Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo1 Structured version   Visualization version   GIF version

Theorem lptioo1 42274
Description: The lower bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo1.1 𝐽 = (topGen‘ran (,))
lptioo1.2 (𝜑𝐴 ∈ ℝ)
lptioo1.3 (𝜑𝐵 ∈ ℝ*)
lptioo1.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
lptioo1 (𝜑𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))

Proof of Theorem lptioo1
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 4060 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐴}) ⊆ (𝐴(,)𝐵))
2 simpr 488 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
3 lbioo 12757 . . . . . . . . . . . 12 ¬ 𝐴 ∈ (𝐴(,)𝐵)
4 eleq1 2877 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵)))
54biimpcd 252 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴(,)𝐵) → (𝑥 = 𝐴𝐴 ∈ (𝐴(,)𝐵)))
63, 5mtoi 202 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 𝐴)
76adantl 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
8 velsn 4541 . . . . . . . . . 10 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
97, 8sylnibr 332 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {𝐴})
102, 9eldifd 3892 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ((𝐴(,)𝐵) ∖ {𝐴}))
111, 10eqelssd 3936 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵))
1211ineq2d 4139 . . . . . 6 (𝜑 → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
1312ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
14 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ ℝ*)
15 simplrr 777 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ ℝ*)
16 lptioo1.2 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1716rexrd 10680 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
18 lptioo1.3 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
1917, 18jca 515 . . . . . . . 8 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
2019ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
21 iooin 12760 . . . . . . 7 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
2214, 15, 20, 21syl21anc 836 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
23 elioo3g 12755 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝑎(,)𝑏) ↔ ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝑎 < 𝐴𝐴 < 𝑏)))
2423biimpi 219 . . . . . . . . . . . . 13 (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝑎 < 𝐴𝐴 < 𝑏)))
2524simpld 498 . . . . . . . . . . . 12 (𝐴 ∈ (𝑎(,)𝑏) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐴 ∈ ℝ*))
2625simp1d 1139 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝑎 ∈ ℝ*)
2725simp3d 1141 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝐴 ∈ ℝ*)
2824simprd 499 . . . . . . . . . . . 12 (𝐴 ∈ (𝑎(,)𝑏) → (𝑎 < 𝐴𝐴 < 𝑏))
2928simpld 498 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝑎 < 𝐴)
3026, 27, 29xrltled 12531 . . . . . . . . . 10 (𝐴 ∈ (𝑎(,)𝑏) → 𝑎𝐴)
3130iftrued 4433 . . . . . . . . 9 (𝐴 ∈ (𝑎(,)𝑏) → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
3231adantl 485 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
3328simprd 499 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝐴 < 𝑏)
3433ad2antlr 726 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝐴 < 𝑏)
35 iftrue 4431 . . . . . . . . . . . 12 (𝑏𝐵 → if(𝑏𝐵, 𝑏, 𝐵) = 𝑏)
3635eqcomd 2804 . . . . . . . . . . 11 (𝑏𝐵𝑏 = if(𝑏𝐵, 𝑏, 𝐵))
3736adantl 485 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝑏 = if(𝑏𝐵, 𝑏, 𝐵))
3834, 37breqtrd 5056 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝐴 < if(𝑏𝐵, 𝑏, 𝐵))
39 lptioo1.4 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
4039ad3antrrr 729 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐴 < 𝐵)
41 iffalse 4434 . . . . . . . . . . . 12 𝑏𝐵 → if(𝑏𝐵, 𝑏, 𝐵) = 𝐵)
4241eqcomd 2804 . . . . . . . . . . 11 𝑏𝐵𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4342adantl 485 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4440, 43breqtrd 5056 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐴 < if(𝑏𝐵, 𝑏, 𝐵))
4538, 44pm2.61dan 812 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → 𝐴 < if(𝑏𝐵, 𝑏, 𝐵))
4632, 45eqbrtrd 5052 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵))
4717ad3antrrr 729 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → 𝐴 ∈ ℝ*)
4814adantr 484 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → 𝑎 ∈ ℝ*)
4947, 48ifclda 4459 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ*)
5015adantr 484 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝑏 ∈ ℝ*)
5118ad3antrrr 729 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐵 ∈ ℝ*)
5250, 51ifclda 4459 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*)
53 ioon0 12752 . . . . . . . 8 ((if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ* ∧ if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5449, 52, 53syl2anc 587 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5546, 54mpbird 260 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅)
5622, 55eqnetrd 3054 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) ≠ ∅)
5713, 56eqnetrd 3054 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅)
5857ex 416 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) → (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅))
5958ralrimivva 3156 . 2 (𝜑 → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅))
60 lptioo1.1 . . 3 𝐽 = (topGen‘ran (,))
61 ioossre 12786 . . . 4 (𝐴(,)𝐵) ⊆ ℝ
6261a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
6360, 62, 16islptre 42261 . 2 (𝜑 → (𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅)))
6459, 63mpbird 260 1 (𝜑𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  cdif 3878  cin 3880  wss 3881  c0 4243  ifcif 4425  {csn 4525   class class class wbr 5030  ran crn 5520  cfv 6324  (class class class)co 7135  cr 10525  *cxr 10663   < clt 10664  cle 10665  (,)cioo 12726  topGenctg 16703  limPtclp 21739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-ioo 12730  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741
This theorem is referenced by:  lptioo1cn  42288  fouriersw  42873
  Copyright terms: Public domain W3C validator