Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsALTV2 Structured version   Visualization version   GIF version

Theorem elfunsALTV2 38716
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.)
Assertion
Ref Expression
elfunsALTV2 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels ))

Proof of Theorem elfunsALTV2
StepHypRef Expression
1 elfunsALTV 38715 . 2 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ))
2 cosselcnvrefrels2 38561 . . . 4 ( ≀ 𝐹 ∈ CnvRefRels ↔ ( ≀ 𝐹 ⊆ I ∧ ≀ 𝐹 ∈ Rels ))
3 cosselrels 38519 . . . . 5 (𝐹 ∈ Rels → ≀ 𝐹 ∈ Rels )
43biantrud 531 . . . 4 (𝐹 ∈ Rels → ( ≀ 𝐹 ⊆ I ↔ ( ≀ 𝐹 ⊆ I ∧ ≀ 𝐹 ∈ Rels )))
52, 4bitr4id 290 . . 3 (𝐹 ∈ Rels → ( ≀ 𝐹 ∈ CnvRefRels ↔ ≀ 𝐹 ⊆ I ))
65pm5.32ri 575 . 2 (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels ))
71, 6bitri 275 1 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  wss 3931   I cid 5552  ccoss 38204   Rels crels 38206   CnvRefRels ccnvrefrels 38212   FunsALTV cfunsALTV 38234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-coss 38434  df-rels 38508  df-ssr 38521  df-cnvrefs 38548  df-cnvrefrels 38549  df-funss 38703  df-funsALTV 38704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator