Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsALTVfunALTV Structured version   Visualization version   GIF version

Theorem elfunsALTVfunALTV 38693
Description: The element of the class of functions and the function predicate are the same when 𝐹 is a set. (Contributed by Peter Mazsa, 26-Jul-2021.)
Assertion
Ref Expression
elfunsALTVfunALTV (𝐹𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹))

Proof of Theorem elfunsALTVfunALTV
StepHypRef Expression
1 cossex 38415 . . . 4 (𝐹𝑉 → ≀ 𝐹 ∈ V)
2 elcnvrefrelsrel 38532 . . . 4 ( ≀ 𝐹 ∈ V → ( ≀ 𝐹 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝐹))
31, 2syl 17 . . 3 (𝐹𝑉 → ( ≀ 𝐹 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝐹))
4 elrelsrel 38483 . . 3 (𝐹𝑉 → (𝐹 ∈ Rels ↔ Rel 𝐹))
53, 4anbi12d 632 . 2 (𝐹𝑉 → (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)))
6 elfunsALTV 38688 . 2 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ))
7 df-funALTV 38678 . 2 ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹))
85, 6, 73bitr4g 314 1 (𝐹𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3481  Rel wrel 5698  ccoss 38176   Rels crels 38178   CnvRefRels ccnvrefrels 38184   CnvRefRel wcnvrefrel 38185   FunsALTV cfunsALTV 38206   FunALTV wfunALTV 38207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-coss 38407  df-rels 38481  df-ssr 38494  df-cnvrefs 38521  df-cnvrefrels 38522  df-cnvrefrel 38523  df-funss 38676  df-funsALTV 38677  df-funALTV 38678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator