Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffunALTV5 Structured version   Visualization version   GIF version

Theorem dffunALTV5 37009
Description: Alternate definition of the function relation predicate, cf. dfdisjALTV5 37035. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
dffunALTV5 ( FunALTV 𝐹 ↔ (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ∧ Rel 𝐹))
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem dffunALTV5
StepHypRef Expression
1 dffunALTV2 37006 . 2 ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹))
2 cossssid5 36789 . . 3 ( ≀ 𝐹 ⊆ I ↔ ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅))
32anbi1i 624 . 2 (( ≀ 𝐹 ⊆ I ∧ Rel 𝐹) ↔ (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ∧ Rel 𝐹))
41, 3bitri 274 1 ( FunALTV 𝐹 ↔ (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ∧ Rel 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wo 844   = wceq 1540  wral 3061  cin 3897  wss 3898  c0 4270   I cid 5518  ccnv 5620  ran crn 5622  Rel wrel 5626  [cec 8568  ccoss 36489   FunALTV wfunALTV 36520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pr 5373
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rmo 3349  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-br 5094  df-opab 5156  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ec 8572  df-coss 36729  df-cnvrefrel 36845  df-funALTV 37000
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator