Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunALTV5 | Structured version Visualization version GIF version |
Description: Alternate definition of the function relation predicate, cf. dfdisjALTV5 37035. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
dffunALTV5 | ⊢ ( FunALTV 𝐹 ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ Rel 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffunALTV2 37006 | . 2 ⊢ ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹)) | |
2 | cossssid5 36789 | . . 3 ⊢ ( ≀ 𝐹 ⊆ I ↔ ∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅)) | |
3 | 2 | anbi1i 624 | . 2 ⊢ (( ≀ 𝐹 ⊆ I ∧ Rel 𝐹) ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ Rel 𝐹)) |
4 | 1, 3 | bitri 274 | 1 ⊢ ( FunALTV 𝐹 ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ Rel 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1540 ∀wral 3061 ∩ cin 3897 ⊆ wss 3898 ∅c0 4270 I cid 5518 ◡ccnv 5620 ran crn 5622 Rel wrel 5626 [cec 8568 ≀ ccoss 36489 FunALTV wfunALTV 36520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rmo 3349 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-br 5094 df-opab 5156 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ec 8572 df-coss 36729 df-cnvrefrel 36845 df-funALTV 37000 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |