| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elex2VD | Structured version Visualization version GIF version | ||
| Description: Virtual deduction proof of elex2 2812. (Contributed by Alan Sare, 25-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elex2VD | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44566 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
| 2 | idn2 44605 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 = 𝐴 ▶ 𝑥 = 𝐴 ) | |
| 3 | eleq1a 2830 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
| 4 | 1, 2, 3 | e12 44715 | . . . . 5 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 = 𝐴 ▶ 𝑥 ∈ 𝐵 ) |
| 5 | 4 | in2 44597 | . . . 4 ⊢ ( 𝐴 ∈ 𝐵 ▶ (𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ) |
| 6 | 5 | gen11 44608 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ) |
| 7 | elisset 2817 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
| 8 | 1, 7 | e1a 44619 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 ▶ ∃𝑥 𝑥 = 𝐴 ) |
| 9 | exim 1834 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥 𝑥 ∈ 𝐵)) | |
| 10 | 6, 8, 9 | e11 44680 | . 2 ⊢ ( 𝐴 ∈ 𝐵 ▶ ∃𝑥 𝑥 ∈ 𝐵 ) |
| 11 | 10 | in1 44563 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-vd1 44562 df-vd2 44570 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |