| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunALTV5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the function relation predicate, cf. dfdisjALTV5 38705. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| Ref | Expression |
|---|---|
| dffunALTV5 | ⊢ ( FunALTV 𝐹 ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ Rel 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffunALTV2 38676 | . 2 ⊢ ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹)) | |
| 2 | cossssid5 38458 | . . 3 ⊢ ( ≀ 𝐹 ⊆ I ↔ ∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅)) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ (( ≀ 𝐹 ⊆ I ∧ Rel 𝐹) ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ Rel 𝐹)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ ( FunALTV 𝐹 ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ Rel 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∀wral 3044 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 I cid 5513 ◡ccnv 5618 ran crn 5620 Rel wrel 5624 [cec 8623 ≀ ccoss 38165 FunALTV wfunALTV 38196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rmo 3343 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8627 df-coss 38398 df-cnvrefrel 38514 df-funALTV 38670 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |