dom 𝑈) ≠ 1o ↔ ∅ ≠ 1o))
174169, 173mpbiri 257 . . . . . . . . . . . . . . . 16 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑈‘dom 𝑈) ≠ 1o)
175174neneqd 2948 . . . . . . . . . . . . . . 15 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ (𝑈‘dom 𝑈) = 1o)
176175intnanrd 490 . . . . . . . . . . . . . 14 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅))
177175intnanrd 490 . . . . . . . . . . . . . 14 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o))
178 simplr 767 . . . . . . . . . . . . . . . . 17 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑈 <s 𝑍)
179131, 130, 55syl2anc 584 . . . . . . . . . . . . . . . . 17 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑈 <s 𝑍 ↔ (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})))
180178, 179mpbid 231 . . . . . . . . . . . . . . . 16 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
181 fveq2 6842 . . . . . . . . . . . . . . . . 17 ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈 → (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑈‘dom 𝑈))
182181adantl 482 . . . . . . . . . . . . . . . 16 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑈‘dom 𝑈))
183 fveq2 6842 . . . . . . . . . . . . . . . . 17 ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈 → (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑍‘dom 𝑈))
184183adantl 482 . . . . . . . . . . . . . . . 16 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑍‘dom 𝑈))
185180, 182, 1843brtr3d 5136 . . . . . . . . . . . . . . 15 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑈‘dom 𝑈){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍‘dom 𝑈))
186 fvex 6855 . . . . . . . . . . . . . . . . 17 (𝑈‘dom 𝑈) ∈ V
187 fvex 6855 . . . . . . . . . . . . . . . . 17 (𝑍‘dom 𝑈) ∈ V
188186, 187brtp 5480 . . . . . . . . . . . . . . . 16 ((𝑈‘dom 𝑈){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍‘dom 𝑈) ↔ (((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o)))
189 3orrot 1092 . . . . . . . . . . . . . . . 16 ((((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o)) ↔ (((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅)))
190 3orrot 1092 . . . . . . . . . . . . . . . 16 ((((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅)) ↔ (((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o)))
191188, 189, 1903bitri 296 . . . . . . . . . . . . . . 15 ((𝑈‘dom 𝑈){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍‘dom 𝑈) ↔ (((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o)))
192185, 191sylib 217 . . . . . . . . . . . . . 14 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o)))
193176, 177, 192ecase23d 1473 . . . . . . . . . . . . 13 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o))
194193simprd 496 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍‘dom 𝑈) = 2o)
195 ndmfv 6877 . . . . . . . . . . . . . 14 (¬ dom 𝑈 ∈ dom 𝑍 → (𝑍‘dom 𝑈) = ∅)
196105nosgnn0i 27007 . . . . . . . . . . . . . . . 16 ∅ ≠ 2o
197 neeq1 3006 . . . . . . . . . . . . . . . 16 ((𝑍‘dom 𝑈) = ∅ → ((𝑍‘dom 𝑈) ≠ 2o ↔ ∅ ≠ 2o))
198196, 197mpbiri 257 . . . . . . . . . . . . . . 15 ((𝑍‘dom 𝑈) = ∅ → (𝑍‘dom 𝑈) ≠ 2o)
199198neneqd 2948 . . . . . . . . . . . . . 14 ((𝑍‘dom 𝑈) = ∅ → ¬ (𝑍‘dom 𝑈) = 2o)
200195, 199syl 17 . . . . . . . . . . . . 13 (¬ dom 𝑈 ∈ dom 𝑍 → ¬ (𝑍‘dom 𝑈) = 2o)
201200con4i 114 . . . . . . . . . . . 12 ((𝑍‘dom 𝑈) = 2o → dom 𝑈 ∈ dom 𝑍)
202194, 201syl 17 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom 𝑈 ∈ dom 𝑍)
203 fnressn 7104 . . . . . . . . . . 11 ((𝑍 Fn dom 𝑍 ∧ dom 𝑈 ∈ dom 𝑍) → (𝑍 ↾ {dom 𝑈}) = {⟨dom 𝑈, (𝑍‘dom 𝑈)⟩})
204166, 202, 203syl2anc 584 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ {dom 𝑈}) = {⟨dom 𝑈, (𝑍‘dom 𝑈)⟩})
205194opeq2d 4837 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ⟨dom 𝑈, (𝑍‘dom 𝑈)⟩ = ⟨dom 𝑈, 2o⟩)
206205sneqd 4598 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {⟨dom 𝑈, (𝑍‘dom 𝑈)⟩} = {⟨dom 𝑈, 2o⟩})
207204, 206eqtrd 2776 . . . . . . . . 9 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ {dom 𝑈}) = {⟨dom 𝑈, 2o⟩})
208163, 207uneq12d 4124 . . . . . . . 8 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈})) = (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
209124, 208eqtrid 2788 . . . . . . 7 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ suc dom 𝑈) = (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
210 sonr 5568 . . . . . . . . 9 (( <s Or No ∧ (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No ) → ¬ (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
21112, 210mpan 688 . . . . . . . 8 ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No → ¬ (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
212131, 106, 2113syl 18 . . . . . . 7 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
213209, 212eqnbrtrd 5123 . . . . . 6 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
214120, 213jaodan 956 . . . . 5 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈)) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
215214ex 413 . . . 4 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → (( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩})))
21629, 215sylbid 239 . . 3 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈 → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩})))
21723, 216mpd 15 . 2 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
2185, 217mpdan 685 1 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  cun 3908  cin 3909  wss 3910  c0 4282  {csn 4586  {ctp 4590  cop 4592   cint 4907   class class class wbr 5105   Or wor 5544   × cxp 5631  dom cdm 5633  cres 5635  Rel wrel 5638  Ord word 6316  Oncon0 6317  suc csuc 6319  Fun wfun 6490   Fn wfn 6491  cfv 6496  1oc1o 8405  2oc2o 8406   No csur 26988   <s cslt 26989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-1o 8412  df-2o 8413  df-no 26991  df-slt 26992
This theorem is referenced by:  nosupbnd2  27064
  Copyright terms: Public domain W3C validator