Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsALTV2 Structured version   Visualization version   GIF version

Theorem elfunsALTV2 37558
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.)
Assertion
Ref Expression
elfunsALTV2 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels ))

Proof of Theorem elfunsALTV2
StepHypRef Expression
1 elfunsALTV 37557 . 2 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ))
2 cosselcnvrefrels2 37403 . . . 4 ( ≀ 𝐹 ∈ CnvRefRels ↔ ( ≀ 𝐹 ⊆ I ∧ ≀ 𝐹 ∈ Rels ))
3 cosselrels 37361 . . . . 5 (𝐹 ∈ Rels → ≀ 𝐹 ∈ Rels )
43biantrud 532 . . . 4 (𝐹 ∈ Rels → ( ≀ 𝐹 ⊆ I ↔ ( ≀ 𝐹 ⊆ I ∧ ≀ 𝐹 ∈ Rels )))
52, 4bitr4id 289 . . 3 (𝐹 ∈ Rels → ( ≀ 𝐹 ∈ CnvRefRels ↔ ≀ 𝐹 ⊆ I ))
65pm5.32ri 576 . 2 (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels ))
71, 6bitri 274 1 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106  wss 3948   I cid 5573  ccoss 37038   Rels crels 37040   CnvRefRels ccnvrefrels 37046   FunsALTV cfunsALTV 37068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-coss 37276  df-rels 37350  df-ssr 37363  df-cnvrefs 37390  df-cnvrefrels 37391  df-funss 37545  df-funsALTV 37546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator