Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo1 Structured version   Visualization version   GIF version

Theorem lptioo1 43863
Description: The lower bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo1.1 𝐽 = (topGen‘ran (,))
lptioo1.2 (𝜑𝐴 ∈ ℝ)
lptioo1.3 (𝜑𝐵 ∈ ℝ*)
lptioo1.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
lptioo1 (𝜑𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))

Proof of Theorem lptioo1
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 4092 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐴}) ⊆ (𝐴(,)𝐵))
2 simpr 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
3 lbioo 13295 . . . . . . . . . . . 12 ¬ 𝐴 ∈ (𝐴(,)𝐵)
4 eleq1 2825 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵)))
54biimpcd 248 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴(,)𝐵) → (𝑥 = 𝐴𝐴 ∈ (𝐴(,)𝐵)))
63, 5mtoi 198 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 𝐴)
76adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
8 velsn 4602 . . . . . . . . . 10 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
97, 8sylnibr 328 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {𝐴})
102, 9eldifd 3921 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ((𝐴(,)𝐵) ∖ {𝐴}))
111, 10eqelssd 3965 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵))
1211ineq2d 4172 . . . . . 6 (𝜑 → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
1312ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
14 simplrl 775 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ ℝ*)
15 simplrr 776 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ ℝ*)
16 lptioo1.2 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1716rexrd 11205 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
18 lptioo1.3 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
1917, 18jca 512 . . . . . . . 8 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
2019ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
21 iooin 13298 . . . . . . 7 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
2214, 15, 20, 21syl21anc 836 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
23 elioo3g 13293 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝑎(,)𝑏) ↔ ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝑎 < 𝐴𝐴 < 𝑏)))
2423biimpi 215 . . . . . . . . . . . . 13 (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝑎 < 𝐴𝐴 < 𝑏)))
2524simpld 495 . . . . . . . . . . . 12 (𝐴 ∈ (𝑎(,)𝑏) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐴 ∈ ℝ*))
2625simp1d 1142 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝑎 ∈ ℝ*)
2725simp3d 1144 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝐴 ∈ ℝ*)
2824simprd 496 . . . . . . . . . . . 12 (𝐴 ∈ (𝑎(,)𝑏) → (𝑎 < 𝐴𝐴 < 𝑏))
2928simpld 495 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝑎 < 𝐴)
3026, 27, 29xrltled 13069 . . . . . . . . . 10 (𝐴 ∈ (𝑎(,)𝑏) → 𝑎𝐴)
3130iftrued 4494 . . . . . . . . 9 (𝐴 ∈ (𝑎(,)𝑏) → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
3231adantl 482 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
3328simprd 496 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝐴 < 𝑏)
3433ad2antlr 725 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝐴 < 𝑏)
35 iftrue 4492 . . . . . . . . . . . 12 (𝑏𝐵 → if(𝑏𝐵, 𝑏, 𝐵) = 𝑏)
3635eqcomd 2742 . . . . . . . . . . 11 (𝑏𝐵𝑏 = if(𝑏𝐵, 𝑏, 𝐵))
3736adantl 482 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝑏 = if(𝑏𝐵, 𝑏, 𝐵))
3834, 37breqtrd 5131 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝐴 < if(𝑏𝐵, 𝑏, 𝐵))
39 lptioo1.4 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
4039ad3antrrr 728 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐴 < 𝐵)
41 iffalse 4495 . . . . . . . . . . . 12 𝑏𝐵 → if(𝑏𝐵, 𝑏, 𝐵) = 𝐵)
4241eqcomd 2742 . . . . . . . . . . 11 𝑏𝐵𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4342adantl 482 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4440, 43breqtrd 5131 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐴 < if(𝑏𝐵, 𝑏, 𝐵))
4538, 44pm2.61dan 811 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → 𝐴 < if(𝑏𝐵, 𝑏, 𝐵))
4632, 45eqbrtrd 5127 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵))
4717ad3antrrr 728 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → 𝐴 ∈ ℝ*)
4814adantr 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → 𝑎 ∈ ℝ*)
4947, 48ifclda 4521 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ*)
5015adantr 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝑏 ∈ ℝ*)
5118ad3antrrr 728 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐵 ∈ ℝ*)
5250, 51ifclda 4521 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*)
53 ioon0 13290 . . . . . . . 8 ((if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ* ∧ if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5449, 52, 53syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5546, 54mpbird 256 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅)
5622, 55eqnetrd 3011 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) ≠ ∅)
5713, 56eqnetrd 3011 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅)
5857ex 413 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) → (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅))
5958ralrimivva 3197 . 2 (𝜑 → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅))
60 lptioo1.1 . . 3 𝐽 = (topGen‘ran (,))
61 ioossre 13325 . . . 4 (𝐴(,)𝐵) ⊆ ℝ
6261a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
6360, 62, 16islptre 43850 . 2 (𝜑 → (𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅)))
6459, 63mpbird 256 1 (𝜑𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  cdif 3907  cin 3909  wss 3910  c0 4282  ifcif 4486  {csn 4586   class class class wbr 5105  ran crn 5634  cfv 6496  (class class class)co 7357  cr 11050  *cxr 11188   < clt 11189  cle 11190  (,)cioo 13264  topGenctg 17319  limPtclp 22485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-ioo 13268  df-topgen 17325  df-top 22243  df-topon 22260  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487
This theorem is referenced by:  lptioo1cn  43877  fouriersw  44462
  Copyright terms: Public domain W3C validator