Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsALTVfunALTV Structured version   Visualization version   GIF version

Theorem elfunsALTVfunALTV 38695
Description: The element of the class of functions and the function predicate are the same when 𝐹 is a set. (Contributed by Peter Mazsa, 26-Jul-2021.)
Assertion
Ref Expression
elfunsALTVfunALTV (𝐹𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹))

Proof of Theorem elfunsALTVfunALTV
StepHypRef Expression
1 cossex 38416 . . . 4 (𝐹𝑉 → ≀ 𝐹 ∈ V)
2 elcnvrefrelsrel 38533 . . . 4 ( ≀ 𝐹 ∈ V → ( ≀ 𝐹 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝐹))
31, 2syl 17 . . 3 (𝐹𝑉 → ( ≀ 𝐹 ∈ CnvRefRels ↔ CnvRefRel ≀ 𝐹))
4 elrelsrel 38484 . . 3 (𝐹𝑉 → (𝐹 ∈ Rels ↔ Rel 𝐹))
53, 4anbi12d 632 . 2 (𝐹𝑉 → (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)))
6 elfunsALTV 38690 . 2 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ))
7 df-funALTV 38680 . 2 ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹))
85, 6, 73bitr4g 314 1 (𝐹𝑉 → (𝐹 ∈ FunsALTV ↔ FunALTV 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3436  Rel wrel 5624  ccoss 38175   Rels crels 38177   CnvRefRels ccnvrefrels 38183   CnvRefRel wcnvrefrel 38184   FunsALTV cfunsALTV 38205   FunALTV wfunALTV 38206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-coss 38408  df-rels 38482  df-ssr 38495  df-cnvrefs 38522  df-cnvrefrels 38523  df-cnvrefrel 38524  df-funss 38678  df-funsALTV 38679  df-funALTV 38680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator