![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elex2VD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of elex2 2821. (Contributed by Alan Sare, 25-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elex2VD | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 44545 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
2 | idn2 44584 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 = 𝐴 ▶ 𝑥 = 𝐴 ) | |
3 | eleq1a 2839 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
4 | 1, 2, 3 | e12 44695 | . . . . 5 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 = 𝐴 ▶ 𝑥 ∈ 𝐵 ) |
5 | 4 | in2 44576 | . . . 4 ⊢ ( 𝐴 ∈ 𝐵 ▶ (𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ) |
6 | 5 | gen11 44587 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ) |
7 | elisset 2826 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
8 | 1, 7 | e1a 44598 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 ▶ ∃𝑥 𝑥 = 𝐴 ) |
9 | exim 1832 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥 𝑥 ∈ 𝐵)) | |
10 | 6, 8, 9 | e11 44659 | . 2 ⊢ ( 𝐴 ∈ 𝐵 ▶ ∃𝑥 𝑥 ∈ 𝐵 ) |
11 | 10 | in1 44542 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-vd1 44541 df-vd2 44549 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |