Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsALTVfunALTV Structured version   Visualization version   GIF version

Theorem elfunsALTVfunALTV 38682
Description: The element of the class of functions and the function predicate are the same when 𝐹 is a set. (Contributed by Peter Mazsa, 26-Jul-2021.)
Assertion
Ref Expression
elfunsALTVfunALTV (𝐹𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹))

Proof of Theorem elfunsALTVfunALTV
StepHypRef Expression
1 cossex 38403 . . . 4 (𝐹𝑉 → ≀ 𝐹 ∈ V)
2 elcnvrefrelsrel 38520 . . . 4 ( ≀ 𝐹 ∈ V → ( ≀ 𝐹 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝐹))
31, 2syl 17 . . 3 (𝐹𝑉 → ( ≀ 𝐹 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝐹))
4 elrelsrel 38471 . . 3 (𝐹𝑉 → (𝐹 ∈ Rels ↔ Rel 𝐹))
53, 4anbi12d 632 . 2 (𝐹𝑉 → (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)))
6 elfunsALTV 38677 . 2 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ))
7 df-funALTV 38667 . 2 ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹))
85, 6, 73bitr4g 314 1 (𝐹𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3444  Rel wrel 5636  ccoss 38162   Rels crels 38164   CnvRefRels ccnvrefrels 38170   CnvRefRel wcnvrefrel 38171   FunsALTV cfunsALTV 38192   FunALTV wfunALTV 38193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-coss 38395  df-rels 38469  df-ssr 38482  df-cnvrefs 38509  df-cnvrefrels 38510  df-cnvrefrel 38511  df-funss 38665  df-funsALTV 38666  df-funALTV 38667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator