Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsALTV5 Structured version   Visualization version   GIF version

Theorem elfunsALTV5 35962
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
elfunsALTV5 (𝐹 ∈ FunsALTV ↔ (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ∧ 𝐹 ∈ Rels ))
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem elfunsALTV5
StepHypRef Expression
1 elfunsALTV 35958 . 2 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ))
2 cosselrels 35769 . . . . 5 (𝐹 ∈ Rels → ≀ 𝐹 ∈ Rels )
32biantrud 534 . . . 4 (𝐹 ∈ Rels → (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ↔ (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ∧ ≀ 𝐹 ∈ Rels )))
4 cosselcnvrefrels5 35810 . . . 4 ( ≀ 𝐹 ∈ CnvRefRels ↔ (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ∧ ≀ 𝐹 ∈ Rels ))
53, 4syl6rbbr 292 . . 3 (𝐹 ∈ Rels → ( ≀ 𝐹 ∈ CnvRefRels ↔ ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅)))
65pm5.32ri 578 . 2 (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ∧ 𝐹 ∈ Rels ))
71, 6bitri 277 1 (𝐹 ∈ FunsALTV ↔ (∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]𝐹 ∩ [𝑦]𝐹) = ∅) ∧ 𝐹 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wo 843   = wceq 1536  wcel 2113  wral 3137  cin 3928  c0 4284  ccnv 5547  ran crn 5549  [cec 8280  ccoss 35486   Rels crels 35488   CnvRefRels ccnvrefrels 35494   FunsALTV cfunsALTV 35516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ec 8284  df-coss 35692  df-rels 35758  df-ssr 35771  df-cnvrefs 35796  df-cnvrefrels 35797  df-funss 35946  df-funsALTV 35947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator