Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo1 Structured version   Visualization version   GIF version

Theorem lptioo1 44338
Description: The lower bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo1.1 𝐽 = (topGenβ€˜ran (,))
lptioo1.2 (πœ‘ β†’ 𝐴 ∈ ℝ)
lptioo1.3 (πœ‘ β†’ 𝐡 ∈ ℝ*)
lptioo1.4 (πœ‘ β†’ 𝐴 < 𝐡)
Assertion
Ref Expression
lptioo1 (πœ‘ β†’ 𝐴 ∈ ((limPtβ€˜π½)β€˜(𝐴(,)𝐡)))

Proof of Theorem lptioo1
Dummy variables π‘Ž 𝑏 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 4132 . . . . . . . 8 (πœ‘ β†’ ((𝐴(,)𝐡) βˆ– {𝐴}) βŠ† (𝐴(,)𝐡))
2 simpr 485 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ π‘₯ ∈ (𝐴(,)𝐡))
3 lbioo 13354 . . . . . . . . . . . 12 Β¬ 𝐴 ∈ (𝐴(,)𝐡)
4 eleq1 2821 . . . . . . . . . . . . 13 (π‘₯ = 𝐴 β†’ (π‘₯ ∈ (𝐴(,)𝐡) ↔ 𝐴 ∈ (𝐴(,)𝐡)))
54biimpcd 248 . . . . . . . . . . . 12 (π‘₯ ∈ (𝐴(,)𝐡) β†’ (π‘₯ = 𝐴 β†’ 𝐴 ∈ (𝐴(,)𝐡)))
63, 5mtoi 198 . . . . . . . . . . 11 (π‘₯ ∈ (𝐴(,)𝐡) β†’ Β¬ π‘₯ = 𝐴)
76adantl 482 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ Β¬ π‘₯ = 𝐴)
8 velsn 4644 . . . . . . . . . 10 (π‘₯ ∈ {𝐴} ↔ π‘₯ = 𝐴)
97, 8sylnibr 328 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ Β¬ π‘₯ ∈ {𝐴})
102, 9eldifd 3959 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ π‘₯ ∈ ((𝐴(,)𝐡) βˆ– {𝐴}))
111, 10eqelssd 4003 . . . . . . 7 (πœ‘ β†’ ((𝐴(,)𝐡) βˆ– {𝐴}) = (𝐴(,)𝐡))
1211ineq2d 4212 . . . . . 6 (πœ‘ β†’ ((π‘Ž(,)𝑏) ∩ ((𝐴(,)𝐡) βˆ– {𝐴})) = ((π‘Ž(,)𝑏) ∩ (𝐴(,)𝐡)))
1312ad2antrr 724 . . . . 5 (((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) β†’ ((π‘Ž(,)𝑏) ∩ ((𝐴(,)𝐡) βˆ– {𝐴})) = ((π‘Ž(,)𝑏) ∩ (𝐴(,)𝐡)))
14 simplrl 775 . . . . . . 7 (((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) β†’ π‘Ž ∈ ℝ*)
15 simplrr 776 . . . . . . 7 (((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) β†’ 𝑏 ∈ ℝ*)
16 lptioo1.2 . . . . . . . . . 10 (πœ‘ β†’ 𝐴 ∈ ℝ)
1716rexrd 11263 . . . . . . . . 9 (πœ‘ β†’ 𝐴 ∈ ℝ*)
18 lptioo1.3 . . . . . . . . 9 (πœ‘ β†’ 𝐡 ∈ ℝ*)
1917, 18jca 512 . . . . . . . 8 (πœ‘ β†’ (𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*))
2019ad2antrr 724 . . . . . . 7 (((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) β†’ (𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*))
21 iooin 13357 . . . . . . 7 (((π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ (𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ*)) β†’ ((π‘Ž(,)𝑏) ∩ (𝐴(,)𝐡)) = (if(π‘Ž ≀ 𝐴, 𝐴, π‘Ž)(,)if(𝑏 ≀ 𝐡, 𝑏, 𝐡)))
2214, 15, 20, 21syl21anc 836 . . . . . 6 (((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) β†’ ((π‘Ž(,)𝑏) ∩ (𝐴(,)𝐡)) = (if(π‘Ž ≀ 𝐴, 𝐴, π‘Ž)(,)if(𝑏 ≀ 𝐡, 𝑏, 𝐡)))
23 elioo3g 13352 . . . . . . . . . . . . . 14 (𝐴 ∈ (π‘Ž(,)𝑏) ↔ ((π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ∧ (π‘Ž < 𝐴 ∧ 𝐴 < 𝑏)))
2423biimpi 215 . . . . . . . . . . . . 13 (𝐴 ∈ (π‘Ž(,)𝑏) β†’ ((π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) ∧ (π‘Ž < 𝐴 ∧ 𝐴 < 𝑏)))
2524simpld 495 . . . . . . . . . . . 12 (𝐴 ∈ (π‘Ž(,)𝑏) β†’ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ 𝐴 ∈ ℝ*))
2625simp1d 1142 . . . . . . . . . . 11 (𝐴 ∈ (π‘Ž(,)𝑏) β†’ π‘Ž ∈ ℝ*)
2725simp3d 1144 . . . . . . . . . . 11 (𝐴 ∈ (π‘Ž(,)𝑏) β†’ 𝐴 ∈ ℝ*)
2824simprd 496 . . . . . . . . . . . 12 (𝐴 ∈ (π‘Ž(,)𝑏) β†’ (π‘Ž < 𝐴 ∧ 𝐴 < 𝑏))
2928simpld 495 . . . . . . . . . . 11 (𝐴 ∈ (π‘Ž(,)𝑏) β†’ π‘Ž < 𝐴)
3026, 27, 29xrltled 13128 . . . . . . . . . 10 (𝐴 ∈ (π‘Ž(,)𝑏) β†’ π‘Ž ≀ 𝐴)
3130iftrued 4536 . . . . . . . . 9 (𝐴 ∈ (π‘Ž(,)𝑏) β†’ if(π‘Ž ≀ 𝐴, 𝐴, π‘Ž) = 𝐴)
3231adantl 482 . . . . . . . 8 (((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) β†’ if(π‘Ž ≀ 𝐴, 𝐴, π‘Ž) = 𝐴)
3328simprd 496 . . . . . . . . . . 11 (𝐴 ∈ (π‘Ž(,)𝑏) β†’ 𝐴 < 𝑏)
3433ad2antlr 725 . . . . . . . . . 10 ((((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) ∧ 𝑏 ≀ 𝐡) β†’ 𝐴 < 𝑏)
35 iftrue 4534 . . . . . . . . . . . 12 (𝑏 ≀ 𝐡 β†’ if(𝑏 ≀ 𝐡, 𝑏, 𝐡) = 𝑏)
3635eqcomd 2738 . . . . . . . . . . 11 (𝑏 ≀ 𝐡 β†’ 𝑏 = if(𝑏 ≀ 𝐡, 𝑏, 𝐡))
3736adantl 482 . . . . . . . . . 10 ((((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) ∧ 𝑏 ≀ 𝐡) β†’ 𝑏 = if(𝑏 ≀ 𝐡, 𝑏, 𝐡))
3834, 37breqtrd 5174 . . . . . . . . 9 ((((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) ∧ 𝑏 ≀ 𝐡) β†’ 𝐴 < if(𝑏 ≀ 𝐡, 𝑏, 𝐡))
39 lptioo1.4 . . . . . . . . . . 11 (πœ‘ β†’ 𝐴 < 𝐡)
4039ad3antrrr 728 . . . . . . . . . 10 ((((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) ∧ Β¬ 𝑏 ≀ 𝐡) β†’ 𝐴 < 𝐡)
41 iffalse 4537 . . . . . . . . . . . 12 (Β¬ 𝑏 ≀ 𝐡 β†’ if(𝑏 ≀ 𝐡, 𝑏, 𝐡) = 𝐡)
4241eqcomd 2738 . . . . . . . . . . 11 (Β¬ 𝑏 ≀ 𝐡 β†’ 𝐡 = if(𝑏 ≀ 𝐡, 𝑏, 𝐡))
4342adantl 482 . . . . . . . . . 10 ((((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) ∧ Β¬ 𝑏 ≀ 𝐡) β†’ 𝐡 = if(𝑏 ≀ 𝐡, 𝑏, 𝐡))
4440, 43breqtrd 5174 . . . . . . . . 9 ((((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) ∧ Β¬ 𝑏 ≀ 𝐡) β†’ 𝐴 < if(𝑏 ≀ 𝐡, 𝑏, 𝐡))
4538, 44pm2.61dan 811 . . . . . . . 8 (((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) β†’ 𝐴 < if(𝑏 ≀ 𝐡, 𝑏, 𝐡))
4632, 45eqbrtrd 5170 . . . . . . 7 (((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) β†’ if(π‘Ž ≀ 𝐴, 𝐴, π‘Ž) < if(𝑏 ≀ 𝐡, 𝑏, 𝐡))
4717ad3antrrr 728 . . . . . . . . 9 ((((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) ∧ π‘Ž ≀ 𝐴) β†’ 𝐴 ∈ ℝ*)
4814adantr 481 . . . . . . . . 9 ((((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) ∧ Β¬ π‘Ž ≀ 𝐴) β†’ π‘Ž ∈ ℝ*)
4947, 48ifclda 4563 . . . . . . . 8 (((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) β†’ if(π‘Ž ≀ 𝐴, 𝐴, π‘Ž) ∈ ℝ*)
5015adantr 481 . . . . . . . . 9 ((((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) ∧ 𝑏 ≀ 𝐡) β†’ 𝑏 ∈ ℝ*)
5118ad3antrrr 728 . . . . . . . . 9 ((((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) ∧ Β¬ 𝑏 ≀ 𝐡) β†’ 𝐡 ∈ ℝ*)
5250, 51ifclda 4563 . . . . . . . 8 (((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) β†’ if(𝑏 ≀ 𝐡, 𝑏, 𝐡) ∈ ℝ*)
53 ioon0 13349 . . . . . . . 8 ((if(π‘Ž ≀ 𝐴, 𝐴, π‘Ž) ∈ ℝ* ∧ if(𝑏 ≀ 𝐡, 𝑏, 𝐡) ∈ ℝ*) β†’ ((if(π‘Ž ≀ 𝐴, 𝐴, π‘Ž)(,)if(𝑏 ≀ 𝐡, 𝑏, 𝐡)) β‰  βˆ… ↔ if(π‘Ž ≀ 𝐴, 𝐴, π‘Ž) < if(𝑏 ≀ 𝐡, 𝑏, 𝐡)))
5449, 52, 53syl2anc 584 . . . . . . 7 (((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) β†’ ((if(π‘Ž ≀ 𝐴, 𝐴, π‘Ž)(,)if(𝑏 ≀ 𝐡, 𝑏, 𝐡)) β‰  βˆ… ↔ if(π‘Ž ≀ 𝐴, 𝐴, π‘Ž) < if(𝑏 ≀ 𝐡, 𝑏, 𝐡)))
5546, 54mpbird 256 . . . . . 6 (((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) β†’ (if(π‘Ž ≀ 𝐴, 𝐴, π‘Ž)(,)if(𝑏 ≀ 𝐡, 𝑏, 𝐡)) β‰  βˆ…)
5622, 55eqnetrd 3008 . . . . 5 (((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) β†’ ((π‘Ž(,)𝑏) ∩ (𝐴(,)𝐡)) β‰  βˆ…)
5713, 56eqnetrd 3008 . . . 4 (((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (π‘Ž(,)𝑏)) β†’ ((π‘Ž(,)𝑏) ∩ ((𝐴(,)𝐡) βˆ– {𝐴})) β‰  βˆ…)
5857ex 413 . . 3 ((πœ‘ ∧ (π‘Ž ∈ ℝ* ∧ 𝑏 ∈ ℝ*)) β†’ (𝐴 ∈ (π‘Ž(,)𝑏) β†’ ((π‘Ž(,)𝑏) ∩ ((𝐴(,)𝐡) βˆ– {𝐴})) β‰  βˆ…))
5958ralrimivva 3200 . 2 (πœ‘ β†’ βˆ€π‘Ž ∈ ℝ* βˆ€π‘ ∈ ℝ* (𝐴 ∈ (π‘Ž(,)𝑏) β†’ ((π‘Ž(,)𝑏) ∩ ((𝐴(,)𝐡) βˆ– {𝐴})) β‰  βˆ…))
60 lptioo1.1 . . 3 𝐽 = (topGenβ€˜ran (,))
61 ioossre 13384 . . . 4 (𝐴(,)𝐡) βŠ† ℝ
6261a1i 11 . . 3 (πœ‘ β†’ (𝐴(,)𝐡) βŠ† ℝ)
6360, 62, 16islptre 44325 . 2 (πœ‘ β†’ (𝐴 ∈ ((limPtβ€˜π½)β€˜(𝐴(,)𝐡)) ↔ βˆ€π‘Ž ∈ ℝ* βˆ€π‘ ∈ ℝ* (𝐴 ∈ (π‘Ž(,)𝑏) β†’ ((π‘Ž(,)𝑏) ∩ ((𝐴(,)𝐡) βˆ– {𝐴})) β‰  βˆ…)))
6459, 63mpbird 256 1 (πœ‘ β†’ 𝐴 ∈ ((limPtβ€˜π½)β€˜(𝐴(,)𝐡)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   βˆ– cdif 3945   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322  ifcif 4528  {csn 4628   class class class wbr 5148  ran crn 5677  β€˜cfv 6543  (class class class)co 7408  β„cr 11108  β„*cxr 11246   < clt 11247   ≀ cle 11248  (,)cioo 13323  topGenctg 17382  limPtclp 22637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-ioo 13327  df-topgen 17388  df-top 22395  df-topon 22412  df-bases 22448  df-cld 22522  df-ntr 22523  df-cls 22524  df-nei 22601  df-lp 22639
This theorem is referenced by:  lptioo1cn  44352  fouriersw  44937
  Copyright terms: Public domain W3C validator