Proof of Theorem sge0pr
Step | Hyp | Ref
| Expression |
1 | | iccssxr 13091 |
. . . . . . 7
⊢
(0[,]+∞) ⊆ ℝ* |
2 | | sge0pr.e |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ (0[,]+∞)) |
3 | 1, 2 | sselid 3915 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈
ℝ*) |
4 | | mnfxr 10963 |
. . . . . . . 8
⊢ -∞
∈ ℝ* |
5 | 4 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → -∞ ∈
ℝ*) |
6 | | 0xr 10953 |
. . . . . . . . 9
⊢ 0 ∈
ℝ* |
7 | 6 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ*) |
8 | | mnflt0 12790 |
. . . . . . . . 9
⊢ -∞
< 0 |
9 | 8 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → -∞ <
0) |
10 | | pnfxr 10960 |
. . . . . . . . . 10
⊢ +∞
∈ ℝ* |
11 | 10 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → +∞ ∈
ℝ*) |
12 | | iccgelb 13064 |
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
𝐸 ∈ (0[,]+∞))
→ 0 ≤ 𝐸) |
13 | 7, 11, 2, 12 | syl3anc 1369 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 𝐸) |
14 | 5, 7, 3, 9, 13 | xrltletrd 12824 |
. . . . . . 7
⊢ (𝜑 → -∞ < 𝐸) |
15 | 5, 3, 14 | xrgtned 42751 |
. . . . . 6
⊢ (𝜑 → 𝐸 ≠ -∞) |
16 | | xaddpnf2 12890 |
. . . . . 6
⊢ ((𝐸 ∈ ℝ*
∧ 𝐸 ≠ -∞)
→ (+∞ +𝑒 𝐸) = +∞) |
17 | 3, 15, 16 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (+∞
+𝑒 𝐸) =
+∞) |
18 | 17 | eqcomd 2744 |
. . . 4
⊢ (𝜑 → +∞ = (+∞
+𝑒 𝐸)) |
19 | 18 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐷 = +∞) → +∞ = (+∞
+𝑒 𝐸)) |
20 | | prex 5350 |
. . . . 5
⊢ {𝐴, 𝐵} ∈ V |
21 | 20 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝐷 = +∞) → {𝐴, 𝐵} ∈ V) |
22 | | sge0pr.cd |
. . . . . . . . . 10
⊢ (𝑘 = 𝐴 → 𝐶 = 𝐷) |
23 | 22 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) |
24 | | sge0pr.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) |
25 | 24 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐷 ∈ (0[,]+∞)) |
26 | 23, 25 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞)) |
27 | 26 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞)) |
28 | | simpll 763 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝜑) |
29 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘 ∈ {𝐴, 𝐵}) |
30 | | neqne 2950 |
. . . . . . . . . . 11
⊢ (¬
𝑘 = 𝐴 → 𝑘 ≠ 𝐴) |
31 | 30 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘 ≠ 𝐴) |
32 | | elprn1 43064 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ {𝐴, 𝐵} ∧ 𝑘 ≠ 𝐴) → 𝑘 = 𝐵) |
33 | 29, 31, 32 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝑘 ∈ {𝐴, 𝐵} ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵) |
34 | 33 | adantll 710 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵) |
35 | | sge0pr.ce |
. . . . . . . . . 10
⊢ (𝑘 = 𝐵 → 𝐶 = 𝐸) |
36 | 35 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) |
37 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐸 ∈ (0[,]+∞)) |
38 | 36, 37 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 ∈ (0[,]+∞)) |
39 | 28, 34, 38 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝐶 ∈ (0[,]+∞)) |
40 | 27, 39 | pm2.61dan 809 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ (0[,]+∞)) |
41 | | eqid 2738 |
. . . . . 6
⊢ (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) |
42 | 40, 41 | fmptd 6970 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞)) |
43 | 42 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐷 = +∞) → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞)) |
44 | | id 22 |
. . . . . . 7
⊢ (𝐷 = +∞ → 𝐷 = +∞) |
45 | 44 | eqcomd 2744 |
. . . . . 6
⊢ (𝐷 = +∞ → +∞ =
𝐷) |
46 | 45 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 = +∞) → +∞ = 𝐷) |
47 | | prid1g 4693 |
. . . . . . . 8
⊢ (𝐷 ∈ (0[,]+∞) →
𝐷 ∈ {𝐷, 𝐸}) |
48 | 24, 47 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ {𝐷, 𝐸}) |
49 | | sge0pr.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
50 | | sge0pr.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
51 | 49, 50, 41, 22, 35 | rnmptpr 42602 |
. . . . . . . 8
⊢ (𝜑 → ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶) = {𝐷, 𝐸}) |
52 | 51 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → {𝐷, 𝐸} = ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) |
53 | 48, 52 | eleqtrd 2841 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) |
54 | 53 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 = +∞) → 𝐷 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) |
55 | 46, 54 | eqeltrd 2839 |
. . . 4
⊢ ((𝜑 ∧ 𝐷 = +∞) → +∞ ∈ ran
(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) |
56 | 21, 43, 55 | sge0pnfval 43801 |
. . 3
⊢ ((𝜑 ∧ 𝐷 = +∞) →
(Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = +∞) |
57 | | oveq1 7262 |
. . . 4
⊢ (𝐷 = +∞ → (𝐷 +𝑒 𝐸) = (+∞
+𝑒 𝐸)) |
58 | 57 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝐷 = +∞) → (𝐷 +𝑒 𝐸) = (+∞ +𝑒 𝐸)) |
59 | 19, 56, 58 | 3eqtr4d 2788 |
. 2
⊢ ((𝜑 ∧ 𝐷 = +∞) →
(Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸)) |
60 | 1, 24 | sselid 3915 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈
ℝ*) |
61 | | iccgelb 13064 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
𝐷 ∈ (0[,]+∞))
→ 0 ≤ 𝐷) |
62 | 7, 11, 24, 61 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ 𝐷) |
63 | 5, 7, 60, 9, 62 | xrltletrd 12824 |
. . . . . . . . 9
⊢ (𝜑 → -∞ < 𝐷) |
64 | 5, 60, 63 | xrgtned 42751 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ≠ -∞) |
65 | | xaddpnf1 12889 |
. . . . . . . 8
⊢ ((𝐷 ∈ ℝ*
∧ 𝐷 ≠ -∞)
→ (𝐷
+𝑒 +∞) = +∞) |
66 | 60, 64, 65 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝐷 +𝑒 +∞) =
+∞) |
67 | 66 | eqcomd 2744 |
. . . . . 6
⊢ (𝜑 → +∞ = (𝐷 +𝑒
+∞)) |
68 | 67 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 = +∞) → +∞ = (𝐷 +𝑒
+∞)) |
69 | 20 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = +∞) → {𝐴, 𝐵} ∈ V) |
70 | 42 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = +∞) → (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶):{𝐴, 𝐵}⟶(0[,]+∞)) |
71 | | id 22 |
. . . . . . . . 9
⊢ (𝐸 = +∞ → 𝐸 = +∞) |
72 | 71 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝐸 = +∞ → +∞ =
𝐸) |
73 | 72 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 = +∞) → +∞ = 𝐸) |
74 | | prid2g 4694 |
. . . . . . . . . 10
⊢ (𝐸 ∈ (0[,]+∞) →
𝐸 ∈ {𝐷, 𝐸}) |
75 | 2, 74 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ {𝐷, 𝐸}) |
76 | 75, 52 | eleqtrd 2841 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) |
77 | 76 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐸 = +∞) → 𝐸 ∈ ran (𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) |
78 | 73, 77 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐸 = +∞) → +∞ ∈ ran
(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) |
79 | 69, 70, 78 | sge0pnfval 43801 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 = +∞) →
(Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = +∞) |
80 | | oveq2 7263 |
. . . . . 6
⊢ (𝐸 = +∞ → (𝐷 +𝑒 𝐸) = (𝐷 +𝑒
+∞)) |
81 | 80 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐸 = +∞) → (𝐷 +𝑒 𝐸) = (𝐷 +𝑒
+∞)) |
82 | 68, 79, 81 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ 𝐸 = +∞) →
(Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸)) |
83 | 82 | adantlr 711 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝐸 = +∞) →
(Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸)) |
84 | | rge0ssre 13117 |
. . . . . . . 8
⊢
(0[,)+∞) ⊆ ℝ |
85 | | ax-resscn 10859 |
. . . . . . . 8
⊢ ℝ
⊆ ℂ |
86 | 84, 85 | sstri 3926 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℂ |
87 | 6 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐷 = +∞) → 0 ∈
ℝ*) |
88 | 10 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐷 = +∞) → +∞ ∈
ℝ*) |
89 | 60 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ∈
ℝ*) |
90 | 62 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐷 = +∞) → 0 ≤ 𝐷) |
91 | | pnfge 12795 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ ℝ*
→ 𝐷 ≤
+∞) |
92 | 60, 91 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ≤ +∞) |
93 | 92 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ≤ +∞) |
94 | 44 | necon3bi 2969 |
. . . . . . . . . . 11
⊢ (¬
𝐷 = +∞ → 𝐷 ≠ +∞) |
95 | 94 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ≠ +∞) |
96 | 89, 88, 93, 95 | xrleneltd 42752 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 < +∞) |
97 | 87, 88, 89, 90, 96 | elicod 13058 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐷 = +∞) → 𝐷 ∈ (0[,)+∞)) |
98 | 97 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ (0[,)+∞)) |
99 | 86, 98 | sselid 3915 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ ℂ) |
100 | 6 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐸 = +∞) → 0 ∈
ℝ*) |
101 | 10 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐸 = +∞) → +∞ ∈
ℝ*) |
102 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈
ℝ*) |
103 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐸 = +∞) → 0 ≤ 𝐸) |
104 | | pnfge 12795 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ ℝ*
→ 𝐸 ≤
+∞) |
105 | 3, 104 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ≤ +∞) |
106 | 105 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ≤ +∞) |
107 | 71 | necon3bi 2969 |
. . . . . . . . . . 11
⊢ (¬
𝐸 = +∞ → 𝐸 ≠ +∞) |
108 | 107 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ≠ +∞) |
109 | 102, 101,
106, 108 | xrleneltd 42752 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 < +∞) |
110 | 100, 101,
102, 103, 109 | elicod 13058 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ (0[,)+∞)) |
111 | 86, 110 | sselid 3915 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℂ) |
112 | 111 | adantlr 711 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℂ) |
113 | 99, 112 | jca 511 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) |
114 | 49, 50 | jca 511 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
115 | 114 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
116 | | sge0pr.ab |
. . . . . 6
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
117 | 116 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐴 ≠ 𝐵) |
118 | 22, 35, 113, 115, 117 | sumpr 15388 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → Σ𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 + 𝐸)) |
119 | | prfi 9019 |
. . . . . 6
⊢ {𝐴, 𝐵} ∈ Fin |
120 | 119 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → {𝐴, 𝐵} ∈ Fin) |
121 | 22 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷) |
122 | 97 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐷 ∈ (0[,)+∞)) |
123 | 121, 122 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞)) |
124 | 123 | ad4ant14 748 |
. . . . . 6
⊢
(((((𝜑 ∧ ¬
𝐷 = +∞) ∧ ¬
𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞)) |
125 | | simp-4l 779 |
. . . . . . 7
⊢
(((((𝜑 ∧ ¬
𝐷 = +∞) ∧ ¬
𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝜑) |
126 | | simpllr 772 |
. . . . . . 7
⊢
(((((𝜑 ∧ ¬
𝐷 = +∞) ∧ ¬
𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → ¬ 𝐸 = +∞) |
127 | 33 | adantll 710 |
. . . . . . 7
⊢
(((((𝜑 ∧ ¬
𝐷 = +∞) ∧ ¬
𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝑘 = 𝐵) |
128 | 36 | 3adant2 1129 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸) |
129 | 110 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐸 ∈ (0[,)+∞)) |
130 | 128, 129 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐸 = +∞ ∧ 𝑘 = 𝐵) → 𝐶 ∈ (0[,)+∞)) |
131 | 125, 126,
127, 130 | syl3anc 1369 |
. . . . . 6
⊢
(((((𝜑 ∧ ¬
𝐷 = +∞) ∧ ¬
𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) ∧ ¬ 𝑘 = 𝐴) → 𝐶 ∈ (0[,)+∞)) |
132 | 124, 131 | pm2.61dan 809 |
. . . . 5
⊢ ((((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) ∧ 𝑘 ∈ {𝐴, 𝐵}) → 𝐶 ∈ (0[,)+∞)) |
133 | 120, 132 | sge0fsummpt 43818 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) →
(Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = Σ𝑘 ∈ {𝐴, 𝐵}𝐶) |
134 | 84, 98 | sselid 3915 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐷 ∈ ℝ) |
135 | 84, 110 | sselid 3915 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ) |
136 | 135 | adantlr 711 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → 𝐸 ∈ ℝ) |
137 | | rexadd 12895 |
. . . . 5
⊢ ((𝐷 ∈ ℝ ∧ 𝐸 ∈ ℝ) → (𝐷 +𝑒 𝐸) = (𝐷 + 𝐸)) |
138 | 134, 136,
137 | syl2anc 583 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) → (𝐷 +𝑒 𝐸) = (𝐷 + 𝐸)) |
139 | 118, 133,
138 | 3eqtr4d 2788 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐷 = +∞) ∧ ¬ 𝐸 = +∞) →
(Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸)) |
140 | 83, 139 | pm2.61dan 809 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐷 = +∞) →
(Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸)) |
141 | 59, 140 | pm2.61dan 809 |
1
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ {𝐴, 𝐵} ↦ 𝐶)) = (𝐷 +𝑒 𝐸)) |