Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pr Structured version   Visualization version   GIF version

Theorem sge0pr 43607
Description: Sum of a pair of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pr.a (𝜑𝐴𝑉)
sge0pr.b (𝜑𝐵𝑊)
sge0pr.d (𝜑𝐷 ∈ (0[,]+∞))
sge0pr.e (𝜑𝐸 ∈ (0[,]+∞))
sge0pr.cd (𝑘 = 𝐴𝐶 = 𝐷)
sge0pr.ce (𝑘 = 𝐵𝐶 = 𝐸)
sge0pr.ab (𝜑𝐴𝐵)
Assertion
Ref Expression
sge0pr (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝑘,𝑉   𝑘,𝑊   𝜑,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sge0pr
StepHypRef Expression
1 iccssxr 13018 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 sge0pr.e . . . . . . 7 (𝜑𝐸 ∈ (0[,]+∞))
31, 2sseldi 3899 . . . . . 6 (𝜑𝐸 ∈ ℝ*)
4 mnfxr 10890 . . . . . . . 8 -∞ ∈ ℝ*
54a1i 11 . . . . . . 7 (𝜑 → -∞ ∈ ℝ*)
6 0xr 10880 . . . . . . . . 9 0 ∈ ℝ*
76a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℝ*)
8 mnflt0 12717 . . . . . . . . 9 -∞ < 0
98a1i 11 . . . . . . . 8 (𝜑 → -∞ < 0)
10 pnfxr 10887 . . . . . . . . . 10 +∞ ∈ ℝ*
1110a1i 11 . . . . . . . . 9 (𝜑 → +∞ ∈ ℝ*)
12 iccgelb 12991 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐸 ∈ (0[,]+∞)) → 0 ≤ 𝐸)
137, 11, 2, 12syl3anc 1373 . . . . . . . 8 (𝜑 → 0 ≤ 𝐸)
145, 7, 3, 9, 13xrltletrd 12751 . . . . . . 7 (𝜑 → -∞ < 𝐸)
155, 3, 14xrgtned 42534 . . . . . 6 (𝜑𝐸 ≠ -∞)
16 xaddpnf2 12817 . . . . . 6 ((𝐸 ∈ ℝ*𝐸 ≠ -∞) → (+∞ +𝑒 𝐸) = +∞)
173, 15, 16syl2anc 587 . . . . 5 (𝜑 → (+∞ +𝑒 𝐸) = +∞)
1817eqcomd 2743 . . . 4 (𝜑 → +∞ = (+∞ +𝑒 𝐸))
1918adantr 484 . . 3 ((𝜑𝐷 = +∞) → +∞ = (+∞ +𝑒 𝐸))
20 prex 5325 . . . . 5 {𝐴, 𝐵} ∈ V
2120a1i 11 . . . 4 ((𝜑𝐷 = +∞) → {𝐴, 𝐵} ∈ V)
22 sge0pr.cd . . . . . . . . . 10 (𝑘 = 𝐴𝐶 = 𝐷)
2322adantl 485 . . . . . . . . 9 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
24 sge0pr.d . . . . . . . . . 10 (𝜑𝐷 ∈ (0[,]+∞))
2524adantr 484 . . . . . . . . 9 ((𝜑𝑘 = 𝐴) → 𝐷 ∈ (0[,]+∞))
2623, 25eqeltrd 2838 . . . . . . . 8 ((𝜑𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
2726adantlr 715 . . . . . . 7 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
28 simpll 767 . . . . . . . 8 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝜑)
29 simpl 486 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘 ∈ {𝐴, 𝐵})
30 neqne 2948 . . . . . . . . . . 11 𝑘 = 𝐴𝑘𝐴)
3130adantl 485 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘𝐴)
32 elprn1 42849 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ 𝑘𝐴) → 𝑘 = 𝐵)
3329, 31, 32syl2anc 587 . . . . . . . . 9 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
3433adantll 714 . . . . . . . 8 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
35 sge0pr.ce . . . . . . . . . 10 (𝑘 = 𝐵𝐶 = 𝐸)
3635adantl 485 . . . . . . . . 9 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
372adantr 484 . . . . . . . . 9 ((𝜑𝑘 = 𝐵) → 𝐸 ∈ (0[,]+∞))
3836, 37eqeltrd 2838 . . . . . . . 8 ((𝜑𝑘 = 𝐵) → 𝐶 ∈ (0[,]+∞))
3928, 34, 38syl2anc 587 . . . . . . 7 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
4027, 39pm2.61dan 813 . . . . . 6 ((𝜑𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ (0[,]+∞))
41 eqid 2737 . . . . . 6 (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)
4240, 41fmptd 6931 . . . . 5 (𝜑 → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
4342adantr 484 . . . 4 ((𝜑𝐷 = +∞) → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
44 id 22 . . . . . . 7 (𝐷 = +∞ → 𝐷 = +∞)
4544eqcomd 2743 . . . . . 6 (𝐷 = +∞ → +∞ = 𝐷)
4645adantl 485 . . . . 5 ((𝜑𝐷 = +∞) → +∞ = 𝐷)
47 prid1g 4676 . . . . . . . 8 (𝐷 ∈ (0[,]+∞) → 𝐷 ∈ {𝐷, 𝐸})
4824, 47syl 17 . . . . . . 7 (𝜑𝐷 ∈ {𝐷, 𝐸})
49 sge0pr.a . . . . . . . . 9 (𝜑𝐴𝑉)
50 sge0pr.b . . . . . . . . 9 (𝜑𝐵𝑊)
5149, 50, 41, 22, 35rnmptpr 42386 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = {𝐷, 𝐸})
5251eqcomd 2743 . . . . . . 7 (𝜑 → {𝐷, 𝐸} = ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5348, 52eleqtrd 2840 . . . . . 6 (𝜑𝐷 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5453adantr 484 . . . . 5 ((𝜑𝐷 = +∞) → 𝐷 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5546, 54eqeltrd 2838 . . . 4 ((𝜑𝐷 = +∞) → +∞ ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5621, 43, 55sge0pnfval 43586 . . 3 ((𝜑𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = +∞)
57 oveq1 7220 . . . 4 (𝐷 = +∞ → (𝐷 +𝑒 𝐸) = (+∞ +𝑒 𝐸))
5857adantl 485 . . 3 ((𝜑𝐷 = +∞) → (𝐷 +𝑒 𝐸) = (+∞ +𝑒 𝐸))
5919, 56, 583eqtr4d 2787 . 2 ((𝜑𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
601, 24sseldi 3899 . . . . . . . 8 (𝜑𝐷 ∈ ℝ*)
61 iccgelb 12991 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ (0[,]+∞)) → 0 ≤ 𝐷)
627, 11, 24, 61syl3anc 1373 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐷)
635, 7, 60, 9, 62xrltletrd 12751 . . . . . . . . 9 (𝜑 → -∞ < 𝐷)
645, 60, 63xrgtned 42534 . . . . . . . 8 (𝜑𝐷 ≠ -∞)
65 xaddpnf1 12816 . . . . . . . 8 ((𝐷 ∈ ℝ*𝐷 ≠ -∞) → (𝐷 +𝑒 +∞) = +∞)
6660, 64, 65syl2anc 587 . . . . . . 7 (𝜑 → (𝐷 +𝑒 +∞) = +∞)
6766eqcomd 2743 . . . . . 6 (𝜑 → +∞ = (𝐷 +𝑒 +∞))
6867adantr 484 . . . . 5 ((𝜑𝐸 = +∞) → +∞ = (𝐷 +𝑒 +∞))
6920a1i 11 . . . . . 6 ((𝜑𝐸 = +∞) → {𝐴, 𝐵} ∈ V)
7042adantr 484 . . . . . 6 ((𝜑𝐸 = +∞) → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
71 id 22 . . . . . . . . 9 (𝐸 = +∞ → 𝐸 = +∞)
7271eqcomd 2743 . . . . . . . 8 (𝐸 = +∞ → +∞ = 𝐸)
7372adantl 485 . . . . . . 7 ((𝜑𝐸 = +∞) → +∞ = 𝐸)
74 prid2g 4677 . . . . . . . . . 10 (𝐸 ∈ (0[,]+∞) → 𝐸 ∈ {𝐷, 𝐸})
752, 74syl 17 . . . . . . . . 9 (𝜑𝐸 ∈ {𝐷, 𝐸})
7675, 52eleqtrd 2840 . . . . . . . 8 (𝜑𝐸 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7776adantr 484 . . . . . . 7 ((𝜑𝐸 = +∞) → 𝐸 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7873, 77eqeltrd 2838 . . . . . 6 ((𝜑𝐸 = +∞) → +∞ ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7969, 70, 78sge0pnfval 43586 . . . . 5 ((𝜑𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = +∞)
80 oveq2 7221 . . . . . 6 (𝐸 = +∞ → (𝐷 +𝑒 𝐸) = (𝐷 +𝑒 +∞))
8180adantl 485 . . . . 5 ((𝜑𝐸 = +∞) → (𝐷 +𝑒 𝐸) = (𝐷 +𝑒 +∞))
8268, 79, 813eqtr4d 2787 . . . 4 ((𝜑𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
8382adantlr 715 . . 3 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
84 rge0ssre 13044 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
85 ax-resscn 10786 . . . . . . . 8 ℝ ⊆ ℂ
8684, 85sstri 3910 . . . . . . 7 (0[,)+∞) ⊆ ℂ
876a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 0 ∈ ℝ*)
8810a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → +∞ ∈ ℝ*)
8960adantr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ∈ ℝ*)
9062adantr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 0 ≤ 𝐷)
91 pnfge 12722 . . . . . . . . . . . 12 (𝐷 ∈ ℝ*𝐷 ≤ +∞)
9260, 91syl 17 . . . . . . . . . . 11 (𝜑𝐷 ≤ +∞)
9392adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ≤ +∞)
9444necon3bi 2967 . . . . . . . . . . 11 𝐷 = +∞ → 𝐷 ≠ +∞)
9594adantl 485 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ≠ +∞)
9689, 88, 93, 95xrleneltd 42535 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 < +∞)
9787, 88, 89, 90, 96elicod 12985 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ∈ (0[,)+∞))
9897adantr 484 . . . . . . 7 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ (0[,)+∞))
9986, 98sseldi 3899 . . . . . 6 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ ℂ)
1006a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 0 ∈ ℝ*)
10110a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → +∞ ∈ ℝ*)
1023adantr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ*)
10313adantr 484 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 0 ≤ 𝐸)
104 pnfge 12722 . . . . . . . . . . . 12 (𝐸 ∈ ℝ*𝐸 ≤ +∞)
1053, 104syl 17 . . . . . . . . . . 11 (𝜑𝐸 ≤ +∞)
106105adantr 484 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ≤ +∞)
10771necon3bi 2967 . . . . . . . . . . 11 𝐸 = +∞ → 𝐸 ≠ +∞)
108107adantl 485 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ≠ +∞)
109102, 101, 106, 108xrleneltd 42535 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 < +∞)
110100, 101, 102, 103, 109elicod 12985 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ (0[,)+∞))
11186, 110sseldi 3899 . . . . . . 7 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℂ)
112111adantlr 715 . . . . . 6 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℂ)
11399, 112jca 515 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
11449, 50jca 515 . . . . . 6 (𝜑 → (𝐴𝑉𝐵𝑊))
115114ad2antrr 726 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐴𝑉𝐵𝑊))
116 sge0pr.ab . . . . . 6 (𝜑𝐴𝐵)
117116ad2antrr 726 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐴𝐵)
11822, 35, 113, 115, 117sumpr 15312 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸))
119 prfi 8946 . . . . . 6 {𝐴, 𝐵} ∈ Fin
120119a1i 11 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → {𝐴, 𝐵} ∈ Fin)
12122adantl 485 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷)
12297adantr 484 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐷 ∈ (0[,)+∞))
123121, 122eqeltrd 2838 . . . . . . 7 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
124123ad4ant14 752 . . . . . 6 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
125 simp-4l 783 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝜑)
126 simpllr 776 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → ¬ 𝐸 = +∞)
12733adantll 714 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
128363adant2 1133 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸)
1291103adant3 1134 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐸 ∈ (0[,)+∞))
130128, 129eqeltrd 2838 . . . . . . 7 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐶 ∈ (0[,)+∞))
131125, 126, 127, 130syl3anc 1373 . . . . . 6 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
132124, 131pm2.61dan 813 . . . . 5 ((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ (0[,)+∞))
133120, 132sge0fsummpt 43603 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = Σ𝑘 ∈ {𝐴, 𝐵}𝐶)
13484, 98sseldi 3899 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ ℝ)
13584, 110sseldi 3899 . . . . . 6 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ)
136135adantlr 715 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ)
137 rexadd 12822 . . . . 5 ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℝ) → (𝐷 +𝑒 𝐸) = (𝐷 + 𝐸))
138134, 136, 137syl2anc 587 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐷 +𝑒 𝐸) = (𝐷 + 𝐸))
139118, 133, 1383eqtr4d 2787 . . 3 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
14083, 139pm2.61dan 813 . 2 ((𝜑 ∧ ¬ 𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
14159, 140pm2.61dan 813 1 (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  Vcvv 3408  {cpr 4543   class class class wbr 5053  cmpt 5135  ran crn 5552  wf 6376  cfv 6380  (class class class)co 7213  Fincfn 8626  cc 10727  cr 10728  0cc0 10729   + caddc 10732  +∞cpnf 10864  -∞cmnf 10865  *cxr 10866   < clt 10867  cle 10868   +𝑒 cxad 12702  [,)cico 12937  [,]cicc 12938  Σcsu 15249  Σ^csumge0 43575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-xadd 12705  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250  df-sumge0 43576
This theorem is referenced by:  sge0prle  43614  meadjun  43675  ovnsubadd2lem  43858
  Copyright terms: Public domain W3C validator