Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pr Structured version   Visualization version   GIF version

Theorem sge0pr 45158
Description: Sum of a pair of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pr.a (𝜑𝐴𝑉)
sge0pr.b (𝜑𝐵𝑊)
sge0pr.d (𝜑𝐷 ∈ (0[,]+∞))
sge0pr.e (𝜑𝐸 ∈ (0[,]+∞))
sge0pr.cd (𝑘 = 𝐴𝐶 = 𝐷)
sge0pr.ce (𝑘 = 𝐵𝐶 = 𝐸)
sge0pr.ab (𝜑𝐴𝐵)
Assertion
Ref Expression
sge0pr (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝑘,𝑉   𝑘,𝑊   𝜑,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sge0pr
StepHypRef Expression
1 iccssxr 13407 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 sge0pr.e . . . . . . 7 (𝜑𝐸 ∈ (0[,]+∞))
31, 2sselid 3981 . . . . . 6 (𝜑𝐸 ∈ ℝ*)
4 mnfxr 11271 . . . . . . . 8 -∞ ∈ ℝ*
54a1i 11 . . . . . . 7 (𝜑 → -∞ ∈ ℝ*)
6 0xr 11261 . . . . . . . . 9 0 ∈ ℝ*
76a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℝ*)
8 mnflt0 13105 . . . . . . . . 9 -∞ < 0
98a1i 11 . . . . . . . 8 (𝜑 → -∞ < 0)
10 pnfxr 11268 . . . . . . . . . 10 +∞ ∈ ℝ*
1110a1i 11 . . . . . . . . 9 (𝜑 → +∞ ∈ ℝ*)
12 iccgelb 13380 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐸 ∈ (0[,]+∞)) → 0 ≤ 𝐸)
137, 11, 2, 12syl3anc 1372 . . . . . . . 8 (𝜑 → 0 ≤ 𝐸)
145, 7, 3, 9, 13xrltletrd 13140 . . . . . . 7 (𝜑 → -∞ < 𝐸)
155, 3, 14xrgtned 44080 . . . . . 6 (𝜑𝐸 ≠ -∞)
16 xaddpnf2 13206 . . . . . 6 ((𝐸 ∈ ℝ*𝐸 ≠ -∞) → (+∞ +𝑒 𝐸) = +∞)
173, 15, 16syl2anc 585 . . . . 5 (𝜑 → (+∞ +𝑒 𝐸) = +∞)
1817eqcomd 2739 . . . 4 (𝜑 → +∞ = (+∞ +𝑒 𝐸))
1918adantr 482 . . 3 ((𝜑𝐷 = +∞) → +∞ = (+∞ +𝑒 𝐸))
20 prex 5433 . . . . 5 {𝐴, 𝐵} ∈ V
2120a1i 11 . . . 4 ((𝜑𝐷 = +∞) → {𝐴, 𝐵} ∈ V)
22 sge0pr.cd . . . . . . . . . 10 (𝑘 = 𝐴𝐶 = 𝐷)
2322adantl 483 . . . . . . . . 9 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
24 sge0pr.d . . . . . . . . . 10 (𝜑𝐷 ∈ (0[,]+∞))
2524adantr 482 . . . . . . . . 9 ((𝜑𝑘 = 𝐴) → 𝐷 ∈ (0[,]+∞))
2623, 25eqeltrd 2834 . . . . . . . 8 ((𝜑𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
2726adantlr 714 . . . . . . 7 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
28 simpll 766 . . . . . . . 8 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝜑)
29 simpl 484 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘 ∈ {𝐴, 𝐵})
30 neqne 2949 . . . . . . . . . . 11 𝑘 = 𝐴𝑘𝐴)
3130adantl 483 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘𝐴)
32 elprn1 44397 . . . . . . . . . 10 ((𝑘 ∈ {𝐴, 𝐵} ∧ 𝑘𝐴) → 𝑘 = 𝐵)
3329, 31, 32syl2anc 585 . . . . . . . . 9 ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
3433adantll 713 . . . . . . . 8 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
35 sge0pr.ce . . . . . . . . . 10 (𝑘 = 𝐵𝐶 = 𝐸)
3635adantl 483 . . . . . . . . 9 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
372adantr 482 . . . . . . . . 9 ((𝜑𝑘 = 𝐵) → 𝐸 ∈ (0[,]+∞))
3836, 37eqeltrd 2834 . . . . . . . 8 ((𝜑𝑘 = 𝐵) → 𝐶 ∈ (0[,]+∞))
3928, 34, 38syl2anc 585 . . . . . . 7 (((𝜑𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞))
4027, 39pm2.61dan 812 . . . . . 6 ((𝜑𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ (0[,]+∞))
41 eqid 2733 . . . . . 6 (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)
4240, 41fmptd 7114 . . . . 5 (𝜑 → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
4342adantr 482 . . . 4 ((𝜑𝐷 = +∞) → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
44 id 22 . . . . . . 7 (𝐷 = +∞ → 𝐷 = +∞)
4544eqcomd 2739 . . . . . 6 (𝐷 = +∞ → +∞ = 𝐷)
4645adantl 483 . . . . 5 ((𝜑𝐷 = +∞) → +∞ = 𝐷)
47 prid1g 4765 . . . . . . . 8 (𝐷 ∈ (0[,]+∞) → 𝐷 ∈ {𝐷, 𝐸})
4824, 47syl 17 . . . . . . 7 (𝜑𝐷 ∈ {𝐷, 𝐸})
49 sge0pr.a . . . . . . . . 9 (𝜑𝐴𝑉)
50 sge0pr.b . . . . . . . . 9 (𝜑𝐵𝑊)
5149, 50, 41, 22, 35rnmptpr 43921 . . . . . . . 8 (𝜑 → ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = {𝐷, 𝐸})
5251eqcomd 2739 . . . . . . 7 (𝜑 → {𝐷, 𝐸} = ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5348, 52eleqtrd 2836 . . . . . 6 (𝜑𝐷 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5453adantr 482 . . . . 5 ((𝜑𝐷 = +∞) → 𝐷 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5546, 54eqeltrd 2834 . . . 4 ((𝜑𝐷 = +∞) → +∞ ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
5621, 43, 55sge0pnfval 45137 . . 3 ((𝜑𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = +∞)
57 oveq1 7416 . . . 4 (𝐷 = +∞ → (𝐷 +𝑒 𝐸) = (+∞ +𝑒 𝐸))
5857adantl 483 . . 3 ((𝜑𝐷 = +∞) → (𝐷 +𝑒 𝐸) = (+∞ +𝑒 𝐸))
5919, 56, 583eqtr4d 2783 . 2 ((𝜑𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
601, 24sselid 3981 . . . . . . . 8 (𝜑𝐷 ∈ ℝ*)
61 iccgelb 13380 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐷 ∈ (0[,]+∞)) → 0 ≤ 𝐷)
627, 11, 24, 61syl3anc 1372 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐷)
635, 7, 60, 9, 62xrltletrd 13140 . . . . . . . . 9 (𝜑 → -∞ < 𝐷)
645, 60, 63xrgtned 44080 . . . . . . . 8 (𝜑𝐷 ≠ -∞)
65 xaddpnf1 13205 . . . . . . . 8 ((𝐷 ∈ ℝ*𝐷 ≠ -∞) → (𝐷 +𝑒 +∞) = +∞)
6660, 64, 65syl2anc 585 . . . . . . 7 (𝜑 → (𝐷 +𝑒 +∞) = +∞)
6766eqcomd 2739 . . . . . 6 (𝜑 → +∞ = (𝐷 +𝑒 +∞))
6867adantr 482 . . . . 5 ((𝜑𝐸 = +∞) → +∞ = (𝐷 +𝑒 +∞))
6920a1i 11 . . . . . 6 ((𝜑𝐸 = +∞) → {𝐴, 𝐵} ∈ V)
7042adantr 482 . . . . . 6 ((𝜑𝐸 = +∞) → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞))
71 id 22 . . . . . . . . 9 (𝐸 = +∞ → 𝐸 = +∞)
7271eqcomd 2739 . . . . . . . 8 (𝐸 = +∞ → +∞ = 𝐸)
7372adantl 483 . . . . . . 7 ((𝜑𝐸 = +∞) → +∞ = 𝐸)
74 prid2g 4766 . . . . . . . . . 10 (𝐸 ∈ (0[,]+∞) → 𝐸 ∈ {𝐷, 𝐸})
752, 74syl 17 . . . . . . . . 9 (𝜑𝐸 ∈ {𝐷, 𝐸})
7675, 52eleqtrd 2836 . . . . . . . 8 (𝜑𝐸 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7776adantr 482 . . . . . . 7 ((𝜑𝐸 = +∞) → 𝐸 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7873, 77eqeltrd 2834 . . . . . 6 ((𝜑𝐸 = +∞) → +∞ ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶))
7969, 70, 78sge0pnfval 45137 . . . . 5 ((𝜑𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = +∞)
80 oveq2 7417 . . . . . 6 (𝐸 = +∞ → (𝐷 +𝑒 𝐸) = (𝐷 +𝑒 +∞))
8180adantl 483 . . . . 5 ((𝜑𝐸 = +∞) → (𝐷 +𝑒 𝐸) = (𝐷 +𝑒 +∞))
8268, 79, 813eqtr4d 2783 . . . 4 ((𝜑𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
8382adantlr 714 . . 3 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
84 rge0ssre 13433 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
85 ax-resscn 11167 . . . . . . . 8 ℝ ⊆ ℂ
8684, 85sstri 3992 . . . . . . 7 (0[,)+∞) ⊆ ℂ
876a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 0 ∈ ℝ*)
8810a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → +∞ ∈ ℝ*)
8960adantr 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ∈ ℝ*)
9062adantr 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 0 ≤ 𝐷)
91 pnfge 13110 . . . . . . . . . . . 12 (𝐷 ∈ ℝ*𝐷 ≤ +∞)
9260, 91syl 17 . . . . . . . . . . 11 (𝜑𝐷 ≤ +∞)
9392adantr 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ≤ +∞)
9444necon3bi 2968 . . . . . . . . . . 11 𝐷 = +∞ → 𝐷 ≠ +∞)
9594adantl 483 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ≠ +∞)
9689, 88, 93, 95xrleneltd 44081 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 < +∞)
9787, 88, 89, 90, 96elicod 13374 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ∈ (0[,)+∞))
9897adantr 482 . . . . . . 7 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ (0[,)+∞))
9986, 98sselid 3981 . . . . . 6 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ ℂ)
1006a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 0 ∈ ℝ*)
10110a1i 11 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → +∞ ∈ ℝ*)
1023adantr 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ*)
10313adantr 482 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 0 ≤ 𝐸)
104 pnfge 13110 . . . . . . . . . . . 12 (𝐸 ∈ ℝ*𝐸 ≤ +∞)
1053, 104syl 17 . . . . . . . . . . 11 (𝜑𝐸 ≤ +∞)
106105adantr 482 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ≤ +∞)
10771necon3bi 2968 . . . . . . . . . . 11 𝐸 = +∞ → 𝐸 ≠ +∞)
108107adantl 483 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ≠ +∞)
109102, 101, 106, 108xrleneltd 44081 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 < +∞)
110100, 101, 102, 103, 109elicod 13374 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ (0[,)+∞))
11186, 110sselid 3981 . . . . . . 7 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℂ)
112111adantlr 714 . . . . . 6 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℂ)
11399, 112jca 513 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ))
11449, 50jca 513 . . . . . 6 (𝜑 → (𝐴𝑉𝐵𝑊))
115114ad2antrr 725 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐴𝑉𝐵𝑊))
116 sge0pr.ab . . . . . 6 (𝜑𝐴𝐵)
117116ad2antrr 725 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐴𝐵)
11822, 35, 113, 115, 117sumpr 15694 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸))
119 prfi 9322 . . . . . 6 {𝐴, 𝐵} ∈ Fin
120119a1i 11 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → {𝐴, 𝐵} ∈ Fin)
12122adantl 483 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷)
12297adantr 482 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐷 ∈ (0[,)+∞))
123121, 122eqeltrd 2834 . . . . . . 7 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
124123ad4ant14 751 . . . . . 6 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
125 simp-4l 782 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝜑)
126 simpllr 775 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → ¬ 𝐸 = +∞)
12733adantll 713 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵)
128363adant2 1132 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸)
1291103adant3 1133 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐸 ∈ (0[,)+∞))
130128, 129eqeltrd 2834 . . . . . . 7 ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐶 ∈ (0[,)+∞))
131125, 126, 127, 130syl3anc 1372 . . . . . 6 (((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞))
132124, 131pm2.61dan 812 . . . . 5 ((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ (0[,)+∞))
133120, 132sge0fsummpt 45154 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = Σ𝑘 ∈ {𝐴, 𝐵}𝐶)
13484, 98sselid 3981 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ ℝ)
13584, 110sselid 3981 . . . . . 6 ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ)
136135adantlr 714 . . . . 5 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ)
137 rexadd 13211 . . . . 5 ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℝ) → (𝐷 +𝑒 𝐸) = (𝐷 + 𝐸))
138134, 136, 137syl2anc 585 . . . 4 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐷 +𝑒 𝐸) = (𝐷 + 𝐸))
139118, 133, 1383eqtr4d 2783 . . 3 (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
14083, 139pm2.61dan 812 . 2 ((𝜑 ∧ ¬ 𝐷 = +∞) → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
14159, 140pm2.61dan 812 1 (𝜑 → (Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  {cpr 4631   class class class wbr 5149  cmpt 5232  ran crn 5678  wf 6540  cfv 6544  (class class class)co 7409  Fincfn 8939  cc 11108  cr 11109  0cc0 11110   + caddc 11113  +∞cpnf 11245  -∞cmnf 11246  *cxr 11247   < clt 11248  cle 11249   +𝑒 cxad 13090  [,)cico 13326  [,]cicc 13327  Σcsu 15632  Σ^csumge0 45126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-xadd 13093  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-sumge0 45127
This theorem is referenced by:  sge0prle  45165  meadjun  45226  ovnsubadd2lem  45409
  Copyright terms: Public domain W3C validator