Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosupbnd2lem1 Structured version   Visualization version   GIF version

Theorem nosupbnd2lem1 33275
Description: Bounding law from above when a set of surreals has a maximum. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nosupbnd2lem1 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
Distinct variable groups:   𝐴,𝑎   𝑈,𝑎   𝑍,𝑎
Allowed substitution hints:   𝐴(𝑦)   𝑈(𝑦)   𝑍(𝑦)

Proof of Theorem nosupbnd2lem1
Dummy variables 𝑞 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1l 1194 . . 3 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → 𝑈𝐴)
2 simp3 1135 . . 3 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ∀𝑎𝐴 𝑎 <s 𝑍)
3 breq1 5055 . . . 4 (𝑎 = 𝑈 → (𝑎 <s 𝑍𝑈 <s 𝑍))
43rspcv 3604 . . 3 (𝑈𝐴 → (∀𝑎𝐴 𝑎 <s 𝑍𝑈 <s 𝑍))
51, 2, 4sylc 65 . 2 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → 𝑈 <s 𝑍)
6 simpl21 1248 . . . . 5 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝐴 No )
7 simpl1l 1221 . . . . 5 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑈𝐴)
86, 7sseldd 3954 . . . 4 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑈 No )
9 simpl23 1250 . . . 4 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑍 No )
10 simp21 1203 . . . . . . . . . 10 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → 𝐴 No )
1110, 1sseldd 3954 . . . . . . . . 9 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → 𝑈 No )
12 sltso 33241 . . . . . . . . . 10 <s Or No
13 sonr 5483 . . . . . . . . . 10 (( <s Or No 𝑈 No ) → ¬ 𝑈 <s 𝑈)
1412, 13mpan 689 . . . . . . . . 9 (𝑈 No → ¬ 𝑈 <s 𝑈)
1511, 14syl 17 . . . . . . . 8 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ 𝑈 <s 𝑈)
16 breq2 5056 . . . . . . . . 9 (𝑈 = 𝑍 → (𝑈 <s 𝑈𝑈 <s 𝑍))
1716notbid 321 . . . . . . . 8 (𝑈 = 𝑍 → (¬ 𝑈 <s 𝑈 ↔ ¬ 𝑈 <s 𝑍))
1815, 17syl5ibcom 248 . . . . . . 7 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → (𝑈 = 𝑍 → ¬ 𝑈 <s 𝑍))
1918con2d 136 . . . . . 6 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → (𝑈 <s 𝑍 → ¬ 𝑈 = 𝑍))
2019imp 410 . . . . 5 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ¬ 𝑈 = 𝑍)
2120neqned 3021 . . . 4 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → 𝑈𝑍)
22 nosepssdm 33250 . . . 4 ((𝑈 No 𝑍 No 𝑈𝑍) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈)
238, 9, 21, 22syl3anc 1368 . . 3 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈)
24 nosepon 33232 . . . . . 6 ((𝑈 No 𝑍 No 𝑈𝑍) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On)
258, 9, 21, 24syl3anc 1368 . . . . 5 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On)
26 nodmon 33217 . . . . . 6 (𝑈 No → dom 𝑈 ∈ On)
278, 26syl 17 . . . . 5 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → dom 𝑈 ∈ On)
28 onsseleq 6219 . . . . 5 (( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On ∧ dom 𝑈 ∈ On) → ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈 ↔ ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈)))
2925, 27, 28syl2anc 587 . . . 4 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈 ↔ ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈)))
308adantr 484 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑈 No )
319adantr 484 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑍 No )
3221adantr 484 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑈𝑍)
3330, 31, 32, 24syl3anc 1368 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On)
34 onelon 6203 . . . . . . . . . . . . . . . 16 (( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 ∈ On)
3533, 34sylan 583 . . . . . . . . . . . . . . 15 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 ∈ On)
36 simpr 488 . . . . . . . . . . . . . . 15 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})
37 fveq2 6661 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑞 → (𝑈𝑥) = (𝑈𝑞))
38 fveq2 6661 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑞 → (𝑍𝑥) = (𝑍𝑞))
3937, 38neeq12d 3075 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑞 → ((𝑈𝑥) ≠ (𝑍𝑥) ↔ (𝑈𝑞) ≠ (𝑍𝑞)))
4039onnminsb 7513 . . . . . . . . . . . . . . 15 (𝑞 ∈ On → (𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → ¬ (𝑈𝑞) ≠ (𝑍𝑞)))
4135, 36, 40sylc 65 . . . . . . . . . . . . . 14 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → ¬ (𝑈𝑞) ≠ (𝑍𝑞))
42 df-ne 3015 . . . . . . . . . . . . . . 15 ((𝑈𝑞) ≠ (𝑍𝑞) ↔ ¬ (𝑈𝑞) = (𝑍𝑞))
4342con2bii 361 . . . . . . . . . . . . . 14 ((𝑈𝑞) = (𝑍𝑞) ↔ ¬ (𝑈𝑞) ≠ (𝑍𝑞))
4441, 43sylibr 237 . . . . . . . . . . . . 13 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → (𝑈𝑞) = (𝑍𝑞))
45 simplr 768 . . . . . . . . . . . . . . 15 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈)
4627adantr 484 . . . . . . . . . . . . . . . . 17 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → dom 𝑈 ∈ On)
4746adantr 484 . . . . . . . . . . . . . . . 16 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → dom 𝑈 ∈ On)
48 ontr1 6224 . . . . . . . . . . . . . . . 16 (dom 𝑈 ∈ On → ((𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈))
4947, 48syl 17 . . . . . . . . . . . . . . 15 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → ((𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈))
5036, 45, 49mp2and 698 . . . . . . . . . . . . . 14 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → 𝑞 ∈ dom 𝑈)
5150fvresd 6681 . . . . . . . . . . . . 13 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑍𝑞))
5244, 51eqtr4d 2862 . . . . . . . . . . . 12 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) ∧ 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) → (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞))
5352ralrimiva 3177 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞))
54 simplr 768 . . . . . . . . . . . . 13 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑈 <s 𝑍)
55 sltval2 33223 . . . . . . . . . . . . . 14 ((𝑈 No 𝑍 No ) → (𝑈 <s 𝑍 ↔ (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})))
5630, 31, 55syl2anc 587 . . . . . . . . . . . . 13 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 <s 𝑍 ↔ (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})))
5754, 56mpbid 235 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
58 simpr 488 . . . . . . . . . . . . 13 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈)
5958fvresd 6681 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
6057, 59breqtrrd 5080 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
61 raleq 3396 . . . . . . . . . . . . 13 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → (∀𝑞𝑝 (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ↔ ∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞)))
62 fveq2 6661 . . . . . . . . . . . . . 14 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → (𝑈𝑝) = (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
63 fveq2 6661 . . . . . . . . . . . . . 14 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → ((𝑍 ↾ dom 𝑈)‘𝑝) = ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
6462, 63breq12d 5065 . . . . . . . . . . . . 13 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → ((𝑈𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘𝑝) ↔ (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})))
6561, 64anbi12d 633 . . . . . . . . . . . 12 (𝑝 = {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} → ((∀𝑞𝑝 (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘𝑝)) ↔ (∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))))
6665rspcev 3609 . . . . . . . . . . 11 (( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ On ∧ (∀𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))) → ∃𝑝 ∈ On (∀𝑞𝑝 (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘𝑝)))
6733, 53, 60, 66syl12anc 835 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ∃𝑝 ∈ On (∀𝑞𝑝 (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘𝑝)))
68 noreson 33227 . . . . . . . . . . . 12 ((𝑍 No ∧ dom 𝑈 ∈ On) → (𝑍 ↾ dom 𝑈) ∈ No )
6931, 46, 68syl2anc 587 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 ↾ dom 𝑈) ∈ No )
70 sltval 33214 . . . . . . . . . . 11 ((𝑈 No ∧ (𝑍 ↾ dom 𝑈) ∈ No ) → (𝑈 <s (𝑍 ↾ dom 𝑈) ↔ ∃𝑝 ∈ On (∀𝑞𝑝 (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘𝑝))))
7130, 69, 70syl2anc 587 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 <s (𝑍 ↾ dom 𝑈) ↔ ∃𝑝 ∈ On (∀𝑞𝑝 (𝑈𝑞) = ((𝑍 ↾ dom 𝑈)‘𝑞) ∧ (𝑈𝑝){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝑍 ↾ dom 𝑈)‘𝑝))))
7267, 71mpbird 260 . . . . . . . . 9 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → 𝑈 <s (𝑍 ↾ dom 𝑈))
73 df-res 5554 . . . . . . . . . . . . 13 ({⟨dom 𝑈, 2o⟩} ↾ dom 𝑈) = ({⟨dom 𝑈, 2o⟩} ∩ (dom 𝑈 × V))
74 2on 8107 . . . . . . . . . . . . . . . 16 2o ∈ On
75 xpsng 6892 . . . . . . . . . . . . . . . 16 ((dom 𝑈 ∈ On ∧ 2o ∈ On) → ({dom 𝑈} × {2o}) = {⟨dom 𝑈, 2o⟩})
7646, 74, 75sylancl 589 . . . . . . . . . . . . . . 15 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ({dom 𝑈} × {2o}) = {⟨dom 𝑈, 2o⟩})
7776ineq1d 4173 . . . . . . . . . . . . . 14 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (({dom 𝑈} × {2o}) ∩ (dom 𝑈 × V)) = ({⟨dom 𝑈, 2o⟩} ∩ (dom 𝑈 × V)))
78 incom 4163 . . . . . . . . . . . . . . . 16 ({dom 𝑈} ∩ dom 𝑈) = (dom 𝑈 ∩ {dom 𝑈})
79 nodmord 33220 . . . . . . . . . . . . . . . . . 18 (𝑈 No → Ord dom 𝑈)
80 ordirr 6196 . . . . . . . . . . . . . . . . . 18 (Ord dom 𝑈 → ¬ dom 𝑈 ∈ dom 𝑈)
8130, 79, 803syl 18 . . . . . . . . . . . . . . . . 17 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ¬ dom 𝑈 ∈ dom 𝑈)
82 disjsn 4632 . . . . . . . . . . . . . . . . 17 ((dom 𝑈 ∩ {dom 𝑈}) = ∅ ↔ ¬ dom 𝑈 ∈ dom 𝑈)
8381, 82sylibr 237 . . . . . . . . . . . . . . . 16 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (dom 𝑈 ∩ {dom 𝑈}) = ∅)
8478, 83syl5eq 2871 . . . . . . . . . . . . . . 15 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ({dom 𝑈} ∩ dom 𝑈) = ∅)
85 xpdisj1 6005 . . . . . . . . . . . . . . 15 (({dom 𝑈} ∩ dom 𝑈) = ∅ → (({dom 𝑈} × {2o}) ∩ (dom 𝑈 × V)) = ∅)
8684, 85syl 17 . . . . . . . . . . . . . 14 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (({dom 𝑈} × {2o}) ∩ (dom 𝑈 × V)) = ∅)
8777, 86eqtr3d 2861 . . . . . . . . . . . . 13 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ({⟨dom 𝑈, 2o⟩} ∩ (dom 𝑈 × V)) = ∅)
8873, 87syl5eq 2871 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ({⟨dom 𝑈, 2o⟩} ↾ dom 𝑈) = ∅)
8988uneq2d 4125 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ↾ dom 𝑈) ∪ ({⟨dom 𝑈, 2o⟩} ↾ dom 𝑈)) = ((𝑈 ↾ dom 𝑈) ∪ ∅))
90 resundir 5855 . . . . . . . . . . 11 ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ↾ dom 𝑈) = ((𝑈 ↾ dom 𝑈) ∪ ({⟨dom 𝑈, 2o⟩} ↾ dom 𝑈))
91 un0 4327 . . . . . . . . . . . 12 ((𝑈 ↾ dom 𝑈) ∪ ∅) = (𝑈 ↾ dom 𝑈)
9291eqcomi 2833 . . . . . . . . . . 11 (𝑈 ↾ dom 𝑈) = ((𝑈 ↾ dom 𝑈) ∪ ∅)
9389, 90, 923eqtr4g 2884 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ↾ dom 𝑈) = (𝑈 ↾ dom 𝑈))
94 nofun 33216 . . . . . . . . . . . 12 (𝑈 No → Fun 𝑈)
9530, 94syl 17 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → Fun 𝑈)
96 funrel 6360 . . . . . . . . . . 11 (Fun 𝑈 → Rel 𝑈)
97 resdm 5884 . . . . . . . . . . 11 (Rel 𝑈 → (𝑈 ↾ dom 𝑈) = 𝑈)
9895, 96, 973syl 18 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 ↾ dom 𝑈) = 𝑈)
9993, 98eqtrd 2859 . . . . . . . . 9 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ↾ dom 𝑈) = 𝑈)
100 sssucid 6255 . . . . . . . . . 10 dom 𝑈 ⊆ suc dom 𝑈
101 resabs1 5870 . . . . . . . . . 10 (dom 𝑈 ⊆ suc dom 𝑈 → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) = (𝑍 ↾ dom 𝑈))
102100, 101mp1i 13 . . . . . . . . 9 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) = (𝑍 ↾ dom 𝑈))
10372, 99, 1023brtr4d 5084 . . . . . . . 8 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ↾ dom 𝑈) <s ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈))
10474elexi 3499 . . . . . . . . . . . . 13 2o ∈ V
105104prid2 4684 . . . . . . . . . . . 12 2o ∈ {1o, 2o}
106105noextend 33233 . . . . . . . . . . 11 (𝑈 No → (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No )
1078, 106syl 17 . . . . . . . . . 10 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No )
108107adantr 484 . . . . . . . . 9 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No )
109 sucelon 7526 . . . . . . . . . . . 12 (dom 𝑈 ∈ On ↔ suc dom 𝑈 ∈ On)
11027, 109sylib 221 . . . . . . . . . . 11 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → suc dom 𝑈 ∈ On)
111 noreson 33227 . . . . . . . . . . 11 ((𝑍 No ∧ suc dom 𝑈 ∈ On) → (𝑍 ↾ suc dom 𝑈) ∈ No )
1129, 110, 111syl2anc 587 . . . . . . . . . 10 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → (𝑍 ↾ suc dom 𝑈) ∈ No )
113112adantr 484 . . . . . . . . 9 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑍 ↾ suc dom 𝑈) ∈ No )
114 sltres 33229 . . . . . . . . 9 (((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No ∧ (𝑍 ↾ suc dom 𝑈) ∈ No ∧ dom 𝑈 ∈ On) → (((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ↾ dom 𝑈) <s ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) → (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑍 ↾ suc dom 𝑈)))
115108, 113, 46, 114syl3anc 1368 . . . . . . . 8 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ↾ dom 𝑈) <s ((𝑍 ↾ suc dom 𝑈) ↾ dom 𝑈) → (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑍 ↾ suc dom 𝑈)))
116103, 115mpd 15 . . . . . . 7 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑍 ↾ suc dom 𝑈))
117 soasym 5491 . . . . . . . . 9 (( <s Or No ∧ ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No ∧ (𝑍 ↾ suc dom 𝑈) ∈ No )) → ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑍 ↾ suc dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩})))
11812, 117mpan 689 . . . . . . . 8 (((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No ∧ (𝑍 ↾ suc dom 𝑈) ∈ No ) → ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑍 ↾ suc dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩})))
119108, 113, 118syl2anc 587 . . . . . . 7 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑍 ↾ suc dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩})))
120116, 119mpd 15 . . . . . 6 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
121 df-suc 6184 . . . . . . . . . 10 suc dom 𝑈 = (dom 𝑈 ∪ {dom 𝑈})
122121reseq2i 5837 . . . . . . . . 9 (𝑍 ↾ suc dom 𝑈) = (𝑍 ↾ (dom 𝑈 ∪ {dom 𝑈}))
123 resundi 5854 . . . . . . . . 9 (𝑍 ↾ (dom 𝑈 ∪ {dom 𝑈})) = ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈}))
124122, 123eqtri 2847 . . . . . . . 8 (𝑍 ↾ suc dom 𝑈) = ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈}))
125 dmres 5862 . . . . . . . . . . 11 dom (𝑍 ↾ dom 𝑈) = (dom 𝑈 ∩ dom 𝑍)
126 simpr 488 . . . . . . . . . . . . 13 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈)
127 necom 3067 . . . . . . . . . . . . . . . 16 ((𝑈𝑥) ≠ (𝑍𝑥) ↔ (𝑍𝑥) ≠ (𝑈𝑥))
128127rabbii 3458 . . . . . . . . . . . . . . 15 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}
129128inteqi 4866 . . . . . . . . . . . . . 14 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)}
1309adantr 484 . . . . . . . . . . . . . . 15 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑍 No )
1318adantr 484 . . . . . . . . . . . . . . 15 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑈 No )
13221adantr 484 . . . . . . . . . . . . . . . 16 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑈𝑍)
133132necomd 3069 . . . . . . . . . . . . . . 15 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑍𝑈)
134 nosepssdm 33250 . . . . . . . . . . . . . . 15 ((𝑍 No 𝑈 No 𝑍𝑈) → {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)} ⊆ dom 𝑍)
135130, 131, 133, 134syl3anc 1368 . . . . . . . . . . . . . 14 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {𝑥 ∈ On ∣ (𝑍𝑥) ≠ (𝑈𝑥)} ⊆ dom 𝑍)
136129, 135eqsstrid 4001 . . . . . . . . . . . . 13 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑍)
137126, 136eqsstrrd 3992 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom 𝑈 ⊆ dom 𝑍)
138 df-ss 3936 . . . . . . . . . . . 12 (dom 𝑈 ⊆ dom 𝑍 ↔ (dom 𝑈 ∩ dom 𝑍) = dom 𝑈)
139137, 138sylib 221 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (dom 𝑈 ∩ dom 𝑍) = dom 𝑈)
140125, 139syl5eq 2871 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom (𝑍 ↾ dom 𝑈) = dom 𝑈)
141140eleq2d 2901 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 ∈ dom (𝑍 ↾ dom 𝑈) ↔ 𝑞 ∈ dom 𝑈))
142 simpr 488 . . . . . . . . . . . . . . 15 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ dom 𝑈)
143142fvresd 6681 . . . . . . . . . . . . . 14 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑍𝑞))
144131, 26syl 17 . . . . . . . . . . . . . . . . 17 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom 𝑈 ∈ On)
145 onelon 6203 . . . . . . . . . . . . . . . . 17 ((dom 𝑈 ∈ On ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ On)
146144, 145sylan 583 . . . . . . . . . . . . . . . 16 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 ∈ On)
147126eleq2d 2901 . . . . . . . . . . . . . . . . 17 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ↔ 𝑞 ∈ dom 𝑈))
148147biimpar 481 . . . . . . . . . . . . . . . 16 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → 𝑞 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})
149146, 148, 40sylc 65 . . . . . . . . . . . . . . 15 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ¬ (𝑈𝑞) ≠ (𝑍𝑞))
150 nesym 3070 . . . . . . . . . . . . . . . 16 ((𝑈𝑞) ≠ (𝑍𝑞) ↔ ¬ (𝑍𝑞) = (𝑈𝑞))
151150con2bii 361 . . . . . . . . . . . . . . 15 ((𝑍𝑞) = (𝑈𝑞) ↔ ¬ (𝑈𝑞) ≠ (𝑍𝑞))
152149, 151sylibr 237 . . . . . . . . . . . . . 14 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → (𝑍𝑞) = (𝑈𝑞))
153143, 152eqtrd 2859 . . . . . . . . . . . . 13 ((((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) ∧ 𝑞 ∈ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))
154153ex 416 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 ∈ dom 𝑈 → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞)))
155141, 154sylbid 243 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑞 ∈ dom (𝑍 ↾ dom 𝑈) → ((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞)))
156155ralrimiv 3176 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))
157 nofun 33216 . . . . . . . . . . . 12 (𝑍 No → Fun 𝑍)
158 funres 6385 . . . . . . . . . . . 12 (Fun 𝑍 → Fun (𝑍 ↾ dom 𝑈))
159130, 157, 1583syl 18 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Fun (𝑍 ↾ dom 𝑈))
160131, 94syl 17 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Fun 𝑈)
161 eqfunfv 6798 . . . . . . . . . . 11 ((Fun (𝑍 ↾ dom 𝑈) ∧ Fun 𝑈) → ((𝑍 ↾ dom 𝑈) = 𝑈 ↔ (dom (𝑍 ↾ dom 𝑈) = dom 𝑈 ∧ ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))))
162159, 160, 161syl2anc 587 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑍 ↾ dom 𝑈) = 𝑈 ↔ (dom (𝑍 ↾ dom 𝑈) = dom 𝑈 ∧ ∀𝑞 ∈ dom (𝑍 ↾ dom 𝑈)((𝑍 ↾ dom 𝑈)‘𝑞) = (𝑈𝑞))))
163140, 156, 162mpbir2and 712 . . . . . . . . 9 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ dom 𝑈) = 𝑈)
164130, 157syl 17 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Fun 𝑍)
165 funfn 6373 . . . . . . . . . . . 12 (Fun 𝑍𝑍 Fn dom 𝑍)
166164, 165sylib 221 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑍 Fn dom 𝑍)
167 1oex 8106 . . . . . . . . . . . . . . . . . . 19 1o ∈ V
168167prid1 4683 . . . . . . . . . . . . . . . . . 18 1o ∈ {1o, 2o}
169168nosgnn0i 33226 . . . . . . . . . . . . . . . . 17 ∅ ≠ 1o
170131, 79syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → Ord dom 𝑈)
171 ndmfv 6691 . . . . . . . . . . . . . . . . . . 19 (¬ dom 𝑈 ∈ dom 𝑈 → (𝑈‘dom 𝑈) = ∅)
172170, 80, 1713syl 18 . . . . . . . . . . . . . . . . . 18 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑈‘dom 𝑈) = ∅)
173172neeq1d 3073 . . . . . . . . . . . . . . . . 17 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑈‘dom 𝑈) ≠ 1o ↔ ∅ ≠ 1o))
174169, 173mpbiri 261 . . . . . . . . . . . . . . . 16 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑈‘dom 𝑈) ≠ 1o)
175174neneqd 3019 . . . . . . . . . . . . . . 15 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ (𝑈‘dom 𝑈) = 1o)
176175intnanrd 493 . . . . . . . . . . . . . 14 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅))
177175intnanrd 493 . . . . . . . . . . . . . 14 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o))
178 simplr 768 . . . . . . . . . . . . . . . . 17 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → 𝑈 <s 𝑍)
179131, 130, 55syl2anc 587 . . . . . . . . . . . . . . . . 17 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑈 <s 𝑍 ↔ (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)})))
180178, 179mpbid 235 . . . . . . . . . . . . . . . 16 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}))
181 fveq2 6661 . . . . . . . . . . . . . . . . 17 ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈 → (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑈‘dom 𝑈))
182181adantl 485 . . . . . . . . . . . . . . . 16 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑈‘dom 𝑈))
183 fveq2 6661 . . . . . . . . . . . . . . . . 17 ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈 → (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑍‘dom 𝑈))
184183adantl 485 . . . . . . . . . . . . . . . 16 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)}) = (𝑍‘dom 𝑈))
185180, 182, 1843brtr3d 5083 . . . . . . . . . . . . . . 15 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑈‘dom 𝑈){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍‘dom 𝑈))
186 fvex 6674 . . . . . . . . . . . . . . . . 17 (𝑈‘dom 𝑈) ∈ V
187 fvex 6674 . . . . . . . . . . . . . . . . 17 (𝑍‘dom 𝑈) ∈ V
188186, 187brtp 33045 . . . . . . . . . . . . . . . 16 ((𝑈‘dom 𝑈){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍‘dom 𝑈) ↔ (((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o)))
189 3orrot 1089 . . . . . . . . . . . . . . . 16 ((((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o)) ↔ (((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅)))
190 3orrot 1089 . . . . . . . . . . . . . . . 16 ((((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅)) ↔ (((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o)))
191188, 189, 1903bitri 300 . . . . . . . . . . . . . . 15 ((𝑈‘dom 𝑈){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑍‘dom 𝑈) ↔ (((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o)))
192185, 191sylib 221 . . . . . . . . . . . . . 14 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = ∅) ∨ ((𝑈‘dom 𝑈) = 1o ∧ (𝑍‘dom 𝑈) = 2o)))
193176, 177, 192ecase23d 1470 . . . . . . . . . . . . 13 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑈‘dom 𝑈) = ∅ ∧ (𝑍‘dom 𝑈) = 2o))
194193simprd 499 . . . . . . . . . . . 12 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍‘dom 𝑈) = 2o)
195 ndmfv 6691 . . . . . . . . . . . . . 14 (¬ dom 𝑈 ∈ dom 𝑍 → (𝑍‘dom 𝑈) = ∅)
196105nosgnn0i 33226 . . . . . . . . . . . . . . . 16 ∅ ≠ 2o
197 neeq1 3076 . . . . . . . . . . . . . . . 16 ((𝑍‘dom 𝑈) = ∅ → ((𝑍‘dom 𝑈) ≠ 2o ↔ ∅ ≠ 2o))
198196, 197mpbiri 261 . . . . . . . . . . . . . . 15 ((𝑍‘dom 𝑈) = ∅ → (𝑍‘dom 𝑈) ≠ 2o)
199198neneqd 3019 . . . . . . . . . . . . . 14 ((𝑍‘dom 𝑈) = ∅ → ¬ (𝑍‘dom 𝑈) = 2o)
200195, 199syl 17 . . . . . . . . . . . . 13 (¬ dom 𝑈 ∈ dom 𝑍 → ¬ (𝑍‘dom 𝑈) = 2o)
201200con4i 114 . . . . . . . . . . . 12 ((𝑍‘dom 𝑈) = 2o → dom 𝑈 ∈ dom 𝑍)
202194, 201syl 17 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → dom 𝑈 ∈ dom 𝑍)
203 fnressn 6911 . . . . . . . . . . 11 ((𝑍 Fn dom 𝑍 ∧ dom 𝑈 ∈ dom 𝑍) → (𝑍 ↾ {dom 𝑈}) = {⟨dom 𝑈, (𝑍‘dom 𝑈)⟩})
204166, 202, 203syl2anc 587 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ {dom 𝑈}) = {⟨dom 𝑈, (𝑍‘dom 𝑈)⟩})
205194opeq2d 4796 . . . . . . . . . . 11 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ⟨dom 𝑈, (𝑍‘dom 𝑈)⟩ = ⟨dom 𝑈, 2o⟩)
206205sneqd 4562 . . . . . . . . . 10 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → {⟨dom 𝑈, (𝑍‘dom 𝑈)⟩} = {⟨dom 𝑈, 2o⟩})
207204, 206eqtrd 2859 . . . . . . . . 9 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ {dom 𝑈}) = {⟨dom 𝑈, 2o⟩})
208163, 207uneq12d 4126 . . . . . . . 8 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ((𝑍 ↾ dom 𝑈) ∪ (𝑍 ↾ {dom 𝑈})) = (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
209124, 208syl5eq 2871 . . . . . . 7 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → (𝑍 ↾ suc dom 𝑈) = (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
210 sonr 5483 . . . . . . . . 9 (( <s Or No ∧ (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No ) → ¬ (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
21112, 210mpan 689 . . . . . . . 8 ((𝑈 ∪ {⟨dom 𝑈, 2o⟩}) ∈ No → ¬ (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
212131, 106, 2113syl 18 . . . . . . 7 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ (𝑈 ∪ {⟨dom 𝑈, 2o⟩}) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
213209, 212eqnbrtrd 5070 . . . . . 6 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
214120, 213jaodan 955 . . . . 5 (((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) ∧ ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈)) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
215214ex 416 . . . 4 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → (( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ∈ dom 𝑈 {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} = dom 𝑈) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩})))
21629, 215sylbid 243 . . 3 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ( {𝑥 ∈ On ∣ (𝑈𝑥) ≠ (𝑍𝑥)} ⊆ dom 𝑈 → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩})))
21723, 216mpd 15 . 2 ((((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) ∧ 𝑈 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
2185, 217mpdan 686 1 (((𝑈𝐴 ∧ ∀𝑦𝐴 ¬ 𝑈 <s 𝑦) ∧ (𝐴 No 𝐴 ∈ V ∧ 𝑍 No ) ∧ ∀𝑎𝐴 𝑎 <s 𝑍) → ¬ (𝑍 ↾ suc dom 𝑈) <s (𝑈 ∪ {⟨dom 𝑈, 2o⟩}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  {crab 3137  Vcvv 3480  cun 3917  cin 3918  wss 3919  c0 4276  {csn 4550  {ctp 4554  cop 4556   cint 4862   class class class wbr 5052   Or wor 5460   × cxp 5540  dom cdm 5542  cres 5544  Rel wrel 5547  Ord word 6177  Oncon0 6178  suc csuc 6180  Fun wfun 6337   Fn wfn 6338  cfv 6343  1oc1o 8091  2oc2o 8092   No csur 33207   <s cslt 33208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-ord 6181  df-on 6182  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-1o 8098  df-2o 8099  df-no 33210  df-slt 33211
This theorem is referenced by:  nosupbnd2  33276
  Copyright terms: Public domain W3C validator