![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfunsALTVfunALTV | Structured version Visualization version GIF version |
Description: The element of the class of functions and the function predicate are the same when 𝐹 is a set. (Contributed by Peter Mazsa, 26-Jul-2021.) |
Ref | Expression |
---|---|
elfunsALTVfunALTV | ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossex 38415 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → ≀ 𝐹 ∈ V) | |
2 | elcnvrefrelsrel 38532 | . . . 4 ⊢ ( ≀ 𝐹 ∈ V → ( ≀ 𝐹 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝐹)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ( ≀ 𝐹 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝐹)) |
4 | elrelsrel 38483 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ Rels ↔ Rel 𝐹)) | |
5 | 3, 4 | anbi12d 632 | . 2 ⊢ (𝐹 ∈ 𝑉 → (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹))) |
6 | elfunsALTV 38688 | . 2 ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) | |
7 | df-funALTV 38678 | . 2 ⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3481 Rel wrel 5698 ≀ ccoss 38176 Rels crels 38178 CnvRefRels ccnvrefrels 38184 CnvRefRel wcnvrefrel 38185 FunsALTV cfunsALTV 38206 FunALTV wfunALTV 38207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-coss 38407 df-rels 38481 df-ssr 38494 df-cnvrefs 38521 df-cnvrefrels 38522 df-cnvrefrel 38523 df-funss 38676 df-funsALTV 38677 df-funALTV 38678 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |