Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo1 Structured version   Visualization version   GIF version

Theorem lptioo1 41789
Description: The lower bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo1.1 𝐽 = (topGen‘ran (,))
lptioo1.2 (𝜑𝐴 ∈ ℝ)
lptioo1.3 (𝜑𝐵 ∈ ℝ*)
lptioo1.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
lptioo1 (𝜑𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))

Proof of Theorem lptioo1
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 4106 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐴}) ⊆ (𝐴(,)𝐵))
2 simpr 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
3 lbioo 12757 . . . . . . . . . . . 12 ¬ 𝐴 ∈ (𝐴(,)𝐵)
4 eleq1 2897 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵)))
54biimpcd 250 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴(,)𝐵) → (𝑥 = 𝐴𝐴 ∈ (𝐴(,)𝐵)))
63, 5mtoi 200 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 𝐴)
76adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
8 velsn 4573 . . . . . . . . . 10 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
97, 8sylnibr 330 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {𝐴})
102, 9eldifd 3944 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ((𝐴(,)𝐵) ∖ {𝐴}))
111, 10eqelssd 3985 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵))
1211ineq2d 4186 . . . . . 6 (𝜑 → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
1312ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
14 simplrl 773 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ ℝ*)
15 simplrr 774 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ ℝ*)
16 lptioo1.2 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1716rexrd 10679 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
18 lptioo1.3 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
1917, 18jca 512 . . . . . . . 8 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
2019ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
21 iooin 12760 . . . . . . 7 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
2214, 15, 20, 21syl21anc 833 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
23 elioo3g 12755 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝑎(,)𝑏) ↔ ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝑎 < 𝐴𝐴 < 𝑏)))
2423biimpi 217 . . . . . . . . . . . . 13 (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝑎 < 𝐴𝐴 < 𝑏)))
2524simpld 495 . . . . . . . . . . . 12 (𝐴 ∈ (𝑎(,)𝑏) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐴 ∈ ℝ*))
2625simp1d 1134 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝑎 ∈ ℝ*)
2725simp3d 1136 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝐴 ∈ ℝ*)
2824simprd 496 . . . . . . . . . . . 12 (𝐴 ∈ (𝑎(,)𝑏) → (𝑎 < 𝐴𝐴 < 𝑏))
2928simpld 495 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝑎 < 𝐴)
3026, 27, 29xrltled 12531 . . . . . . . . . 10 (𝐴 ∈ (𝑎(,)𝑏) → 𝑎𝐴)
3130iftrued 4471 . . . . . . . . 9 (𝐴 ∈ (𝑎(,)𝑏) → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
3231adantl 482 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
3328simprd 496 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝐴 < 𝑏)
3433ad2antlr 723 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝐴 < 𝑏)
35 iftrue 4469 . . . . . . . . . . . 12 (𝑏𝐵 → if(𝑏𝐵, 𝑏, 𝐵) = 𝑏)
3635eqcomd 2824 . . . . . . . . . . 11 (𝑏𝐵𝑏 = if(𝑏𝐵, 𝑏, 𝐵))
3736adantl 482 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝑏 = if(𝑏𝐵, 𝑏, 𝐵))
3834, 37breqtrd 5083 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝐴 < if(𝑏𝐵, 𝑏, 𝐵))
39 lptioo1.4 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
4039ad3antrrr 726 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐴 < 𝐵)
41 iffalse 4472 . . . . . . . . . . . 12 𝑏𝐵 → if(𝑏𝐵, 𝑏, 𝐵) = 𝐵)
4241eqcomd 2824 . . . . . . . . . . 11 𝑏𝐵𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4342adantl 482 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4440, 43breqtrd 5083 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐴 < if(𝑏𝐵, 𝑏, 𝐵))
4538, 44pm2.61dan 809 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → 𝐴 < if(𝑏𝐵, 𝑏, 𝐵))
4632, 45eqbrtrd 5079 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵))
4717ad3antrrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → 𝐴 ∈ ℝ*)
4814adantr 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → 𝑎 ∈ ℝ*)
4947, 48ifclda 4497 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ*)
5015adantr 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝑏 ∈ ℝ*)
5118ad3antrrr 726 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐵 ∈ ℝ*)
5250, 51ifclda 4497 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*)
53 ioon0 12752 . . . . . . . 8 ((if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ* ∧ if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5449, 52, 53syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5546, 54mpbird 258 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅)
5622, 55eqnetrd 3080 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) ≠ ∅)
5713, 56eqnetrd 3080 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅)
5857ex 413 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) → (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅))
5958ralrimivva 3188 . 2 (𝜑 → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅))
60 lptioo1.1 . . 3 𝐽 = (topGen‘ran (,))
61 ioossre 12786 . . . 4 (𝐴(,)𝐵) ⊆ ℝ
6261a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
6360, 62, 16islptre 41776 . 2 (𝜑 → (𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅)))
6459, 63mpbird 258 1 (𝜑𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  cdif 3930  cin 3932  wss 3933  c0 4288  ifcif 4463  {csn 4557   class class class wbr 5057  ran crn 5549  cfv 6348  (class class class)co 7145  cr 10524  *cxr 10662   < clt 10663  cle 10664  (,)cioo 12726  topGenctg 16699  limPtclp 21670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-ioo 12730  df-topgen 16705  df-top 21430  df-topon 21447  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672
This theorem is referenced by:  lptioo1cn  41803  fouriersw  42393
  Copyright terms: Public domain W3C validator