Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsALTV2 Structured version   Visualization version   GIF version

Theorem elfunsALTV2 36571
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.)
Assertion
Ref Expression
elfunsALTV2 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels ))

Proof of Theorem elfunsALTV2
StepHypRef Expression
1 elfunsALTV 36570 . 2 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ))
2 cosselcnvrefrels2 36419 . . . 4 ( ≀ 𝐹 ∈ CnvRefRels ↔ ( ≀ 𝐹 ⊆ I ∧ ≀ 𝐹 ∈ Rels ))
3 cosselrels 36381 . . . . 5 (𝐹 ∈ Rels → ≀ 𝐹 ∈ Rels )
43biantrud 535 . . . 4 (𝐹 ∈ Rels → ( ≀ 𝐹 ⊆ I ↔ ( ≀ 𝐹 ⊆ I ∧ ≀ 𝐹 ∈ Rels )))
52, 4bitr4id 293 . . 3 (𝐹 ∈ Rels → ( ≀ 𝐹 ∈ CnvRefRels ↔ ≀ 𝐹 ⊆ I ))
65pm5.32ri 579 . 2 (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels ))
71, 6bitri 278 1 (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ⊆ I ∧ 𝐹 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wcel 2111  wss 3881   I cid 5469  ccoss 36100   Rels crels 36102   CnvRefRels ccnvrefrels 36108   FunsALTV cfunsALTV 36130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3423  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-br 5069  df-opab 5131  df-id 5470  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-coss 36304  df-rels 36370  df-ssr 36383  df-cnvrefs 36408  df-cnvrefrels 36409  df-funss 36558  df-funsALTV 36559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator