| Step | Hyp | Ref
| Expression |
| 1 | | simp1l 1198 |
. . 3
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → 𝑈 ∈ 𝐴) |
| 2 | | simp3 1138 |
. . 3
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) |
| 3 | | breq1 5122 |
. . . 4
⊢ (𝑎 = 𝑈 → (𝑎 <s 𝑍 ↔ 𝑈 <s 𝑍)) |
| 4 | 3 | rspcv 3597 |
. . 3
⊢ (𝑈 ∈ 𝐴 → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑍 → 𝑈 <s 𝑍)) |
| 5 | 1, 2, 4 | sylc 65 |
. 2
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → 𝑈 <s 𝑍) |
| 6 | | simpl21 1252 |
. . . . 5
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝐴 ⊆ No
) |
| 7 | | simpl1l 1225 |
. . . . 5
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑈 ∈ 𝐴) |
| 8 | 6, 7 | sseldd 3959 |
. . . 4
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑈 ∈ No
) |
| 9 | | simpl23 1254 |
. . . 4
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑍 ∈ No
) |
| 10 | | simp21 1207 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → 𝐴 ⊆ No
) |
| 11 | 10, 1 | sseldd 3959 |
. . . . . . . . 9
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → 𝑈 ∈ No
) |
| 12 | | sltso 27640 |
. . . . . . . . . 10
⊢ <s Or
No |
| 13 | | sonr 5585 |
. . . . . . . . . 10
⊢ (( <s
Or No ∧ 𝑈 ∈ No )
→ ¬ 𝑈 <s 𝑈) |
| 14 | 12, 13 | mpan 690 |
. . . . . . . . 9
⊢ (𝑈 ∈
No → ¬ 𝑈
<s 𝑈) |
| 15 | 11, 14 | syl 17 |
. . . . . . . 8
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ 𝑈 <s 𝑈) |
| 16 | | breq2 5123 |
. . . . . . . . 9
⊢ (𝑈 = 𝑍 → (𝑈 <s 𝑈 ↔ 𝑈 <s 𝑍)) |
| 17 | 16 | notbid 318 |
. . . . . . . 8
⊢ (𝑈 = 𝑍 → (¬ 𝑈 <s 𝑈 ↔ ¬ 𝑈 <s 𝑍)) |
| 18 | 15, 17 | syl5ibcom 245 |
. . . . . . 7
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → (𝑈 = 𝑍 → ¬ 𝑈 <s 𝑍)) |
| 19 | 18 | con2d 134 |
. . . . . 6
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → (𝑈 <s 𝑍 → ¬ 𝑈 = 𝑍)) |
| 20 | 19 | imp 406 |
. . . . 5
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ¬ 𝑈 = 𝑍) |
| 21 | 20 | neqned 2939 |
. . . 4
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑈 ≠ 𝑍) |
| 22 | | nosepssdm 27650 |
. . . 4
⊢ ((𝑈 ∈
No ∧ 𝑍 ∈
No ∧ 𝑈 ≠ 𝑍) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑈) |
| 23 | 8, 9, 21, 22 | syl3anc 1373 |
. . 3
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑈) |
| 24 | | nosepon 27629 |
. . . . . 6
⊢ ((𝑈 ∈
No ∧ 𝑍 ∈
No ∧ 𝑈 ≠ 𝑍) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On) |
| 25 | 8, 9, 21, 24 | syl3anc 1373 |
. . . . 5
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On) |
| 26 | | nodmon 27614 |
. . . . . 6
⊢ (𝑈 ∈
No → dom 𝑈
∈ On) |
| 27 | 8, 26 | syl 17 |
. . . . 5
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → dom 𝑈 ∈ On) |
| 28 | | onsseleq 6393 |
. . . . 5
⊢ ((∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On ∧ dom 𝑈 ∈ On) → (∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑈 ↔ (∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈 ∨ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈))) |
| 29 | 25, 27, 28 | syl2anc 584 |
. . . 4
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → (∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑈 ↔ (∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈 ∨ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈))) |
| 30 | 8 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑈 ∈ No
) |
| 31 | 9 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑍 ∈ No
) |
| 32 | 21 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑈 ≠ 𝑍) |
| 33 | 30, 31, 32, 24 | syl3anc 1373 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On) |
| 34 | | onelon 6377 |
. . . . . . . . . . . . . . . 16
⊢ ((∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → 𝑞 ∈ On) |
| 35 | 33, 34 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → 𝑞 ∈ On) |
| 36 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) |
| 37 | | fveq2 6876 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑞 → (𝑈‘𝑥) = (𝑈‘𝑞)) |
| 38 | | fveq2 6876 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑞 → (𝑍‘𝑥) = (𝑍‘𝑞)) |
| 39 | 37, 38 | neeq12d 2993 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑞 → ((𝑈‘𝑥) ≠ (𝑍‘𝑥) ↔ (𝑈‘𝑞) ≠ (𝑍‘𝑞))) |
| 40 | 39 | onnminsb 7793 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ On → (𝑞 ∈ ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞))) |
| 41 | 35, 36, 40 | sylc 65 |
. . . . . . . . . . . . . 14
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞)) |
| 42 | | df-ne 2933 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈‘𝑞) ≠ (𝑍‘𝑞) ↔ ¬ (𝑈‘𝑞) = (𝑍‘𝑞)) |
| 43 | 42 | con2bii 357 |
. . . . . . . . . . . . . 14
⊢ ((𝑈‘𝑞) = (𝑍‘𝑞) ↔ ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞)) |
| 44 | 41, 43 | sylibr 234 |
. . . . . . . . . . . . 13
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → (𝑈‘𝑞) = (𝑍‘𝑞)) |
| 45 | | simplr 768 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) |
| 46 | 27 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → dom 𝑈 ∈ On) |
| 47 | 46 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → dom 𝑈 ∈ On) |
| 48 | | ontr1 6399 |
. . . . . . . . . . . . . . . 16
⊢ (dom
𝑈 ∈ On → ((𝑞 ∈ ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈)) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → ((𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈)) |
| 50 | 36, 45, 49 | mp2and 699 |
. . . . . . . . . . . . . 14
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → 𝑞 ∈ dom 𝑈) |
| 51 | 50 | fvresd 6896 |
. . . . . . . . . . . . 13
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑍‘𝑞)) |
| 52 | 44, 51 | eqtr4d 2773 |
. . . . . . . . . . . 12
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) ∧ 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) → (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞)) |
| 53 | 52 | ralrimiva 3132 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ∀𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞)) |
| 54 | | simplr 768 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑈 <s 𝑍) |
| 55 | | sltval2 27620 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈
No ∧ 𝑍 ∈
No ) → (𝑈 <s 𝑍 ↔ (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}))) |
| 56 | 30, 31, 55 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈 <s 𝑍 ↔ (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}))) |
| 57 | 54, 56 | mpbid 232 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
| 58 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) |
| 59 | 58 | fvresd 6896 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) = (𝑍‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
| 60 | 57, 59 | breqtrrd 5147 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
| 61 | | raleq 3302 |
. . . . . . . . . . . . 13
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → (∀𝑞 ∈ 𝑝 (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ↔ ∀𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞))) |
| 62 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → (𝑈‘𝑝) = (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
| 63 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → ((𝑍 ↾ dom 𝑈)‘𝑝) = ((𝑍 ↾ dom 𝑈)‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
| 64 | 62, 63 | breq12d 5132 |
. . . . . . . . . . . . 13
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → ((𝑈‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘𝑝) ↔ (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}))) |
| 65 | 61, 64 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑝 = ∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} → ((∀𝑞 ∈ 𝑝 (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘𝑝)) ↔ (∀𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})))) |
| 66 | 65 | rspcev 3601 |
. . . . . . . . . . 11
⊢ ((∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ On ∧ (∀𝑞 ∈ ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}))) → ∃𝑝 ∈ On (∀𝑞 ∈ 𝑝 (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘𝑝))) |
| 67 | 33, 53, 60, 66 | syl12anc 836 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ∃𝑝 ∈ On (∀𝑞 ∈ 𝑝 (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘𝑝))) |
| 68 | | noreson 27624 |
. . . . . . . . . . . 12
⊢ ((𝑍 ∈
No ∧ dom 𝑈
∈ On) → (𝑍
↾ dom 𝑈) ∈ No ) |
| 69 | 31, 46, 68 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑍 ↾ dom 𝑈) ∈ No
) |
| 70 | | sltval 27611 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈
No ∧ (𝑍 ↾
dom 𝑈) ∈ No ) → (𝑈 <s (𝑍 ↾ dom 𝑈) ↔ ∃𝑝 ∈ On (∀𝑞 ∈ 𝑝 (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘𝑝)))) |
| 71 | 30, 69, 70 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈 <s (𝑍 ↾ dom 𝑈) ↔ ∃𝑝 ∈ On (∀𝑞 ∈ 𝑝 (𝑈‘𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈‘𝑝){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝑍 ↾ dom 𝑈)‘𝑝)))) |
| 72 | 67, 71 | mpbird 257 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → 𝑈 <s (𝑍 ↾ dom 𝑈)) |
| 73 | | df-res 5666 |
. . . . . . . . . . . . 13
⊢
({〈dom 𝑈,
2o〉} ↾ dom 𝑈) = ({〈dom 𝑈, 2o〉} ∩ (dom 𝑈 × V)) |
| 74 | | 2on 8494 |
. . . . . . . . . . . . . . . 16
⊢
2o ∈ On |
| 75 | | xpsng 7129 |
. . . . . . . . . . . . . . . 16
⊢ ((dom
𝑈 ∈ On ∧
2o ∈ On) → ({dom 𝑈} × {2o}) = {〈dom
𝑈,
2o〉}) |
| 76 | 46, 74, 75 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ({dom 𝑈} × {2o}) = {〈dom
𝑈,
2o〉}) |
| 77 | 76 | ineq1d 4194 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (({dom 𝑈} × {2o}) ∩ (dom 𝑈 × V)) = ({〈dom 𝑈, 2o〉} ∩
(dom 𝑈 ×
V))) |
| 78 | | incom 4184 |
. . . . . . . . . . . . . . . 16
⊢ ({dom
𝑈} ∩ dom 𝑈) = (dom 𝑈 ∩ {dom 𝑈}) |
| 79 | | nodmord 27617 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈
No → Ord dom 𝑈) |
| 80 | | ordirr 6370 |
. . . . . . . . . . . . . . . . . 18
⊢ (Ord dom
𝑈 → ¬ dom 𝑈 ∈ dom 𝑈) |
| 81 | 30, 79, 80 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ¬ dom 𝑈 ∈ dom 𝑈) |
| 82 | | disjsn 4687 |
. . . . . . . . . . . . . . . . 17
⊢ ((dom
𝑈 ∩ {dom 𝑈}) = ∅ ↔ ¬ dom
𝑈 ∈ dom 𝑈) |
| 83 | 81, 82 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (dom 𝑈 ∩ {dom 𝑈}) = ∅) |
| 84 | 78, 83 | eqtrid 2782 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ({dom 𝑈} ∩ dom 𝑈) = ∅) |
| 85 | | xpdisj1 6150 |
. . . . . . . . . . . . . . 15
⊢ (({dom
𝑈} ∩ dom 𝑈) = ∅ → (({dom 𝑈} × {2o}) ∩
(dom 𝑈 × V)) =
∅) |
| 86 | 84, 85 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (({dom 𝑈} × {2o}) ∩ (dom 𝑈 × V)) =
∅) |
| 87 | 77, 86 | eqtr3d 2772 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ({〈dom 𝑈, 2o〉} ∩ (dom 𝑈 × V)) =
∅) |
| 88 | 73, 87 | eqtrid 2782 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ({〈dom 𝑈, 2o〉} ↾ dom 𝑈) = ∅) |
| 89 | 88 | uneq2d 4143 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑈 ↾ dom 𝑈) ∪ ({〈dom 𝑈, 2o〉} ↾ dom 𝑈)) = ((𝑈 ↾ dom 𝑈) ∪ ∅)) |
| 90 | | resundir 5981 |
. . . . . . . . . . 11
⊢ ((𝑈 ∪ {〈dom 𝑈, 2o〉}) ↾
dom 𝑈) = ((𝑈 ↾ dom 𝑈) ∪ ({〈dom 𝑈, 2o〉} ↾ dom 𝑈)) |
| 91 | | un0 4369 |
. . . . . . . . . . . 12
⊢ ((𝑈 ↾ dom 𝑈) ∪ ∅) = (𝑈 ↾ dom 𝑈) |
| 92 | 91 | eqcomi 2744 |
. . . . . . . . . . 11
⊢ (𝑈 ↾ dom 𝑈) = ((𝑈 ↾ dom 𝑈) ∪ ∅) |
| 93 | 89, 90, 92 | 3eqtr4g 2795 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {〈dom 𝑈, 2o〉}) ↾ dom 𝑈) = (𝑈 ↾ dom 𝑈)) |
| 94 | | nofun 27613 |
. . . . . . . . . . 11
⊢ (𝑈 ∈
No → Fun 𝑈) |
| 95 | | funrel 6553 |
. . . . . . . . . . 11
⊢ (Fun
𝑈 → Rel 𝑈) |
| 96 | | resdm 6013 |
. . . . . . . . . . 11
⊢ (Rel
𝑈 → (𝑈 ↾ dom 𝑈) = 𝑈) |
| 97 | 30, 94, 95, 96 | 4syl 19 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈 ↾ dom 𝑈) = 𝑈) |
| 98 | 93, 97 | eqtrd 2770 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {〈dom 𝑈, 2o〉}) ↾ dom 𝑈) = 𝑈) |
| 99 | | sssucid 6434 |
. . . . . . . . . 10
⊢ dom 𝑈 ⊆ suc dom 𝑈 |
| 100 | | resabs1 5993 |
. . . . . . . . . 10
⊢ (dom
𝑈 ⊆ suc dom 𝑈 → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) = (𝑍 ↾ dom 𝑈)) |
| 101 | 99, 100 | mp1i 13 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) = (𝑍 ↾ dom 𝑈)) |
| 102 | 72, 98, 101 | 3brtr4d 5151 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {〈dom 𝑈, 2o〉}) ↾ dom 𝑈) <s ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈)) |
| 103 | 74 | elexi 3482 |
. . . . . . . . . . . . 13
⊢
2o ∈ V |
| 104 | 103 | prid2 4739 |
. . . . . . . . . . . 12
⊢
2o ∈ {1o, 2o} |
| 105 | 104 | noextend 27630 |
. . . . . . . . . . 11
⊢ (𝑈 ∈
No → (𝑈 ∪
{〈dom 𝑈,
2o〉}) ∈ No
) |
| 106 | 8, 105 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → (𝑈 ∪ {〈dom 𝑈, 2o〉}) ∈ No ) |
| 107 | 106 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈 ∪ {〈dom 𝑈, 2o〉}) ∈ No ) |
| 108 | | onsucb 7811 |
. . . . . . . . . . . 12
⊢ (dom
𝑈 ∈ On ↔ suc dom
𝑈 ∈
On) |
| 109 | 27, 108 | sylib 218 |
. . . . . . . . . . 11
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → suc dom 𝑈 ∈ On) |
| 110 | | noreson 27624 |
. . . . . . . . . . 11
⊢ ((𝑍 ∈
No ∧ suc dom 𝑈
∈ On) → (𝑍
↾ suc dom 𝑈) ∈
No ) |
| 111 | 9, 109, 110 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → (𝑍 ↾ suc dom 𝑈) ∈ No
) |
| 112 | 111 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) ∈ No
) |
| 113 | | sltres 27626 |
. . . . . . . . 9
⊢ (((𝑈 ∪ {〈dom 𝑈, 2o〉}) ∈
No ∧ (𝑍 ↾ suc dom 𝑈) ∈ No
∧ dom 𝑈 ∈ On)
→ (((𝑈 ∪
{〈dom 𝑈,
2o〉}) ↾ dom 𝑈) <s ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) → (𝑈 ∪ {〈dom 𝑈, 2o〉}) <s (𝑍 ↾ suc dom 𝑈))) |
| 114 | 107, 112,
46, 113 | syl3anc 1373 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (((𝑈 ∪ {〈dom 𝑈, 2o〉}) ↾ dom 𝑈) <s ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) → (𝑈 ∪ {〈dom 𝑈, 2o〉}) <s (𝑍 ↾ suc dom 𝑈))) |
| 115 | 102, 114 | mpd 15 |
. . . . . . 7
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → (𝑈 ∪ {〈dom 𝑈, 2o〉}) <s (𝑍 ↾ suc dom 𝑈)) |
| 116 | | soasym 5594 |
. . . . . . . . 9
⊢ (( <s
Or No ∧ ((𝑈 ∪ {〈dom 𝑈, 2o〉}) ∈ No ∧ (𝑍 ↾ suc dom 𝑈) ∈ No ))
→ ((𝑈 ∪ {〈dom
𝑈, 2o〉})
<s (𝑍 ↾ suc dom
𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉}))) |
| 117 | 12, 116 | mpan 690 |
. . . . . . . 8
⊢ (((𝑈 ∪ {〈dom 𝑈, 2o〉}) ∈
No ∧ (𝑍 ↾ suc dom 𝑈) ∈ No )
→ ((𝑈 ∪ {〈dom
𝑈, 2o〉})
<s (𝑍 ↾ suc dom
𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉}))) |
| 118 | 107, 112,
117 | syl2anc 584 |
. . . . . . 7
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {〈dom 𝑈, 2o〉}) <s (𝑍 ↾ suc dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉}))) |
| 119 | 115, 118 | mpd 15 |
. . . . . 6
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉})) |
| 120 | | df-suc 6358 |
. . . . . . . . . 10
⊢ suc dom
𝑈 = (dom 𝑈 ∪ {dom 𝑈}) |
| 121 | 120 | reseq2i 5963 |
. . . . . . . . 9
⊢ (𝑍 ↾ suc dom 𝑈) = (𝑍 ↾ (dom 𝑈 ∪ {dom 𝑈})) |
| 122 | | resundi 5980 |
. . . . . . . . 9
⊢ (𝑍 ↾ (dom 𝑈 ∪ {dom 𝑈})) = ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈})) |
| 123 | 121, 122 | eqtri 2758 |
. . . . . . . 8
⊢ (𝑍 ↾ suc dom 𝑈) = ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈})) |
| 124 | | dmres 5999 |
. . . . . . . . . . 11
⊢ dom
(𝑍 ↾ dom 𝑈) = (dom 𝑈 ∩ dom 𝑍) |
| 125 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) |
| 126 | | necom 2985 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈‘𝑥) ≠ (𝑍‘𝑥) ↔ (𝑍‘𝑥) ≠ (𝑈‘𝑥)) |
| 127 | 126 | rabbii 3421 |
. . . . . . . . . . . . . . 15
⊢ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} |
| 128 | 127 | inteqi 4926 |
. . . . . . . . . . . . . 14
⊢ ∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = ∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} |
| 129 | 9 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑍 ∈ No
) |
| 130 | 8 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑈 ∈ No
) |
| 131 | 21 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑈 ≠ 𝑍) |
| 132 | 131 | necomd 2987 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑍 ≠ 𝑈) |
| 133 | | nosepssdm 27650 |
. . . . . . . . . . . . . . 15
⊢ ((𝑍 ∈
No ∧ 𝑈 ∈
No ∧ 𝑍 ≠ 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} ⊆ dom 𝑍) |
| 134 | 129, 130,
132, 133 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑍‘𝑥) ≠ (𝑈‘𝑥)} ⊆ dom 𝑍) |
| 135 | 128, 134 | eqsstrid 3997 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑍) |
| 136 | 125, 135 | eqsstrrd 3994 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → dom 𝑈 ⊆ dom 𝑍) |
| 137 | | dfss2 3944 |
. . . . . . . . . . . 12
⊢ (dom
𝑈 ⊆ dom 𝑍 ↔ (dom 𝑈 ∩ dom 𝑍) = dom 𝑈) |
| 138 | 136, 137 | sylib 218 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (dom 𝑈 ∩ dom 𝑍) = dom 𝑈) |
| 139 | 124, 138 | eqtrid 2782 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → dom (𝑍 ↾ dom 𝑈) = dom 𝑈) |
| 140 | 139 | eleq2d 2820 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑞 ∈ dom (𝑍 ↾ dom 𝑈) ↔ 𝑞 ∈ dom 𝑈)) |
| 141 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈) |
| 142 | 141 | fvresd 6896 |
. . . . . . . . . . . . . 14
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑍‘𝑞)) |
| 143 | 130, 26 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → dom 𝑈 ∈ On) |
| 144 | | onelon 6377 |
. . . . . . . . . . . . . . . . 17
⊢ ((dom
𝑈 ∈ On ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ On) |
| 145 | 143, 144 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ On) |
| 146 | 125 | eleq2d 2820 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ↔ 𝑞 ∈ dom 𝑈)) |
| 147 | 146 | biimpar 477 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) |
| 148 | 145, 147,
40 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞)) |
| 149 | | nesym 2988 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈‘𝑞) ≠ (𝑍‘𝑞) ↔ ¬ (𝑍‘𝑞) = (𝑈‘𝑞)) |
| 150 | 149 | con2bii 357 |
. . . . . . . . . . . . . . 15
⊢ ((𝑍‘𝑞) = (𝑈‘𝑞) ↔ ¬ (𝑈‘𝑞) ≠ (𝑍‘𝑞)) |
| 151 | 148, 150 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → (𝑍‘𝑞) = (𝑈‘𝑞)) |
| 152 | 142, 151 | eqtrd 2770 |
. . . . . . . . . . . . 13
⊢
((((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞)) |
| 153 | 152 | ex 412 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑞 ∈ dom 𝑈 → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞))) |
| 154 | 140, 153 | sylbid 240 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑞 ∈ dom (𝑍 ↾ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞))) |
| 155 | 154 | ralrimiv 3131 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞)) |
| 156 | | nofun 27613 |
. . . . . . . . . . . 12
⊢ (𝑍 ∈
No → Fun 𝑍) |
| 157 | | funres 6578 |
. . . . . . . . . . . 12
⊢ (Fun
𝑍 → Fun (𝑍 ↾ dom 𝑈)) |
| 158 | 129, 156,
157 | 3syl 18 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → Fun (𝑍 ↾ dom 𝑈)) |
| 159 | 130, 94 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → Fun 𝑈) |
| 160 | | eqfunfv 7026 |
. . . . . . . . . . 11
⊢ ((Fun
(𝑍 ↾ dom 𝑈) ∧ Fun 𝑈) → ((𝑍 ↾ dom 𝑈) = 𝑈 ↔ (dom (𝑍 ↾ dom 𝑈) = dom 𝑈 ∧ ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞)))) |
| 161 | 158, 159,
160 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ((𝑍 ↾ dom 𝑈) = 𝑈 ↔ (dom (𝑍 ↾ dom 𝑈) = dom 𝑈 ∧ ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈‘𝑞)))) |
| 162 | 139, 155,
161 | mpbir2and 713 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍 ↾ dom 𝑈) = 𝑈) |
| 163 | 129, 156 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → Fun 𝑍) |
| 164 | | funfn 6566 |
. . . . . . . . . . . 12
⊢ (Fun
𝑍 ↔ 𝑍 Fn dom 𝑍) |
| 165 | 163, 164 | sylib 218 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑍 Fn dom 𝑍) |
| 166 | | 1oex 8490 |
. . . . . . . . . . . . . . . . . . 19
⊢
1o ∈ V |
| 167 | 166 | prid1 4738 |
. . . . . . . . . . . . . . . . . 18
⊢
1o ∈ {1o, 2o} |
| 168 | 167 | nosgnn0i 27623 |
. . . . . . . . . . . . . . . . 17
⊢ ∅
≠ 1o |
| 169 | | ndmfv 6911 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
dom 𝑈 ∈ dom 𝑈 → (𝑈‘dom 𝑈) = ∅) |
| 170 | 130, 79, 80, 169 | 4syl 19 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑈‘dom 𝑈) = ∅) |
| 171 | 170 | neeq1d 2991 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ((𝑈‘dom 𝑈) ≠ 1o ↔ ∅ ≠
1o)) |
| 172 | 168, 171 | mpbiri 258 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑈‘dom 𝑈) ≠ 1o) |
| 173 | 172 | neneqd 2937 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ (𝑈‘dom 𝑈) = 1o) |
| 174 | 173 | intnanrd 489 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅)) |
| 175 | 173 | intnanrd 489 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o)) |
| 176 | | simplr 768 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 𝑈 <s 𝑍) |
| 177 | 130, 129,
55 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑈 <s 𝑍 ↔ (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}))) |
| 178 | 176, 177 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)})) |
| 179 | | fveq2 6876 |
. . . . . . . . . . . . . . . . 17
⊢ (∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈 → (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) = (𝑈‘dom 𝑈)) |
| 180 | 179 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑈‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) = (𝑈‘dom 𝑈)) |
| 181 | | fveq2 6876 |
. . . . . . . . . . . . . . . . 17
⊢ (∩ {𝑥
∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈 → (𝑍‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) = (𝑍‘dom 𝑈)) |
| 182 | 181 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍‘∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)}) = (𝑍‘dom 𝑈)) |
| 183 | 178, 180,
182 | 3brtr3d 5150 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑈‘dom 𝑈){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘dom 𝑈)) |
| 184 | | fvex 6889 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑈‘dom 𝑈) ∈ V |
| 185 | | fvex 6889 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑍‘dom 𝑈) ∈ V |
| 186 | 184, 185 | brtp 5498 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈‘dom 𝑈){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘dom 𝑈) ↔ (((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o))) |
| 187 | | 3orrot 1091 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o)) ↔ (((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅))) |
| 188 | | 3orrot 1091 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅)) ↔ (((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o))) |
| 189 | 186, 187,
188 | 3bitri 297 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈‘dom 𝑈){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑍‘dom 𝑈) ↔ (((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o))) |
| 190 | 183, 189 | sylib 218 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o))) |
| 191 | 174, 175,
190 | ecase23d 1475 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o)) |
| 192 | 191 | simprd 495 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍‘dom 𝑈) = 2o) |
| 193 | | ndmfv 6911 |
. . . . . . . . . . . . . 14
⊢ (¬
dom 𝑈 ∈ dom 𝑍 → (𝑍‘dom 𝑈) = ∅) |
| 194 | 104 | nosgnn0i 27623 |
. . . . . . . . . . . . . . . 16
⊢ ∅
≠ 2o |
| 195 | | neeq1 2994 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑍‘dom 𝑈) = ∅ → ((𝑍‘dom 𝑈) ≠ 2o ↔ ∅ ≠
2o)) |
| 196 | 194, 195 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢ ((𝑍‘dom 𝑈) = ∅ → (𝑍‘dom 𝑈) ≠ 2o) |
| 197 | 196 | neneqd 2937 |
. . . . . . . . . . . . . 14
⊢ ((𝑍‘dom 𝑈) = ∅ → ¬ (𝑍‘dom 𝑈) = 2o) |
| 198 | 193, 197 | syl 17 |
. . . . . . . . . . . . 13
⊢ (¬
dom 𝑈 ∈ dom 𝑍 → ¬ (𝑍‘dom 𝑈) = 2o) |
| 199 | 198 | con4i 114 |
. . . . . . . . . . . 12
⊢ ((𝑍‘dom 𝑈) = 2o → dom 𝑈 ∈ dom 𝑍) |
| 200 | 192, 199 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → dom 𝑈 ∈ dom 𝑍) |
| 201 | | fnressn 7148 |
. . . . . . . . . . 11
⊢ ((𝑍 Fn dom 𝑍 ∧ dom 𝑈 ∈ dom 𝑍) → (𝑍 ↾ {dom 𝑈}) = {〈dom 𝑈, (𝑍‘dom 𝑈)〉}) |
| 202 | 165, 200,
201 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍 ↾ {dom 𝑈}) = {〈dom 𝑈, (𝑍‘dom 𝑈)〉}) |
| 203 | 192 | opeq2d 4856 |
. . . . . . . . . . 11
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → 〈dom 𝑈, (𝑍‘dom 𝑈)〉 = 〈dom 𝑈, 2o〉) |
| 204 | 203 | sneqd 4613 |
. . . . . . . . . 10
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → {〈dom 𝑈, (𝑍‘dom 𝑈)〉} = {〈dom 𝑈, 2o〉}) |
| 205 | 202, 204 | eqtrd 2770 |
. . . . . . . . 9
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍 ↾ {dom 𝑈}) = {〈dom 𝑈, 2o〉}) |
| 206 | 162, 205 | uneq12d 4144 |
. . . . . . . 8
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈})) = (𝑈 ∪ {〈dom 𝑈, 2o〉})) |
| 207 | 123, 206 | eqtrid 2782 |
. . . . . . 7
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → (𝑍 ↾ suc dom 𝑈) = (𝑈 ∪ {〈dom 𝑈, 2o〉})) |
| 208 | | sonr 5585 |
. . . . . . . . 9
⊢ (( <s
Or No ∧ (𝑈 ∪ {〈dom 𝑈, 2o〉}) ∈ No ) → ¬ (𝑈 ∪ {〈dom 𝑈, 2o〉}) <s (𝑈 ∪ {〈dom 𝑈,
2o〉})) |
| 209 | 12, 208 | mpan 690 |
. . . . . . . 8
⊢ ((𝑈 ∪ {〈dom 𝑈, 2o〉}) ∈
No → ¬ (𝑈 ∪ {〈dom 𝑈, 2o〉}) <s (𝑈 ∪ {〈dom 𝑈,
2o〉})) |
| 210 | 130, 105,
209 | 3syl 18 |
. . . . . . 7
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ (𝑈 ∪ {〈dom 𝑈, 2o〉}) <s (𝑈 ∪ {〈dom 𝑈,
2o〉})) |
| 211 | 207, 210 | eqnbrtrd 5137 |
. . . . . 6
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉})) |
| 212 | 119, 211 | jaodan 959 |
. . . . 5
⊢
(((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ (∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈 ∨ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈)) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉})) |
| 213 | 212 | ex 412 |
. . . 4
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ((∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ∈ dom 𝑈 ∨ ∩ {𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} = dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉}))) |
| 214 | 29, 213 | sylbid 240 |
. . 3
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → (∩
{𝑥 ∈ On ∣ (𝑈‘𝑥) ≠ (𝑍‘𝑥)} ⊆ dom 𝑈 → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉}))) |
| 215 | 23, 214 | mpd 15 |
. 2
⊢ ((((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉})) |
| 216 | 5, 215 | mpdan 687 |
1
⊢ (((𝑈 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V ∧
𝑍 ∈ No ) ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {〈dom 𝑈, 2o〉})) |