Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfunsALTV5 | Structured version Visualization version GIF version |
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 5-Sep-2021.) |
Ref | Expression |
---|---|
elfunsALTV5 | ⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ 𝐹 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfunsALTV 36570 | . 2 ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) | |
2 | cosselcnvrefrels5 36422 | . . . 4 ⊢ ( ≀ 𝐹 ∈ CnvRefRels ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ ≀ 𝐹 ∈ Rels )) | |
3 | cosselrels 36381 | . . . . 5 ⊢ (𝐹 ∈ Rels → ≀ 𝐹 ∈ Rels ) | |
4 | 3 | biantrud 535 | . . . 4 ⊢ (𝐹 ∈ Rels → (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ ≀ 𝐹 ∈ Rels ))) |
5 | 2, 4 | bitr4id 293 | . . 3 ⊢ (𝐹 ∈ Rels → ( ≀ 𝐹 ∈ CnvRefRels ↔ ∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅))) |
6 | 5 | pm5.32ri 579 | . 2 ⊢ (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ 𝐹 ∈ Rels )) |
7 | 1, 6 | bitri 278 | 1 ⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ∧ 𝐹 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∨ wo 847 = wceq 1543 ∈ wcel 2111 ∀wral 3062 ∩ cin 3880 ∅c0 4252 ◡ccnv 5565 ran crn 5567 [cec 8410 ≀ ccoss 36100 Rels crels 36102 CnvRefRels ccnvrefrels 36108 FunsALTV cfunsALTV 36130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ral 3067 df-rex 3068 df-rmo 3070 df-rab 3071 df-v 3423 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-op 4563 df-uni 4835 df-br 5069 df-opab 5131 df-id 5470 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-ec 8414 df-coss 36304 df-rels 36370 df-ssr 36383 df-cnvrefs 36408 df-cnvrefrels 36409 df-funss 36558 df-funsALTV 36559 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |