Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfunsALTV4 | Structured version Visualization version GIF version |
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
Ref | Expression |
---|---|
elfunsALTV4 | ⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ 𝐹 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfunsALTV 36577 | . 2 ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) | |
2 | cosselcnvrefrels4 36428 | . . . 4 ⊢ ( ≀ 𝐹 ∈ CnvRefRels ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ ≀ 𝐹 ∈ Rels )) | |
3 | cosselrels 36388 | . . . . 5 ⊢ (𝐹 ∈ Rels → ≀ 𝐹 ∈ Rels ) | |
4 | 3 | biantrud 535 | . . . 4 ⊢ (𝐹 ∈ Rels → (∀𝑢∃*𝑥 𝑢𝐹𝑥 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ ≀ 𝐹 ∈ Rels ))) |
5 | 2, 4 | bitr4id 293 | . . 3 ⊢ (𝐹 ∈ Rels → ( ≀ 𝐹 ∈ CnvRefRels ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥)) |
6 | 5 | pm5.32ri 579 | . 2 ⊢ (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ 𝐹 ∈ Rels )) |
7 | 1, 6 | bitri 278 | 1 ⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ 𝐹 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∀wal 1541 ∈ wcel 2112 ∃*wmo 2539 class class class wbr 5070 ≀ ccoss 36107 Rels crels 36109 CnvRefRels ccnvrefrels 36115 FunsALTV cfunsALTV 36137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5472 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-coss 36311 df-rels 36377 df-ssr 36390 df-cnvrefs 36415 df-cnvrefrels 36416 df-funss 36565 df-funsALTV 36566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |