Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfunsALTV4 | Structured version Visualization version GIF version |
Description: Elementhood in the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.) |
Ref | Expression |
---|---|
elfunsALTV4 | ⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ 𝐹 ∈ Rels )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfunsALTV 36730 | . 2 ⊢ (𝐹 ∈ FunsALTV ↔ ( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels )) | |
2 | cosselcnvrefrels4 36581 | . . . 4 ⊢ ( ≀ 𝐹 ∈ CnvRefRels ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ ≀ 𝐹 ∈ Rels )) | |
3 | cosselrels 36541 | . . . . 5 ⊢ (𝐹 ∈ Rels → ≀ 𝐹 ∈ Rels ) | |
4 | 3 | biantrud 531 | . . . 4 ⊢ (𝐹 ∈ Rels → (∀𝑢∃*𝑥 𝑢𝐹𝑥 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ ≀ 𝐹 ∈ Rels ))) |
5 | 2, 4 | bitr4id 289 | . . 3 ⊢ (𝐹 ∈ Rels → ( ≀ 𝐹 ∈ CnvRefRels ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥)) |
6 | 5 | pm5.32ri 575 | . 2 ⊢ (( ≀ 𝐹 ∈ CnvRefRels ∧ 𝐹 ∈ Rels ) ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ 𝐹 ∈ Rels )) |
7 | 1, 6 | bitri 274 | 1 ⊢ (𝐹 ∈ FunsALTV ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ 𝐹 ∈ Rels )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 ∃*wmo 2538 class class class wbr 5070 ≀ ccoss 36260 Rels crels 36262 CnvRefRels ccnvrefrels 36268 FunsALTV cfunsALTV 36290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-coss 36464 df-rels 36530 df-ssr 36543 df-cnvrefs 36568 df-cnvrefrels 36569 df-funss 36718 df-funsALTV 36719 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |