| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elfunsALTVfunALTV | Structured version Visualization version GIF version | ||
| Description: The element of the class of functions and the function predicate are the same when 𝐹 is a set. (Contributed by Peter Mazsa, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| elfunsALTVfunALTV | ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossex 38520 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → ≀ 𝐹 ∈ V) | |
| 2 | elcnvrefrelsrel 38627 | . . . 4 ⊢ ( ≀ 𝐹 ∈ V → ( ≀ 𝐹 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝐹)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ( ≀ 𝐹 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝐹)) |
| 4 | elrelsrel 38465 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ Rels ↔ Rel 𝐹)) | |
| 5 | 3, 4 | anbi12d 632 | . 2 ⊢ (𝐹 ∈ 𝑉 → (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹))) |
| 6 | elfunsALTV 38789 | . 2 ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) | |
| 7 | df-funALTV 38779 | . 2 ⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 Rel wrel 5619 ≀ ccoss 38221 Rels crels 38223 CnvRefRels ccnvrefrels 38229 CnvRefRel wcnvrefrel 38230 FunsALTV cfunsALTV 38251 FunALTV wfunALTV 38252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-rels 38463 df-coss 38512 df-ssr 38589 df-cnvrefs 38616 df-cnvrefrels 38617 df-cnvrefrel 38618 df-funss 38777 df-funsALTV 38778 df-funALTV 38779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |