Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pr Structured version   Visualization version   GIF version

Theorem sge0pr 43932
Description: Sum of a pair of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pr.a (𝜑𝐴𝑉)
sge0pr.b (𝜑𝐵𝑊)
sge0pr.d (𝜑𝐷 ∈ (0[,]+∞))
sge0pr.e (𝜑𝐸 ∈ (0[,]+∞))
sge0pr.cd (𝑘 = 𝐴𝐶 = 𝐷)
sge0pr.ce (𝑘 = 𝐵𝐶 = 𝐸)
sge0pr.ab (𝜑𝐴𝐵)
Assertion
Ref Expression
sge0pr (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝑘,𝑉   𝑘,𝑊   𝜑,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sge0pr
StepHypRef Expression
1 iccssxr 13162 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 sge0pr.e . . . . . . 7 (𝜑𝐸 ∈ (0[,]+∞))
31, 2sselid 3919 . . . . . 6 (𝜑𝐸 ∈ ℝ*)
4 mnfxr 11032 . . . . . . . 8 -∞ ∈ ℝ*
54a1i 11 . . . . . . 7 (𝜑 → -∞ ∈ ℝ*)
6 0xr 11022 . . . . . . . . 9 0 ∈ ℝ*
76a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℝ*)
8 mnflt0 12861 . . . . . . . . 9 -∞ < 0
98a1i 11 . . . . . . . 8 (𝜑 → -∞ < 0)
10 pnfxr 11029 . . . . . . . . . 10 +∞ ∈ ℝ*
1110a1i 11 . . . . . . . . 9 (𝜑 → +∞ ∈ ℝ*)
12 iccgelb 13135 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐸 ∈ (0[,]+∞)) → 0 ≤ 𝐸)
137, 11, 2, 12syl3anc 1370 . . . . . . . 8 (𝜑 → 0 ≤ 𝐸)
145, 7, 3, 9, 13xrltletrd 12895 . . . . . . 7 (𝜑 → -∞ < 𝐸)
155, 3, 14xrgtned 42861 . . . . . 6 (𝜑𝐸 ≠ -∞)
16 xaddpnf2 12961 . . . . . 6 ((𝐸 ∈ ℝ*𝐸 ≠ -∞) → (+∞ +𝑒 𝐸) = +∞)
173, 15, 16syl2anc 584 . . . . 5 (𝜑 → (+∞ +𝑒 𝐸) = +∞)
1817eqcomd 2744 . . . 4 (𝜑 → +∞ = (+∞ +𝑒 𝐸))
1918adantr 481 . . 3 ((𝜑𝐷 = +∞) → +∞ = (+∞ +𝑒 𝐸))
20 prex 5355 . . . . 5 {𝐴, 𝐵} ∈ V
2120a1i 11 . . . 4 ((𝜑𝐷 = +∞) → {𝐴, 𝐵} ∈ V)
22 sge0pr.cd . . . . . . . . . 10 (𝑘 = 𝐴𝐶 = 𝐷)
2322adantl 482 . . . . . . . . 9 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
24 sge0pr.d . . . . . . . . . 10 (𝜑𝐷 ∈ (0[,]+∞))
2524adantr 481 . . . . . . . . 9 ((𝜑𝑘 = 𝐴) → 𝐷 ∈ (0[,]+∞))
2623, 25eqeltrd 2839 . . . . . . . 8 ((𝜑𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
2726adantlr 712 . . . . . . 7 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
28 simpll 764 . . . . . . . 8 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝜑)
29 simpl 483 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘 ∈ {𝐴, 𝐵})
30 neqne 2951 . . . . . . . . . . 11 𝑘 = 𝐴𝑘𝐴)
3130adantl 482 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘𝐴)
32 elprn1 43174 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ 𝑘𝐴) → 𝑘 = 𝐵)
3329, 31, 32syl2anc 584 . . . . . . . . 9 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
3433adantll 711 . . . . . . . 8 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
35 sge0pr.ce . . . . . . . . . 10 (𝑘 = 𝐵𝐶 = 𝐸)
3635adantl 482 . . . . . . . . 9 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
372adantr 481 . . . . . . . . 9 ((𝜑𝑘 = 𝐵) → 𝐸 ∈ (0[,]+∞))
3836, 37eqeltrd 2839 . . . . . . . 8 ((𝜑𝑘 = 𝐵) → 𝐶 ∈ (0[,]+∞))
3928, 34, 38syl2anc 584 . . . . . . 7 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
4027, 39pm2.61dan 810 . . . . . 6 ((𝜑𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ (0[,]+∞))
41 eqid 2738 . . . . . 6 (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)
4240, 41fmptd 6988 . . . . 5 (𝜑 → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
4342adantr 481 . . . 4 ((𝜑𝐷 = +∞) → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
44 id 22 . . . . . . 7 (𝐷 = +∞ → 𝐷 = +∞)
4544eqcomd 2744 . . . . . 6 (𝐷 = +∞ → +∞ = 𝐷)
4645adantl 482 . . . . 5 ((𝜑𝐷 = +∞) → +∞ = 𝐷)
47 prid1g 4696 . . . . . . . 8 (𝐷 ∈ (0[,]+∞) → 𝐷 ∈ {𝐷, 𝐸})
4824, 47syl 17 . . . . . . 7 (𝜑𝐷 ∈ {𝐷, 𝐸})
49 sge0pr.a . . . . . . . . 9 (𝜑𝐴𝑉)
50 sge0pr.b . . . . . . . . 9 (𝜑𝐵𝑊)
5149, 50, 41, 22, 35rnmptpr 42713 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = {𝐷, 𝐸})
5251eqcomd 2744 . . . . . . 7 (𝜑 → {𝐷, 𝐸} = ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5348, 52eleqtrd 2841 . . . . . 6 (𝜑𝐷 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5453adantr 481 . . . . 5 ((𝜑𝐷 = +∞) → 𝐷 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5546, 54eqeltrd 2839 . . . 4 ((𝜑𝐷 = +∞) → +∞ ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5621, 43, 55sge0pnfval 43911 . . 3 ((𝜑𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = +∞)
57 oveq1 7282 . . . 4 (𝐷 = +∞ → (𝐷 +𝑒 𝐸) = (+∞ +𝑒 𝐸))
5857adantl 482 . . 3 ((𝜑𝐷 = +∞) → (𝐷 +𝑒 𝐸) = (+∞ +𝑒 𝐸))
5919, 56, 583eqtr4d 2788 . 2 ((𝜑𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
601, 24sselid 3919 . . . . . . . 8 (𝜑𝐷 ∈ ℝ*)
61 iccgelb 13135 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ (0[,]+∞)) → 0 ≤ 𝐷)
627, 11, 24, 61syl3anc 1370 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐷)
635, 7, 60, 9, 62xrltletrd 12895 . . . . . . . . 9 (𝜑 → -∞ < 𝐷)
645, 60, 63xrgtned 42861 . . . . . . . 8 (𝜑𝐷 ≠ -∞)
65 xaddpnf1 12960 . . . . . . . 8 ((𝐷 ∈ ℝ*𝐷 ≠ -∞) → (𝐷 +𝑒 +∞) = +∞)
6660, 64, 65syl2anc 584 . . . . . . 7 (𝜑 → (𝐷 +𝑒 +∞) = +∞)
6766eqcomd 2744 . . . . . 6 (𝜑 → +∞ = (𝐷 +𝑒 +∞))
6867adantr 481 . . . . 5 ((𝜑𝐸 = +∞) → +∞ = (𝐷 +𝑒 +∞))
6920a1i 11 . . . . . 6 ((𝜑𝐸 = +∞) → {𝐴, 𝐵} ∈ V)
7042adantr 481 . . . . . 6 ((𝜑𝐸 = +∞) → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
71 id 22 . . . . . . . . 9 (𝐸 = +∞ → 𝐸 = +∞)
7271eqcomd 2744 . . . . . . . 8 (𝐸 = +∞ → +∞ = 𝐸)
7372adantl 482 . . . . . . 7 ((𝜑𝐸 = +∞) → +∞ = 𝐸)
74 prid2g 4697 . . . . . . . . . 10 (𝐸 ∈ (0[,]+∞) → 𝐸 ∈ {𝐷, 𝐸})
752, 74syl 17 . . . . . . . . 9 (𝜑𝐸 ∈ {𝐷, 𝐸})
7675, 52eleqtrd 2841 . . . . . . . 8 (𝜑𝐸 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7776adantr 481 . . . . . . 7 ((𝜑𝐸 = +∞) → 𝐸 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7873, 77eqeltrd 2839 . . . . . 6 ((𝜑𝐸 = +∞) → +∞ ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7969, 70, 78sge0pnfval 43911 . . . . 5 ((𝜑𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = +∞)
80 oveq2 7283 . . . . . 6 (𝐸 = +∞ → (𝐷 +𝑒 𝐸) = (𝐷 +𝑒 +∞))
8180adantl 482 . . . . 5 ((𝜑𝐸 = +∞) → (𝐷 +𝑒 𝐸) = (𝐷 +𝑒 +∞))
8268, 79, 813eqtr4d 2788 . . . 4 ((𝜑𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
8382adantlr 712 . . 3 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
84 rge0ssre 13188 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
85 ax-resscn 10928 . . . . . . . 8 ℝ ⊆ ℂ
8684, 85sstri 3930 . . . . . . 7 (0[,)+∞) ⊆ ℂ
876a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 0 ∈ ℝ*)
8810a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → +∞ ∈ ℝ*)
8960adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ∈ ℝ*)
9062adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 0 ≤ 𝐷)
91 pnfge 12866 . . . . . . . . . . . 12 (𝐷 ∈ ℝ*𝐷 ≤ +∞)
9260, 91syl 17 . . . . . . . . . . 11 (𝜑𝐷 ≤ +∞)
9392adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ≤ +∞)
9444necon3bi 2970 . . . . . . . . . . 11 𝐷 = +∞ → 𝐷 ≠ +∞)
9594adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ≠ +∞)
9689, 88, 93, 95xrleneltd 42862 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 < +∞)
9787, 88, 89, 90, 96elicod 13129 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ∈ (0[,)+∞))
9897adantr 481 . . . . . . 7 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ (0[,)+∞))
9986, 98sselid 3919 . . . . . 6 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ ℂ)
1006a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 0 ∈ ℝ*)
10110a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → +∞ ∈ ℝ*)
1023adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ*)
10313adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 0 ≤ 𝐸)
104 pnfge 12866 . . . . . . . . . . . 12 (𝐸 ∈ ℝ*𝐸 ≤ +∞)
1053, 104syl 17 . . . . . . . . . . 11 (𝜑𝐸 ≤ +∞)
106105adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ≤ +∞)
10771necon3bi 2970 . . . . . . . . . . 11 𝐸 = +∞ → 𝐸 ≠ +∞)
108107adantl 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ≠ +∞)
109102, 101, 106, 108xrleneltd 42862 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 < +∞)
110100, 101, 102, 103, 109elicod 13129 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ (0[,)+∞))
11186, 110sselid 3919 . . . . . . 7 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℂ)
112111adantlr 712 . . . . . 6 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℂ)
11399, 112jca 512 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
11449, 50jca 512 . . . . . 6 (𝜑 → (𝐴𝑉𝐵𝑊))
115114ad2antrr 723 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐴𝑉𝐵𝑊))
116 sge0pr.ab . . . . . 6 (𝜑𝐴𝐵)
117116ad2antrr 723 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐴𝐵)
11822, 35, 113, 115, 117sumpr 15460 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸))
119 prfi 9089 . . . . . 6 {𝐴, 𝐵} ∈ Fin
120119a1i 11 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → {𝐴, 𝐵} ∈ Fin)
12122adantl 482 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷)
12297adantr 481 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐷 ∈ (0[,)+∞))
123121, 122eqeltrd 2839 . . . . . . 7 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
124123ad4ant14 749 . . . . . 6 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
125 simp-4l 780 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝜑)
126 simpllr 773 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → ¬ 𝐸 = +∞)
12733adantll 711 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
128363adant2 1130 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸)
1291103adant3 1131 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐸 ∈ (0[,)+∞))
130128, 129eqeltrd 2839 . . . . . . 7 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐶 ∈ (0[,)+∞))
131125, 126, 127, 130syl3anc 1370 . . . . . 6 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
132124, 131pm2.61dan 810 . . . . 5 ((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ (0[,)+∞))
133120, 132sge0fsummpt 43928 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = Σ𝑘 ∈ {𝐴, 𝐵}𝐶)
13484, 98sselid 3919 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ ℝ)
13584, 110sselid 3919 . . . . . 6 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ)
136135adantlr 712 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ)
137 rexadd 12966 . . . . 5 ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℝ) → (𝐷 +𝑒 𝐸) = (𝐷 + 𝐸))
138134, 136, 137syl2anc 584 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐷 +𝑒 𝐸) = (𝐷 + 𝐸))
139118, 133, 1383eqtr4d 2788 . . 3 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
14083, 139pm2.61dan 810 . 2 ((𝜑 ∧ ¬ 𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
14159, 140pm2.61dan 810 1 (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  {cpr 4563   class class class wbr 5074  cmpt 5157  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  cc 10869  cr 10870  0cc0 10871   + caddc 10874  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010   +𝑒 cxad 12846  [,)cico 13081  [,]cicc 13082  Σcsu 15397  Σ^csumge0 43900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-xadd 12849  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-sumge0 43901
This theorem is referenced by:  sge0prle  43939  meadjun  44000  ovnsubadd2lem  44183
  Copyright terms: Public domain W3C validator