Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsALTV3 Structured version   Visualization version   GIF version

Theorem elfunsALTV3 38791
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.)
Assertion
Ref Expression
elfunsALTV3 (𝐹 ∈ FunsALTV ↔ (∀𝑢𝑥𝑦((𝑢𝐹𝑥𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ 𝐹 ∈ Rels ))
Distinct variable group:   𝑢,𝐹,𝑥,𝑦

Proof of Theorem elfunsALTV3
StepHypRef Expression
1 elfunsALTV 38789 . 2 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ))
2 cosselcnvrefrels3 38630 . . . 4 ( ≀ 𝐹 ∈ CnvRefRels ↔ (∀𝑢𝑥𝑦((𝑢𝐹𝑥𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ ≀ 𝐹 ∈ Rels ))
3 cosselrels 38586 . . . . 5 (𝐹 ∈ Rels → ≀ 𝐹 ∈ Rels )
43biantrud 531 . . . 4 (𝐹 ∈ Rels → (∀𝑢𝑥𝑦((𝑢𝐹𝑥𝑢𝐹𝑦) → 𝑥 = 𝑦) ↔ (∀𝑢𝑥𝑦((𝑢𝐹𝑥𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ ≀ 𝐹 ∈ Rels )))
52, 4bitr4id 290 . . 3 (𝐹 ∈ Rels → ( ≀ 𝐹 ∈ CnvRefRels ↔ ∀𝑢𝑥𝑦((𝑢𝐹𝑥𝑢𝐹𝑦) → 𝑥 = 𝑦)))
65pm5.32ri 575 . 2 (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ (∀𝑢𝑥𝑦((𝑢𝐹𝑥𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ 𝐹 ∈ Rels ))
71, 6bitri 275 1 (𝐹 ∈ FunsALTV ↔ (∀𝑢𝑥𝑦((𝑢𝐹𝑥𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ 𝐹 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111   class class class wbr 5089  ccoss 38221   Rels crels 38223   CnvRefRels ccnvrefrels 38229   FunsALTV cfunsALTV 38251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-rels 38463  df-coss 38512  df-ssr 38589  df-cnvrefs 38616  df-cnvrefrels 38617  df-funss 38777  df-funsALTV 38778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator