Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsALTV2 Structured version   Visualization version   GIF version

Theorem elfunsALTV2 36731
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.)
Assertion
Ref Expression
elfunsALTV2 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels ))

Proof of Theorem elfunsALTV2
StepHypRef Expression
1 elfunsALTV 36730 . 2 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ))
2 cosselcnvrefrels2 36579 . . . 4 ( ≀ 𝐹 ∈ CnvRefRels ↔ ( ≀ 𝐹 ⊆ I ∧ ≀ 𝐹 ∈ Rels ))
3 cosselrels 36541 . . . . 5 (𝐹 ∈ Rels → ≀ 𝐹 ∈ Rels )
43biantrud 531 . . . 4 (𝐹 ∈ Rels → ( ≀ 𝐹 ⊆ I ↔ ( ≀ 𝐹 ⊆ I ∧ ≀ 𝐹 ∈ Rels )))
52, 4bitr4id 289 . . 3 (𝐹 ∈ Rels → ( ≀ 𝐹 ∈ CnvRefRels ↔ ≀ 𝐹 ⊆ I ))
65pm5.32ri 575 . 2 (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels ))
71, 6bitri 274 1 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2108  wss 3883   I cid 5479  ccoss 36260   Rels crels 36262   CnvRefRels ccnvrefrels 36268   FunsALTV cfunsALTV 36290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-coss 36464  df-rels 36530  df-ssr 36543  df-cnvrefs 36568  df-cnvrefrels 36569  df-funss 36718  df-funsALTV 36719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator