| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elfunsALTV3 | Structured version Visualization version GIF version | ||
| Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| Ref | Expression |
|---|---|
| elfunsALTV3 | ⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ 𝐹 ∈ Rels )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfunsALTV 38710 | . 2 ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) | |
| 2 | cosselcnvrefrels3 38557 | . . . 4 ⊢ ( ≀ 𝐹 ∈ CnvRefRels ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ ≀ 𝐹 ∈ Rels )) | |
| 3 | cosselrels 38514 | . . . . 5 ⊢ (𝐹 ∈ Rels → ≀ 𝐹 ∈ Rels ) | |
| 4 | 3 | biantrud 531 | . . . 4 ⊢ (𝐹 ∈ Rels → (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ ≀ 𝐹 ∈ Rels ))) |
| 5 | 2, 4 | bitr4id 290 | . . 3 ⊢ (𝐹 ∈ Rels → ( ≀ 𝐹 ∈ CnvRefRels ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦))) |
| 6 | 5 | pm5.32ri 575 | . 2 ⊢ (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ 𝐹 ∈ Rels )) |
| 7 | 1, 6 | bitri 275 | 1 ⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ 𝐹 ∈ Rels )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ≀ ccoss 38199 Rels crels 38201 CnvRefRels ccnvrefrels 38207 FunsALTV cfunsALTV 38229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-coss 38429 df-rels 38503 df-ssr 38516 df-cnvrefs 38543 df-cnvrefrels 38544 df-funss 38698 df-funsALTV 38699 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |