Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lptioo1 Structured version   Visualization version   GIF version

Theorem lptioo1 45628
Description: The lower bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lptioo1.1 𝐽 = (topGen‘ran (,))
lptioo1.2 (𝜑𝐴 ∈ ℝ)
lptioo1.3 (𝜑𝐵 ∈ ℝ*)
lptioo1.4 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
lptioo1 (𝜑𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))

Proof of Theorem lptioo1
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difssd 4117 . . . . . . . 8 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐴}) ⊆ (𝐴(,)𝐵))
2 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐵))
3 lbioo 13398 . . . . . . . . . . . 12 ¬ 𝐴 ∈ (𝐴(,)𝐵)
4 eleq1 2823 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑥 ∈ (𝐴(,)𝐵) ↔ 𝐴 ∈ (𝐴(,)𝐵)))
54biimpcd 249 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴(,)𝐵) → (𝑥 = 𝐴𝐴 ∈ (𝐴(,)𝐵)))
63, 5mtoi 199 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ¬ 𝑥 = 𝐴)
76adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
8 velsn 4622 . . . . . . . . . 10 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
97, 8sylnibr 329 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 ∈ {𝐴})
102, 9eldifd 3942 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ((𝐴(,)𝐵) ∖ {𝐴}))
111, 10eqelssd 3985 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∖ {𝐴}) = (𝐴(,)𝐵))
1211ineq2d 4200 . . . . . 6 (𝜑 → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
1312ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) = ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)))
14 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → 𝑎 ∈ ℝ*)
15 simplrr 777 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → 𝑏 ∈ ℝ*)
16 lptioo1.2 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
1716rexrd 11290 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
18 lptioo1.3 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
1917, 18jca 511 . . . . . . . 8 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
2019ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
21 iooin 13401 . . . . . . 7 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
2214, 15, 20, 21syl21anc 837 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) = (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)))
23 elioo3g 13396 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝑎(,)𝑏) ↔ ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝑎 < 𝐴𝐴 < 𝑏)))
2423biimpi 216 . . . . . . . . . . . . 13 (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐴 ∈ ℝ*) ∧ (𝑎 < 𝐴𝐴 < 𝑏)))
2524simpld 494 . . . . . . . . . . . 12 (𝐴 ∈ (𝑎(,)𝑏) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*𝐴 ∈ ℝ*))
2625simp1d 1142 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝑎 ∈ ℝ*)
2725simp3d 1144 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝐴 ∈ ℝ*)
2824simprd 495 . . . . . . . . . . . 12 (𝐴 ∈ (𝑎(,)𝑏) → (𝑎 < 𝐴𝐴 < 𝑏))
2928simpld 494 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝑎 < 𝐴)
3026, 27, 29xrltled 13171 . . . . . . . . . 10 (𝐴 ∈ (𝑎(,)𝑏) → 𝑎𝐴)
3130iftrued 4513 . . . . . . . . 9 (𝐴 ∈ (𝑎(,)𝑏) → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
3231adantl 481 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) = 𝐴)
3328simprd 495 . . . . . . . . . . 11 (𝐴 ∈ (𝑎(,)𝑏) → 𝐴 < 𝑏)
3433ad2antlr 727 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝐴 < 𝑏)
35 iftrue 4511 . . . . . . . . . . . 12 (𝑏𝐵 → if(𝑏𝐵, 𝑏, 𝐵) = 𝑏)
3635eqcomd 2742 . . . . . . . . . . 11 (𝑏𝐵𝑏 = if(𝑏𝐵, 𝑏, 𝐵))
3736adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝑏 = if(𝑏𝐵, 𝑏, 𝐵))
3834, 37breqtrd 5150 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝐴 < if(𝑏𝐵, 𝑏, 𝐵))
39 lptioo1.4 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
4039ad3antrrr 730 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐴 < 𝐵)
41 iffalse 4514 . . . . . . . . . . . 12 𝑏𝐵 → if(𝑏𝐵, 𝑏, 𝐵) = 𝐵)
4241eqcomd 2742 . . . . . . . . . . 11 𝑏𝐵𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4342adantl 481 . . . . . . . . . 10 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐵 = if(𝑏𝐵, 𝑏, 𝐵))
4440, 43breqtrd 5150 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐴 < if(𝑏𝐵, 𝑏, 𝐵))
4538, 44pm2.61dan 812 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → 𝐴 < if(𝑏𝐵, 𝑏, 𝐵))
4632, 45eqbrtrd 5146 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵))
4717ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑎𝐴) → 𝐴 ∈ ℝ*)
4814adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑎𝐴) → 𝑎 ∈ ℝ*)
4947, 48ifclda 4541 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ*)
5015adantr 480 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ 𝑏𝐵) → 𝑏 ∈ ℝ*)
5118ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) ∧ ¬ 𝑏𝐵) → 𝐵 ∈ ℝ*)
5250, 51ifclda 4541 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*)
53 ioon0 13393 . . . . . . . 8 ((if(𝑎𝐴, 𝐴, 𝑎) ∈ ℝ* ∧ if(𝑏𝐵, 𝑏, 𝐵) ∈ ℝ*) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5449, 52, 53syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅ ↔ if(𝑎𝐴, 𝐴, 𝑎) < if(𝑏𝐵, 𝑏, 𝐵)))
5546, 54mpbird 257 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → (if(𝑎𝐴, 𝐴, 𝑎)(,)if(𝑏𝐵, 𝑏, 𝐵)) ≠ ∅)
5622, 55eqnetrd 3000 . . . . 5 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴(,)𝐵)) ≠ ∅)
5713, 56eqnetrd 3000 . . . 4 (((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) ∧ 𝐴 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅)
5857ex 412 . . 3 ((𝜑 ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*)) → (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅))
5958ralrimivva 3188 . 2 (𝜑 → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅))
60 lptioo1.1 . . 3 𝐽 = (topGen‘ran (,))
61 ioossre 13429 . . . 4 (𝐴(,)𝐵) ⊆ ℝ
6261a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
6360, 62, 16islptre 45615 . 2 (𝜑 → (𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐴 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝐴(,)𝐵) ∖ {𝐴})) ≠ ∅)))
6459, 63mpbird 257 1 (𝜑𝐴 ∈ ((limPt‘𝐽)‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  cdif 3928  cin 3930  wss 3931  c0 4313  ifcif 4505  {csn 4606   class class class wbr 5124  ran crn 5660  cfv 6536  (class class class)co 7410  cr 11133  *cxr 11273   < clt 11274  cle 11275  (,)cioo 13367  topGenctg 17456  limPtclp 23077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-ioo 13371  df-topgen 17462  df-top 22837  df-topon 22854  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079
This theorem is referenced by:  lptioo1cn  45642  fouriersw  46227
  Copyright terms: Public domain W3C validator