| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elfunsALTVfunALTV | Structured version Visualization version GIF version | ||
| Description: The element of the class of functions and the function predicate are the same when 𝐹 is a set. (Contributed by Peter Mazsa, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| elfunsALTVfunALTV | ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossex 38405 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → ≀ 𝐹 ∈ V) | |
| 2 | elcnvrefrelsrel 38522 | . . . 4 ⊢ ( ≀ 𝐹 ∈ V → ( ≀ 𝐹 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝐹)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝑉 → ( ≀ 𝐹 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝐹)) |
| 4 | elrelsrel 38473 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ Rels ↔ Rel 𝐹)) | |
| 5 | 3, 4 | anbi12d 632 | . 2 ⊢ (𝐹 ∈ 𝑉 → (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹))) |
| 6 | elfunsALTV 38679 | . 2 ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) | |
| 7 | df-funALTV 38669 | . 2 ⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 Rel wrel 5645 ≀ ccoss 38164 Rels crels 38166 CnvRefRels ccnvrefrels 38172 CnvRefRel wcnvrefrel 38173 FunsALTV cfunsALTV 38194 FunALTV wfunALTV 38195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-coss 38397 df-rels 38471 df-ssr 38484 df-cnvrefs 38511 df-cnvrefrels 38512 df-cnvrefrel 38513 df-funss 38667 df-funsALTV 38668 df-funALTV 38669 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |